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ABSTRACT 

New materials for thin film photovoltaic applications are being explored 

worldwide, and one of the most popular new implementations is the introduction of an 

intermediate band gap in the semiconductor energy structure.  Careful manipulation of 

semiconductor lattice material can form nanostructures such as quantum dots, which can 

be tuned to control specific intermediate energy levels.  The introduction of an 

intermediate band in photovoltaic devices has a theoretical potential sunlight-to-

electricity efficiency of roughly 63%.  However, a specific material challenge of these 

thin film devices is limited absorption of long wavelengths of light.  To increase 

absorption of the sun’s visible spectrum, plasmonic nanostructures may also be 

incorporated into the semiconductor structure.  By scattering light horizontally and by 

matching incident wavevectors with waveguide modes within the absorbing layer, these 

plasmonic nanostructures can enhance the thin film absorption and increase device 

efficiency.   

To study this effect, a colloidal solution of gold nanoparticles was applied to the 

surface of a GaAs substrate with InAs quantum dots grown by Molecular Beam Epitaxy.  

Measurements of photoluminescence were performed on the semiconductor sample 

before and after nanoparticle deposition using various power settings for the excitation 

laser.  Plasmonic enhancement due to light scattering is observed, and the enhancement 

factor is found to be inversely proportional to the excitation laser power.  This supports 

the theory of light trapping in thin films due to plasmonic mechanisms.  It also provides 

insight into the relationship between incident light intensity and potential absorption 

enhancement in thin-film semiconductors. 
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1.  INTRODUCTION 

1.1  Problem: Limited Solar Cell Efficiency 

Renewable energy is one of the most highly demanded and thus highly researched 

scientific fields today.  Converting solar energy into electricity by means of the 

photoelectric effect is a popular avenue of advancement in renewable sources.  In the 

field of semiconductors and nanotechnology, experimental growth techniques and 

nanostructures are a more specific study in the pursuit of higher solar energy conversion 

efficiencies.  Nanomaterials (materials with nanoscale size) have excellent potential to 

create low cost and high solar energy conversion efficiencies in solar cells.     

Solar energy currently available in the consumer market is made from silicon 

wafer material; it is a cheap, familiar, and easily accessible semiconductor that exhibits 

the photoelectric effect.  The theoretical sunlight-to-electricity conversion efficiency of 

these bulk cells is ~33% [1].  Present research methods aiming to double the current 

standard of efficiency include single silicon crystals, multijunction concentrators, 

organic/inorganic composites, and quantum dot technology [2].  Theoretically attainable 

conversion efficiency of solar cells implemented with these new technologies is ~63% 

[1].  One specific concept in solar cell fabrication is the introduction of an intermediate 

band using quantum dots (QDs).  The intermediate band allows excited carriers to 

recombine at several lower energy levels than the band gap, EG, so that incident photons 

of lower energy may still be absorbed [3].  Fabrication of these QDs can be accomplished 

with several techniques, such as chemical synthesis of colloidal core/shell nanocrystal 

solutions or Molecular Beam Epitaxial (MBE) growth [5].   
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Traditional bulk material solar cells, such as the silicon-based semiconductor 

developed in the 1970’s, converts solar energy from photons into electrical charge using a 

single band gap in the semiconductor structure [4].  If the photon energy is greater than 

the energy required to excite a carrier across the band gap, then the excess energy from 

the photon is dissipated into the solar cell lattice as heat.  If the photon energy is less than 

the band gap energy level, then no carriers are excited.  The concept of an intermediate 

band solar cell introduces three separate band gaps in the junction of the structure, so that 

a broader range of photon energy levels can excite carriers [3].  Furthermore, the 

manipulation of these three band gaps allows for optimization of sunlight absorption. 

