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Abstract 
 
 Dental microwear analysis is a very useful tool when trying to infer the diet of a 

particular organism. By studying the use-wear scars left on the enamel of the tooth due to 

eaten objects, one can infer the diet of the organism because certain types of food leave 

certain types of scars. For example, the consumption of tree parts produces pits, while the 

consumption of grasses produces striated scratches (Ungar et al., 2007). Thus, based on 

the type of microwear, the diet of the organism in question can be deduced, which 

indicates the type of environment that it lives in. In this study, rodents of three different 

species (M. natalensis, M. libycus, and P. jacksoni) from differing environments were 

examined. Scale-sensitive fractal analysis was used to compare the microwear of these 

three species in order to determine if there were any differences in microwear, and if 

there were, the source of these differences were examined. This study showed that the 

central tendencies of the microwear did not differ significantly, but the variation in 

dispersion of microwear did.  
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Introduction 

Dental microwear 

Dental microwear is the study of the microscopic use-wear scars left on the 

enamel of the tooth. Over the past three decades, dental microwear has been used to 

characterize the feeding habits of extinct animals and has proven useful in reconstructing 

the environments of those extinct animals (Merceron et al., 2010). Previous methods 

included scanning electron microscopy (SEM), which did not provide a true 

representation of teeth surfaces in three dimensions. Measurement of features using this 

method proved to be time consuming, subjective, and susceptible to interobserver error 

(Ungar et al., 2003). Thus, a more accurate and useful method known as dental 

microwear texture analysis (DMTA) was developed. This method provides three-

dimensional coordinates representing surfaces at resolutions equivalent to that of SEM 

studies, and with this method, much of the errors common in previous studies were 

reduced (Ungar et al., 2003). Using the data collected from DMTA, researchers were able 

to expand their knowledge on what the environment was like for other extinct animals in 

the same deposits, including our ancestors, the early hominins. Because DMTA is 

applicable to a wide range of species, it has proven to be a useful tool in the 

paleoanthropological world (Ungar et al., 2003).   

Diet is recognized as an important factor in determining underlying behavioral 

and ecological differences among living animals (Ungar et al., 2007). What an organism 

eats throughout its lifetime is apparent when examining the microwear. For instance, 

animals that browse on tree parts tend to have more pitted surfaces, whereas those that 

graze on grasses have more striated ones (Ungar et al., 2007). Also, the amount of grit or 
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dust in a given environment has a dramatic effect on tooth wear, which should also help 

to understand the amount of vegetation cover (Ungar et al., 1995). Therefore, using the 

knowledge about a particular organism’s diet allows researchers to reconstruct the 

environment that the organism resided in. Rodents are particularly useful to study, 

because they are abundant, found in many different environments, and found in large 

numbers at fossil sites. This shows that they have and do, even to this day, live in close 

proximity to humans. In this study, the microwear of three rodent species (M. natalensis, 

M. libycus, and P. jacksoni) from varying environments were compared. Their general 

diets and preferred habitats are known. This study attempts to determine whether 

environment or the differences in diet because they are different species or both has a 

major impact on the type of microwear found on their teeth based on their diet. This 

study aims to develop a baseline of microwear related to specific environments that can 

be used to compare with fossil rodents found in early hominin sites.  Once the patterns in 

the fossil rodents are documented, they can be compared with the patterns in the living 

ones, and then the environments in which the extinct ones lived can be reconstructed, and 

by extension, the habitats of our own ancestors inferred.  

 

Environments/Species 

 Three terrestrial rodent species, M. natalensis, M. libycus, and P. jacksoni, were 

chosen because they are from a wide range of environments. Both P. jacksoni and M. 

natalensis live in moist environments, such as the rainforest or the woodlands, with some 

living in the savannah. M. libycus, however, live in drier environments, such as the 

desert. In this study, the M. libycus species were all from the desert, P. jacksoni were 
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divided between woodland and rainforest, and M. natalensis were divided between 

savannah and rainforest. M. natalensis rodents, more commonly known as the Natal 

multimammate mouse, typically are omnivorous. Under field conditions, they eat mainly 

seeds of grass and other plants, dried acacia pods, or the pulpy exterior of wild fruits. As 

populations increase and food supplies dwindle, they become cannibals (Skinner & 

Chimimba, 2005). P. jacksoni are also omnivores and eat invertebrates, fruits, seeds, and 

leaves. M. libycus eat seeds, stems, roots, and bulbs (Kingdon, 2004; Kingdon, 1974). 

Overall, the diets of each of these three species are very similar with only one species not 

being an omnivore. 

