
University of Arkansas, Fayetteville
ScholarWorks@UARK
Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2017

Music Feature Matching Using Computer Vision
Algorithms
Mason Hollis
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/csceuht

Part of the Artificial Intelligence and Robotics Commons, Computer Engineering Commons,
Graphics and Human Computer Interfaces Commons, Software Engineering Commons, and the
Theory and Algorithms Commons

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at ScholarWorks@UARK. It has been
accepted for inclusion in Computer Science and Computer Engineering Undergraduate Honors Theses by an authorized administrator of
ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu, drowens@uark.edu, scholar@uark.edu.

Recommended Citation
Hollis, Mason, "Music Feature Matching Using Computer Vision Algorithms" (2017). Computer Science and Computer Engineering
Undergraduate Honors Theses. 47.
http://scholarworks.uark.edu/csceuht/47

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fcsceuht%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csce?utm_source=scholarworks.uark.edu%2Fcsceuht%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.uark.edu%2Fcsceuht%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.uark.edu%2Fcsceuht%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.uark.edu%2Fcsceuht%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.uark.edu%2Fcsceuht%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.uark.edu%2Fcsceuht%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht/47?utm_source=scholarworks.uark.edu%2Fcsceuht%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu,%20drowens@uark.edu,%20scholar@uark.edu

Music Feature Matching Using Computer Vision Algorithms

Mason Hollis
College of Engineering, University of Arkansas

mdhollis@uark.edu 

Abstract

This paper seeks to establish the validity and potential benefits of using existing

computer vision techniques on audio samples rather than traditional images in order to

consistently and accurately identify a song of origin from a short audio clip of potentially

noisy sound. To do this, the audio sample is first converted to a spectrogram image,

which is used to generate SURF features. These features are compared against a

database of features, which have been previously generated in a similar fashion, in

order to find the best match. This algorithm has been implemented in a system that can

run as a server, processing “query” clips as they come in and returning to the end user a

specific song which matches the input query audio.

1. Introduction

As the prevalence of personal computers was growing in the early 2000s, more and

more people began to be interested in the idea of identifying music digitally. Both in

academia [1, 2] and with popular commercial services such as Shazam [3], the best

way to accomplish this goal was a heavily researched topic. In 2008, Shazam launched

its widely-used iPhone app bringing the problem into the general public’s view, and

inspiring even more research in the area. In contrast, research in computer vision has

been a popular research topic for much longer, beginning in the 1960s when artificial

intelligence research was just beginning [4]. Partially because of this, and partially

� of �1 14

mailto:mdhollis@uark.edu

because of the wider scope of potential applications, I believe the computer vision field

is ahead of the audio recognition field in many aspects. Rather than continue to develop

independently, recently some researchers have begun using algorithms traditionally

developed for image recognition in order to recognize music [5]. This is still a relatively

unexplored approach to audio recognition but one with a lot of potential.

The goal of this paper is to establish a reliable method of using computer vision

to identify the original song from a short query clip containing the a portion of the song.

A classic use-case of this goal is the case of an end-user hearing a song that they don’t

necessarily know the name or artist of, but would like to find out. Using the algorithm

discussed here, my program could take a short clip of audio as input and return to the

user the name, artist, and other information related to the song. A more industry-facing

use case is the case of companies such as record labels wanting an algorithm that can

help identify their songs in the context of videos and audio sharing sites online in order

to cut back on illegal use or piracy of their song.

This paper discusses my process for developing an algorithm designed to

accomplish these goals using computer vision. Section 2 discusses my approach to

preparing an audio sample to be used by a computer vision algorithm by converting it to

an image representation. Sections 3 and 4 discuss the process of generating features

for these images and finding matching features in the database. The success of this

approach is evaluated in section 5. Possible applications are discussed in section 6.

And finally, I talk about plans I have for the improvement of this approach in section 7.

� of �2 14

2. Converting Audio to Images

The first challenge faced in this project was finding the best way to actually represent

audio in a way that computer vision techniques could use. Audio is normally

represented as a one dimensional signal representing volume as a function of time.

Computer vision techniques are designed to work with two dimensional images, where

pixel values correspond to color or brightness at each location. There are essentially

only two popular ways of doing this - a standard waveform (Figure 1) and a spectrogram

(Figure 2). A waveform representation is essentially an image representation of the

actual sound wave. A simple, computer-generated, single tone will be shown as a sine

wave as can be expected with a simple audio signal. However, when complexities such

as resonant frequencies, overtones, harmonies, and multiple instruments are added in,

the aggregate waveform is often only useful for seeing the general amplitude of the

� of �3 14

Figure 1: Waveform for sample of “Me and Your Mama” by Childish Gambino

Figure 2: Spectogram for sample of “Me and Your Mama” by Childish Gambino

song. For example, this type of file is great for identifying the loudest point of a song.

Without an unreasonable level of resolution for every song, this type of graph doesn't

provide nearly as much information as a spectrogram, which plots the amplitude of

particular frequencies across a given time. These graphs generally have time on the x-

axis, frequency on the y-axis, and the amount of signal at that frequency as a color

scale at that point (Figure 2). This allows us (or a well-designed computer algorithm), to

see not only the overall amplitude of a song like a waveform image gives us, but also

the range of frequencies that are most prominent at any time. Because of this, I chose

to use spectrograms as my medium of converting audio. There are many tools already

in existence that accomplish this task fairly well, given the right parameters so I won’t go

into too much detail here about that process. Most of them use a “Short-time Fourier

Transform”, which takes microseconds of an audio file at a time and finds the best sine

wave functions at each “window” of time in order to find the frequencies present at that

moment. In my experiments, I used pyplot from the Matplotlib library with a sampling

frequency of 16 samples per time unit. I used an NFFT of 512, meaning that 512 points

are used to calculate each Fourier Transform. I also used an overlap of 300, meaning

that there is a 300 point overlap between each Fourier Transform. Lastly, I changed

from the default Hanning window to a Hamming window, which helped provide more

distinction between “dark” areas and “light” areas. This process was used to generate

figures for each song that are similar to the one seen in figure 2.