Quantum dots are an ideal structure for intermediate band solar cell development, 

because they are low-dimensional nanostructures with well-defined discrete energy levels 

[7].  These energy levels can be directly fine-tuned by changing the size of the QDs, thus 

allowing for band gap optimization in structure design [5].  QDs in this application are 

typically made from a III-V semiconductor combination, where the size of the dots is in 

the range of nanometers.  The sample analyzed in this research is a repetitive lattice of 

InAs QDs deposited onto a GaAs substrate using MBE growth.   

1.1.1  Thin Film Light Absorption 

When QD nanostructures are utilized in a solar cell device, they are most 

effectively grown in a thin film semiconductor structure.  The thickness of a typical thin 

film active region is between 1-2 µm, whereas traditional silicon cells have an active 

region thickness greater than 100 µm [6].  This bulk layer of silicon, combined with 

rough surface texturing, is required to fully absorb incident sunlight.  Thin films must 

utilize a different mechanism to increase absorption.  Due to a decrease in dark current 
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resulting from bulk recombination, overall performance of thin film solar cells increases 

as the thickness decreases [6].  The challenge is to design thin solar cell devices which 

are still able to redirect visible light wavelengths into the active region for increased 

absorption.  One promising solution to this material design problem is to utilize 

plasmonic mechanisms of metallic nanoparticles coupled with the semiconductor active 

region.  Previous research has shown that metallic particles with cross-sections in the 

nanometer range, when coupled to a semiconductor, will form plasmon resonances of 

wavelengths within the visible light range [8].  These plasmon resonances enhance 

scattering of incident light within the semiconductor active region, and therefore increase 

absorption. 

1.2  Thesis Statement 

This research will characterize plasmonic effects on photoluminescence 

measurements of thin film semiconductors based on quantum dots.  Specifically, the 

effects of surface-deposited gold nanoparticles on InAs QDs with a GaAs capping layer 

will be measured. 

1.3  Approach 

Observing the plasmonic effects of gold nanoparticles on a semiconductor 

requires a test which can measure incident light absorption or a quantitative effect of this 

absorption.  Photoluminescence (PL) measurements were taken to measure the intensity 

of photon excitation from the semiconductor, which is directly related to the amount of 

light absorbed.  PL is also appropriate for this research because it is a standard 



 4

semiconductor property to be measured when choosing materials for any optical device, 

and it helps to determine the sample’s potential efficiency as a solar cell.   

The sample’s initial PL was first measured, and then the nanoparticle solution was 

applied by briefly submersing the sample in a vial of the given solution.  After drying, PL 

was measured again.  By characterizing PL intensity of the sample before and after 

nanoparticle coupling, the plasmonic effects of the nanoparticles are observable.  The 

changes in PL intensity and in wavelength response can be analyzed to determine 

enhancement in absorption and changes in photon emission energy levels. 

1.4  Potential Impact 

The results of this investigation will benefit research groups studying plasmonic 

effects of nanostructures on semiconductor devices.  Because plasmonic nanostructures 

have such vast potential for various applications of semiconductor enhancement, many 

researchers are seeking simple and effective methods of utilizing these plasmonic 

mechanisms.  The characterization of gold nanoparticles coupled with InAs QDs will 

yield information which better describes these enhancement mechanisms. This 

experiment will also show the effectiveness of a simple, inexpensive, and low 

maintenance method for successfully coupling metallic nanoparticles with III-V 

semiconductor surfaces. 

Identifying an inexpensive method of enhancing semiconductor absorption due to 

plasmonic effects has the potential to change the field of thin film solar cells.  Enhanced 

absorption will lead to increased sunlight-to-electricity conversion efficiency for these 

solar cells.  The results of this research could allow the solar cell industry to manufacture 
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more efficient thin film cells to compete with traditional bulk silicon cells, therefore 

making solar power cheaper and more viable in the consumer market. 
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2.  BACKGROUND 

2.1  Plasmonic Mechanisms of Metallic Nanoparticles 

When a metallic particle is adjacent to a dielectric material, bound 

electromagnetic oscillations, known as plasmon resonances, appear due to the collective 

oscillation of conduction electrons in the metal [9].  By altering the size, shape, and 

arrangement of these metallic particles, plasmon resonances can be generated at a wide 

range of wavelengths [10].  When incident light wavelengths near the plasmon resonance 

wavelength interact with the particle’s local electromagnetic field, the particle will have 

an enhanced scattering cross-section.  In a semiconductor, enhanced scattering of incident 

light allows for enhanced light trapping within the active region by three main 

mechanisms: increasing light path length, incoupling to photonic modes and Surface 

Plasmon Polariton (SPP) modes, and near field “antenna” enhancement [11]. 