 

Materials and Methods 

Sample Collection 

 Molds of the specimens (n=31) were obtained by Dr. Peter Ungar and Salvatore 

Caporale from the Smithsonian Museum of Natural History. Before molding, the 

specimens were cleaned with cotton swabs soaked with acetone and ethyl alcohol. Molds 

of the fossil teeth were taken with a hydrophobic polyvinylsiloxane silicone (Coltène 

President’s Jet, regular body) impression material (Ungar, 1996). This material 

reproduces features with resolutions to a fraction of a micron (Beynon, 1987; Teaford & 

Oyen, 1986b). Once the molds were brought back to lab, high-resolution epoxy casts 

were created using the protocol described in previous papers (Grine and Kay, 1987). 

Then, pouring of the replicas involved using Epotek 301 resin and hardener (Ungar, 

1996).  
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The rodents are from different areas in Africa. The P. jacksoni specimens from 

the rainforest (n=4) are from Irangi, Kenya, and the woodland species (n=6) are from 

Kaimosi, Kenya. The M. natalensis specimens that live in the rainforest (n=5) are from 

the Democratic Republic of the Congo, and the savanna specimens (n=4) are from South 

Africa. M. libycus species (n=10) are from the deserts of Africa.  

 

Surface Data Collection 

 A Sensofar Plμ NEOX scanning confocal profiler (Solarius Development Inc., 

Sunnyvale, CA) was used to scan the lower second molar with a 150x objective. 

Generally, the distal, buccal cusp on the tooth was scanned, unless there were problems 

gathering images there. Problems included lack of microwear, unclear molds, or surfaces 

that were too steep for images to be taken. If there were problems, other cusps on the 

second molar were then examined and other molars after that. Three-dimensional point 

clouds were produced for each specimen using a field of view of 84.88 x 63.63µm2. Each 

had a lateral spacing (x,y) 0.13µm and a vertical resolution of <1 mm. After the scanning, 

each scan was then edited in Sensomap software following standard procedures (Ungar et 

al., 2003; Scott et al., 2005; Scott et al., 2006; Ungar and Scott, 2009). Any identifiable 

defects were removed by using the “retouch surface points” feature and non-measured 

points were then filled in using the “fill non-measured points” feature in Sensomap.  The 

same feature was utilized when generating the ISO data.  

	
  
Data Analysis  

 Scans of the tooth surface were analyzed using scale-sensitive fractal analysis 

programs known as Toothfrax and Sfrax (Surfract Corp., Worchester, MA). These 
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programs allow for the measurement and calculation of the complexity, anisotropy, scale 

of maximum complexity, textural fill volume, and surface texture heterogeneity of the 

specimen being examined. Observer error is reduced through the use of these programs, 

and more accurate results are generated in comparison to older methods such as scanning 

electron microscopy. These variables have been shown to be relevant to microwear 

analysis (Ungar et al. 2003; Scott et al., 2005, 2006).  

The scale sensitive fractal analysis variables used in this study are Asfc, Smc, Tfv, 

Lsar, and HAsfc.  Asfc (Area-scale fractal complexity) is a measure of complexity and is 

measured by the variation in the roughness of the enamel surface when measured at 

different scales. When pits and scratches on the tooth’s surface overlap and have differing 

sizes, the Asfc measurement increases (Ungar et al., 2007). Smc (Scale of maximum 

complexity) is the steepest part of the curve used to measure Asfc. This is a measure of 

features size, and thus a larger Smc is indicative of less wear at fine scales and more wear 

at course scales. Tfv (Textural fill volume) is the summed volumes of square cuboids of a 

given scale that fills a surface (Ungar et al., 2007). A surface with a high Tfv would be 

dominated by moderate-sized deep features. EpLsar (Length-scale anistotropy) is a 

measurement of the directionality of the wear on the surface. It is measured via vectors 

and is the length of the mean vector. Surfaces that have scratches running in the same 

direction have a higher epLsar value, which is characteristic of animals that feed on tough 

objects (Pontzer et al., 2011).  Lastly, HAsfc (heterogeneity) is the variation in 

complexity across a surface (Pontzer et al., 2011).  

ISO parameters were also utilized to analyze the data. They describe the basic 

geometric properties of surface textures (Calandra et al., 2012). There are thirty 
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parameters total that can be analyzed, but the ones used in this study were Sdr, Str, and 

Sv. Sdr is the developed interfacial ratio, which tells how much surface area is added by 

the texture of the surface. Str is the texture aspect ratio used to identify the uniformity of 

texture. Sv is the maximum pit height, the depth between the mean plane and the deepest 

valley (Cohen, 2004; Shulz et al., 2013).  