2.1.1  Scattering Incident Light for Increased Path Length 

When metal particles have diameters far below the wavelength of light, the 

absorption and scattering of light can be described using a point dipole model.  The 

equations for scattering and absorption cross-sections are defined as [7,15]: 

               

Where α is the particle polarizability, V is the particle volume, εp is the particle dielectric 

function, and εm is the surrounding medium dielectric function.  When εp/ εm = -2, the 

particle polarizability increases drastically, causing the scattering cross-section to 

increase as well.  This allows nanoparticles with proper dielectric matching to a 
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semiconductor to have a scattering area much larger than its physical cross-section.  The 

polarizability at this point is known as the surface plasmon resonance.  This resonance 

frequency and wavelength, which is dependent on the two interacting material properties 

and the metallic particle size, is what allows incident light to be better absorbed by the 

nanoparticle-coupled semiconductor active region [7,15].  Light scattered by this 

mechanism is essentially “folded” into the semiconductor, and it must travel horizontally 

through the active region, allowing more opportunity to be absorbed.  This also leads to 

higher short circuit current densities when applied directly to photovoltaic devices [12]. 

2.1.2  Incoupling to Photonic and SPP Waveguide Modes  

When incident light enters the localized electromagnetic field of the nanoparticle, 

it will either be scattered or absorbed by the near field cross-sectional area.  Besides 

simply increasing path length, the scattering center also allows incident light to overcome 

the momentum mismatch between the wavevector through the dielectric material and the 

semiconductor waveguide mode.  Waveguide modes within the semiconductor can either 

be photonic waveguide modes (traditional photon wave patterns) or SPP modes [6].  

Photonic modes follow the standard exponential absorption profile, with peak absorption 

typically occurring in the middle of the active region thickness and possibly at smaller 

peaks near the edges of the active region thickness.  As thin film active regions become 

thinner, there are less photonic modes within the material, which results in less potential 

waveguide momentum matching with incident photons.  Plasmon-enhanced 

semiconductors compensate for this by means of SPP modes.  SPP modes form as highly 

localized electromagnetic waves on the interface between the metallic nanoparticle and 

the semiconductor, and they are capable of propagating up to 10 µm if the incoupling 
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light is in the visible range [11].  However, the incident light can excite the SPPs within 

the localized area of the nanoparticle, which has dimensions that are a fraction of the 

incident wavelength.  This photon-to-SPP conversion is another method of plasmonic 

effects “folding” the light horizontally into the semiconductor layer for increased 

semiconductor absorption. 

2.1.3  Near Field Light Concentration  

Metal nanoparticles also exhibit strong local electromagnetic field enhancement, 

and optical absorption is proportional to field intensity.  Therefore, the same cross-

sectional area which scatters light can also absorb incident light by acting as antenna and 

convert it to a localized surface plasmon mode on the nanoparticle.  The size, shape, and 

arrangement of nanoparticles will determine the specific range of light “received” by the 

antenna.  This form of plasmonic energy conversion is most effective when the 

semiconductor absorption rate is faster than the plasmon decay time, which is typically in 

the range of 10-50 femtoseconds [11].  These localized surface plasmon modes can 

directly excite carriers within the semiconductor, resulting in an indirect increase in 

absorption due to near field plasmonic enhancement. 

2.2  Gold Nanoparticle Synthesis and Functionalization 

The gold particles were synthesized in toluene, an organic solvent.  This was 

accomplished by phase transfer from an aqueous layer to an organic layer using a phase 

transfer catalyst during the synthesis. In a typical synthesis, 0.3537 g of gold (III) 

chloride was dissolved in 30 mL of deionized water. Then 2.187 g of tetraoctyl 

ammonium bromide (TOAB) was prepared in 80 ml of toluene. Afterwards, the gold (III) 
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chloride solution was added to the TOAB containing toluene, and the mixture was 

vigorously stirred for about 15-20 minutes. Meanwhile, ice cold sodium borohydrate 

(NaBH4) solution was prepared by adding 0.38 g of NaBH4 to 25 ml of deionized water, 

which cooled for about 10 to 15 minutes.  The ice cold NaBH4 solution was added drop-

wise over a period of 30 minutes to the mixture of TOAB in toluene and gold (III) 

chloride solution in water while stirring vigorously. The solution was continuously stirred 

for another 20 minutes. Eventually, the initial pale yellow color of the solution changed 

to burgundy red, which ensured the complete reduction of gold (III) ions to colloidal 

metallic gold (0) nanoparticles. The formed colloidal metal nanoparticles are completely 

transferred to toluene upon reduction.  The organic phase was extracted, and the aqueous 

phase was discarded. For further purification, the organic layer was washed about 5 to 6 

times with deionized water to remove the unwanted salts.  The aqueous phase was 

repeatedly removed via phase separation.  Finally, the organic phase was dried with 

anhydrous sodium sulphate (Na2SO4) to remove any traces of water. This procedure 

yielded a concentrated gold colloidal particle solution with particle size around 15 to 20 

nm.  The concentrated gold colloidal suspension in toluene is stored in a vial.  For 

deposition on semiconductor layers, the original solution was diluted to approximately a 

1:10 ratio.   

Before the gold nanoparticles were deposited on the surface of the GaAs-capped 

InAs QD layers, the surface was chemically treated with organic dithiols. For surface 

functionalization, 0.5 ml of 1, 3, propane dithiol was dissolved in 10 ml of ethanol and 

stirred thoroughly for about 5 to 10 minutes to prepare a homogeneous solution.  The 

semiconductor sample was completely submersed in the freshly prepared propane dithiol 



 10

solution for approximately 1 minute.  The sample was then allowed to completely dry 

exposed to air at room temperature.  Once dry, the sample was completely submersed in 

the diluted gold nanoparticle toluene-based solution for 5 minutes.  After the sample was 

removed, the back surface was placed on a napkin and allowed to dry in air at room 

temperature.  Any accumulated excess solution on the sample due to surface tension was 

wicked away and quickly dried by the napkin, and this was done without contacting or 

manipulating the active surface of the sample.  The desired effect is for a chemical link to 

adhere the individual nanoparticles to the semiconductor surface, preventing coagulation 

between multiple nanoparticles.  The sketch shown in Figure 1 depicts the mechanism of 

functionalization by which the nanoparticles are fixed to the sample. 

 

 

Figure 1:  Sketch of the sample coupled to gold nanoparticles by dithiol ligands 
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2.3  Absorption 

The spectrum of the nanoparticle solution was previously measured by Jiang Wu, 

a member of the Optoelectronics research group, with a Cary 500 spectrophotometer, 

which is shown in Figure 2.  A spectrophotometer utilizes fundamental optics signal 

analysis to determine the intensity absorbed by a single wavelength of light.  By 

measuring transmitted and reflected light intensity of a beam which is incident on the 

sample, the absorbed intensity can be calculated.  This is most commonly done using a 

test light source which outputs a single frequency, and the measurement is repeated over 

the entire spectrum of interest.  Figure 3 shows the significant surface plasmon peak of 

the gold particles around 519 nm, which is of particular interest when these plasmonically 

active metal nanoparticles are coupled with semiconductors to see the plasmon exciton 

interaction.  Peak absorbance at 519 nm can be interpreted as the surface plasmon 

resonance wavelength, which is absorbed by the nanoparticles and effectively converted 

to surface plasmon waves.  This data is relative and important to this research, because it 

will help determine which plasmonic mechanism is in effect depending on the 

wavelength of the incident light. 
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Figure 2:  Cary 500 spectrophotometer for measuring absorption 