  

Statistical Analysis 

 The statistics in this study were generated using SYSTAT software. A 

multivariate analysis of variance model (MANOVA) was utilized for the variables 

generated in Toothfrax and Sfrax. The raw data utilized are in Appendix I. After the 

central tendencies were analyzed, variance tests were performed. Two variance tests were 

used to analyze the data, Bartlett’s test and Levene’s test. These are two standard 

measures of equality of sample variances (Zar, 1984).  

 

Results 

Scale Sensitive Fractal Analysis 

 When examining the data collected from Toothfrax and Sfrax variables, the 

central tendencies in their microwear did not differ in either species or environment, as 

shown in Table 1. Table 2 shows that there are, however, significant differences in the 

dispersion of microwear according to taxon and environment. The graphs below show the 

significant variation within each category of Asfc, Smc, Tfv, and HAsfc9x9 by either 

environment or taxon. For Asfc, significant variation was found with Bartlett’s test in 

both environment and taxon. For Smc, both the environment and taxon showed 
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significant variation with Levene’s test. Then, for Tfv, significant variation was found in 

environments. For HAsfc9x9, significant variation in dispersion was found between 

taxon.  After the equality of several variances tests were performed, pairwise two-sample 

variance tests were performed on those variables that showed significant variation among 

environments or taxa in order to determine the sources of significant variation (i.e. which 

pairs of environments or taxa varied significantly from one another). The results of these 

tests showed that significant variation occurred between the either M. natalensis or P. 

jacksoni with M. libycus. When comparing by environments, the most variation occurred 

between organisms from contrasting environments, as shown in Table 3 and 4.  

 

MANOVAs based on Ranked data 

Multivariate Test Statistics- based on species 

Statistic Value F-ratio df p-value 

Wilks's Lambda 0.635 0.976 12, 46 0.485 

Pillai Trace 0.375 0.924 12, 48 0.531 

Hotelling-Lawley Trace 0.558 1.022 12, 44 0.446 

Multivariate Test Statistics- based on environment 

Statistic Value F-ratio df p-value 

Wilks's Lambda 0.55 0.819 18, 62 0.671 

Pillai Trace 0.521 0.841 18, 72 0.647 

Hotelling-Lawley Trace 0.692 0.794 18, 62 0.699 

Table 1: Multivariate Test Statistics 
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Variance test results 
 Test Asfc epLsar Smc Tfv HAsfc 

3x3 
HAsfc9x9 

Taxon Bartlett 8.484* 0.308 2.717 4.698 1.197 7.926* 
 Levene 0.615 0.98 4.49* 1.826 0.156 0.4 
Environment Bartlett 10.843* 0.87 6.454 8.311* 0.894 5.669 
 Levene 0.548 1.003 3.621* 1.955 0.136 0.215 
*p < 0.05 

Table 2: Equality of Several Variances  
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Figure 1: Asfc variation by taxon and environment 
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Figure 2: Smc Variation by environment and taxon 
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Table 3: Pairwise two-sample variance test -Environment 

 

Pairwise two-sample variance test 

Environment Asfc Smc Tfv 

Desert vs. Savannah 1.020 0.241 0.220 

Desert vs. Woodland 1.267* 0.320 0.256 

Savanna vs. Woodland 8.157* 0.092 0.068 

Desert vs. Rainforest 7.171* 0.314 8.704* 

Rainforest vs. Savanna 0.142* 11.050 0.364 

Rainforest vs. Woodland 1.160 1.018 0.193* 

*p<0.05 
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5000 

10000 
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Figure 3: Tfv variation by environment 
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Pairwise two-sample variance test  

Taxa Asfc Smc HAsfc9x9 

M. natalensis vs. P. 
jacksoni 

3.416 0.746 0.235 

M. libycus vs. P. jacksoni 7.871* 0.345 1.961 

M. libycus vs. M. 
natalensis 

2.304 0.462 8.349* 

*P<0.05       

Table 4: Pairwise two-sample variance test - Taxa 

 

 

 

 

 

 

 

Figure 4: Equality of two variances by HAsfc9x9 and Asfc 
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ISO Parameters 

 ISO parameters were also utilized to characterize the nature of the microwear 

found on the specimen. First the equality of several variances was measured, and then the 

Pairwise two-sample variance tests were performed with each variable based on either 

environment or the taxon. The variables studied were STR, SDR, and SV. SDR and SV 

were found to have the most variation. . Table 5 shows that the variation between SDR 

and SV occur more in contrasting environments and Table 6 shows that the variation 

occurs in either M. natalensis or P. jacksoni with M. libycus. 

 

Equality of Several Variances 

Category Test STR SDR SV 

Taxon Bartlett 0.445 15.742* 46.609* 

 Levene 0.268 1.516 3.081 

Environment Bartlett  1.304 19.445* 57.624* 

 Levene 0.439 2.184 10.798* 

*p<0.05 

Table 5: Equality of Several Variances 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
  

	
   16	
  

	
  
	
  
	
  
Pairwise two-sample variance test 
Environment SDR SV 
Desert vs. rainforest 0.194* 5.539* 
Desert vs. Savanna 0.048* 7.663 
Desert vs. Woodland 0.039* 0.020* 
Rainforest vs. Woodland  0.199* 0.004* 
Rainforest vs. Savanna 0.247 1.384 
Savanna vs. Woodland 0.805 0.003* 
*p<0.05 

Table 6: Pairwise two-sample variance test - Environment	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
Pairwise two-sample variance test	
  

Taxon SDR SV 

M. libycus vs. M. natalensis 0.085* 6.097* 

M. natalensis vs. P. jacksoni 0.717 0.005* 

M. libycus vs. P. jacksoni 0.061* 0.027* 

*P<0.05 

Table 7: Pairwise two-sample variance tests - Taxa 
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a.)  

 b.)	
   	
   

c.) 	
  

Figure 5: Examples of microwear on a) M. natalensis, b) M. libycus, and c) P. 
jacksoni 
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Figure 6: SDR vs. SV by Taxon and Environment 
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Discussion 

Tooth/Sfrax 

 The fact that central tendencies did not differ was particularly interesting because 

this result was not expected; more differences were expected. However, looking at the 

scans in Figure 5, not many differences among species were visible to the casual 

observer. Any differences would have been in the specific qualities of the features 

measured, and even there, there were no significant differences. Significant variation in 

dispersion may be due to the fact that this particular sample size was small. A smaller 

sample size increases the possibility of more variation within a category, such as 

environment or taxa. However, after the pair wise two-sample tests were performed, the 

results showed that the most variation occurred between the two omnivorous species and 

the herbivorous species. That was to be expected, since the omnivorous species have a 

different component in their diet that would produce different microwear. With regard to 

environments, the most variation occurred between species from the most contrasting 

environments, for example, desert vs. rainforest. These differences were also expected, 

since those from contrasting environments are more likely to have different microwear 

present on their teeth. The reason why central tendencies did not differ may be due to the 

fact that overall, these rodents’ diets are very similar; all three species analyzed generally 

eat fruits, seeds, and leaves. The variation in dispersion may be caused by changing 

environments and how volatile the weather may be in that particular environment or by 

the availability of food at that time of collection of species.  For example, the variation in 

Asfc and Smc may be due to the environments’ influence on the foods that these rodents 
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eat. M. libycus may eat seeds that are covered with sand as opposed to P. jacksoni which 

may eat seeds covered in dirt. Although both species eat seeds, the physical nature of the 

sand or dirt that covers them may have a significant impact on the microwear found on 

the teeth.  

 

ISO parameters 

 Central tendencies were similar to the results from Tooth/Sfrax. However, 

significant variation in Sdr and Sv dispersions were apparent. Thus, those two variables 

were more closely examined. The results suggest that the variation in Sdr and Sv may 

stem from the environmental influence on the foods that these rodents eat, similar to the 

results from Toothfrax and Sfrax. The variation in dispersion among species may be 

attributed to one of the species not being an omnivore, an extra component of diet the 

other two species have. This is also consistent with the data from Tooth/Sfrax.  

 Overall, the results suggest that there is a strong environmental component to the 

microwear found on their teeth that may prove useful in reconstructing the habitats of the 

rodents, other animals found with them, and our ancestors. 

 

Conclusions and further directions 

 The purpose of this study was to see if there were major differences in microwear 

among specimens of differing species of rodents from differing environments. This study 

found that the central tendencies of the microwear did not differ, but the variation in 

dispersion within species and environments did significantly differ. This information will 

be expounded upon later with studies that will include a larger sample size. With a larger 
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sample size, the central tendencies may differ due to evidence showing that microwear 

does differ according to diets of animals, as shown in previous papers. This study is the 

first of many to determine a baseline for microwear in rodents in order to recreate the 

environment that our ancestors lived in.  
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