 

 

           

Figure 3:  Absorbance spectrum for gold nanoparticle toluene-based solution 

 

2.4 Photoluminescence 

The technique of Fourier transform infrared spectroscopy (FTIR) is commonly 

used to make optical measurements such as photoluminescence.  FTIR spectrometers are 
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capable of simultaneously collecting optical data over a wide spectral range.  Like any 

spectroscopy, PL using FTIR collects data of a sample’s optical absorption at each 

wavelength of radiation within the spectrum of interest.  Rather than performing an 

absorption measurement individually for each possible wavelength using a unique 

radiation source every time, FTIR applies a broadband light source to the sample and 

measures the amount of light absorbed.  This process is repeated while changing the 

combination of frequencies generated by the broadband light source, and measurements 

are repeated until the desired accuracy and resolution are obtained.  This raw data is 

computed using the Fourier transform algorithm, which converts position-data taken from 

the broadband light measurements to frequency-data.  A complex configuration of 

mirrors in a systematic arrangement, known as a Michelson interferometer, is the 

mechanism used to collect data on broadband absorption as a function of mirror position 

[16].  The Michelson interferometer uses stationary and moving folding mirrors to guide 

the broadband light source in a pattern which causes destructive wave interference, 

blocking a specific set of wavelengths within the broadband source.  The specific 

wavelengths being blocked or transmitted are manipulated by the position of a scanning 

mirror in one dimension.  Different mirror positions cause destructive interference of a 

different set of wavelengths, and the sample absorption is measured for each of these 

positions.  The raw data collected showing absorption as a function of mirror position is 

called an interferogram, and this data is computed by Fourier transform to yield spectral 

data of intensity as a function of incident wavelength.  The modified Michelson 

inferometer design used in the BOMEM DA8 spectrometer is shown below in Figure 4 

[16]. 
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Figure 4:  Modified Michelson inferometer used in BOMEM DA8 

 

PL measurements are taken by exciting the carriers within the sample using a 

laser.  Photons from the laser hit the semiconductor structure, creating an exciton, and 

this exciton recombines across the band gap of the structure material [13].  This 

recombination causes radiation of a photon with the same energy as the band gap it came 

from [14].  Therefore, knowing wavelength-to-energy conversion factors, the band gap of 

a semiconductor sample can be determined.  More intense PL response correlates to more 

intense photon excitation, which is caused by more excitons recombining across the band 

gap.  The intensity of PL response is given in arbitrary units, but this arbitrary scale can 

be utilized for signal power ratios.  The sample being discussed was measured using a 
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BOMEM DA8 FT-IR spectrometer with a PL accessory and a 641 nm excitation laser.  

The experimental setup for this research is shown below in Figure 5.  

  

 

Figure 5:  BOMEM DA8 FT-IR spectrometer with PL accessory 
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3.  EXPERIMENTAL RESULTS 

Measurements were made with a BOMEM DA8 FT-IR spectrometer with a PL 

accessory, using a 641 nm excitation laser at power levels of 10, 20, 30, and 50 mW.  

Liquid nitrogen cooling was used to reach an operating temperature of 77K.   

The semiconductor sample, grown by MBE, consists of two monolayers of self-

assembled InAs quantum dots grown on a 350 µm GaAs substrate and capped with a 100 

nm GaAs layer.  PL of the original semiconductor sample was first measured to 

determine initial emission intensity and wavelength.  The sample was submersed in a 

toluene-based solution of gold nanoparticles, functionalized with dithiol, for 5 minutes at 

room temperature conditions.  After the sample was allowed to dry, PL was measured 

again at similar power settings.  Figure 6 displays PL results of the sample using 10, 20, 

30, and 50 mW excitation laser powers. 
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3.1  PL Results  

 

Figure 6:  PL spectra before (black) and after (green) nanoparticle coupling 

 

The results show the same curve of the InAs QD response at each excitation 

power level, but each graph is scaled appropriately to show relative ratios of 

enhancement.  The measurement using 10 mW shows a 2.05 enhancement ratio, while 

the measurement using a 50mW laser only shows a 1.22 enhancement ratio.   

 

3.2  Enhancement Ratio vs. Laser Power  

It is clear from the results shown in Figure 6 that while the sample consistently shows 

increased PL intensity, the ratio of plasmon-enhanced measurements to original 
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measurements is not constant.  As excitation laser power is increased, the enhanced 

measurements do not increase proportionally.  The enhancement ratio decays 

exponentially as laser power increases, which is shown in Figure 7 by an exponential line 

of fit plotted over the enhancement ratio points from the four measurements.  The 

exponential curve shown fits the four data points with an R
2
 value of 0.996, a remarkably 

close approximation. 

 

 

Figure 7:  Ratio of enhanced/original PL intensity with exponential curve fit 
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6.  CONCLUSIONS 

6.1  Summary 

While the PL signal intensity has clearly increased in each power level 

measurement, the characteristic curve spectrum remains unchanged.  This indicates that 

the excited photons emitted from the sample have a constant energy, and therefore the 

plasmonic effects did not cause any red shift or blue shift in the sample.  The increase in 

each sample can be attributed to the scattering plasmonic effect of the gold nanoparticles.  

Of the three plasmonic mechanisms listed in this review, the first and most common 

mechanism, increased scattering cross-section creating longer light path length, is 

determined to be the cause of enhancement for several reasons.   

First, the increased scattering cross-section is the only mechanism which doesn’t 

require a direct interface between the metallic particles and the absorbing layer.  Near 

field absorption enhancement and waveguide momentum matching both rely upon the 

metal/nonmetal interface for the localized field to make the plasmonic energy conversion 

in the active region of the semiconductor.  Since these particles are on the surface of a 

100 nm GaAs capping layer, there is no interface between the metal and the InAs QDs.  

However, the gold still forms a metal/nonmetal interface which generates a plasmon 

resonance frequency that increases the polarizability of the particle, and therefore 

increases the effective scattering cross-section of the gold nanoparticles.  Second, near 

field enhancement and waveguide matching to SPP modes both occur more prominently 

when incident light exceeds the plasmon resonance energy level.  The absorbance 

measurements of this nanoparticle solution show an absorption peak at 519 nm, which 

indicates the wavelength of light being optimally converted to surface plasmons.  Lower 
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wavelengths also have high absorption because the light-to-plasmon wave conversion 

occurs for photons with energy greater than or equal to the surface plasmon resonance.  

The incident light during the performed PL measurements was generated by a 641 nm 

laser, which has lower energy than the 519 nm plasmon resonance wavelength.  

Therefore, it can be inferred that the incident 641 nm laser may not have the photonic 

energy to excite SPP modes or become plasmonically converted in an enhanced near 

field, but it does have enough energy to induce enhanced plasmonic scattering at the 

nanoparticles. 

6.2  Future Work 

This research shows evidence of the plasmonic scattering effect using metallic 

nanoparticles coupled with thin film semiconductors, which lays groundwork for many 

future endeavors in the field of optics, plasmonics, and semiconductor devices.  The 

given procedure of gold nanoparticle synthesis provides a feasible source of 

plasmonically active particles, and the successful coupling with quantum dot thin films 

guarantees that researchers are capable of more extensive and in-depth experiments.  

Future projects may include tuning of the plasmon resonance to match a specific 

intermediate band in a semiconductor in an attempt to enhance a specific peak in the PL 

spectrum of a sample.  Closer characterization of the surface plasmon resonance 

dependency on different material dielectric constants may also be of interest.  Ultimately, 

better understanding and control of these material properties and their plasmonic 

interactions will aid the design of more efficient optical semiconductor devices based on 

plasmonic enhancement. 
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