� of �4 14

3. Feature Detection in Spectrograms

Once the spectrograms were created, the next step was to generate features that the

computer could use to compare two images. To do this, I initially tested two of the most

popular methods used in general computer vision problems - SIFT and SURF. A recent

paper [5] uses a custom feature detection algorithm based on Adaboost and Viola-

Jones features, which does seem to perform well but re-implementing that approach

was determined to be outside the scope of this project. Both SIFT and SURF are in the

category of “blob detection algorithms” that use a “Laplacian of Gaussian” measurement

to find the center of blobs in images. The Laplacian is found by adding the second

derivative in the x direction to the second derivative in the y direction for each point on a

gray scale image. It’s been found that the center of a “blob” in an image generally

corresponds to relative maxima in the Laplacian. This method only finds extremely

specific and uniform blobs in an original image. However, if a Gaussian blur is first

applied to an image before finding the maxima of the Laplacian, it is possible to find

larger and more generic blobs. By finding the Laplacian maxima at differing amounts of

Gaussian blur, it is possible to calculate a set of key points that represent these blobs

and store them in a way that can be compared to other images. SIFT and SURF then

calculate edge strengths and orientations in a neighborhood around each key point and

store this information in a feature vector that characterizes the local image structure

near the key point. This information can be used to identify objects in other images with

similar geometric properties. For the purposes of this paper, I applied the SURF

algorithm directly to a spectrogram just like any other image, with one major exception.

Instead of calculating SURF on the spectrogram for the whole song, I split the image

� of �5 14

vertically into a large number of images, each with a width that corresponds to 3

seconds on the x-axis, before finding key points on each sub-image individually. This is

to ensure that the features found by the algorithm are evenly distributed throughout the

song so that later on, segments from any part of the song can be matched up to these

features. I do this on the fly by splitting each spectrogram as its created into these

segments and calculating the SURF features while the image is in memory without ever

actually saving an image file. I then save the key points into a text file with the following

structure, where descriptor and keyPoint are objects generated by the OpenCV2’s

SURF algorithm:

� of �6 14

Figure 3: Spectogram representation of “Me
and Your Mama” by Childish Gambino clip
starting at 60 seconds and ending at 65
seconds.

Figure 4: Spectogram shown in figure 3
overlaid with features detected by the SURF
algorithm

entireSong: [
 subImage (3 second windows): [(
 descriptor,
 keyPoint: [
 point: [x, y]
 size
 angle
 response
 octave
 class_id
]
)]
]

4. Feature Matching

The next logical step in the process is actually using these features to identify snippets

of songs that are passed in. Much of this process looks pretty similar to generating the

features in the original song. The incoming audio file is transformed into a spectrogram

and SURF is used to calculate a list of features for the image. I then open my text file

used to store features and loop through each songs’ 3 second sub-images in order to

find the best match. “Best match” is calculated by first running OpenCV’s brute force

matcher to compare the query features to each sub-image’s features. It is an admittedly

sub-optimal algorithm in terms of time complexity that compares each feature in the

query image to each feature in the “saved” song’s image and returns a list of the key

point pairs that best match each other. Once we have a list of the best matching SURF

features, we need to go back to the corresponding images to verify that the feature

points are in the right relative spot chronologically in both audio samples. To do this, I

take the top 10 matches from each image, as calculated by OpenCV’s Brute Force

matcher, and calculate the median time offset between “matching” features (Figure 5).

To calculate the error, I then iterate through all the matching points and see how closely

� of �7 14

the horizontal positions of each point corresponds to the position of its respective

“match”, after the previously calculated offset is considered. After looking at each song’s

sub images, I return the song that had the frame with the lowest total error (as long as it

is under a certain threshold; I used 50 pixels for this experiment). Figure 6 shows a

graph of this error value for each 3 second frame in a matching song. Figure 7 shows

this graph for a song that is not a match. The most important take-away from this is

graph is the spike in Figure 6 that is clearly a lower error than everything else, getting as

low 19.78 as compared to Figure 7’s lowest point of 93.96. This point is indeed the

segment of the song that the query wav file was taken from. The points surrounding

Figure 6’s low point are, as could be expected, multiples of four measures away from

the actual clip and sound nearly identical to a human listener so I don’t view these

spikes as an error. In fact, I was surprised at the consistency that this method identifies

the correct point in the song rather than a similar point in a song that involves a lot of

repetition. As noise is introduced into the query audio clip, this gets slightly less distinct

but it is still possible to accurately match the query to the original song up to a certain

� of �8 14

Figure 5: Simplified version of the alignment process used as the first step in determining the
right relative temporal placement of key points. The left image represents the points returned
from OpenCV’s brute force matcher. The offset is then calculated from the median points of
each set and the query “image” is “moved” so that the median points are in the same spot
(right).

� of �9 14

Figure 6: A graph of the calculated error value for a clip starting at second 60 of “Me and Your Mama” by
Childish Gambino compared to the same song’s saved features

Figure 7: A graph of the calculated error value for a clip starting at second 60 of “Me and Your Mama” by
Childish Gambino compared to the saved features of “Bridges” by Broods

threshold of noise. Figure 8 shows the error graph for a successful match on an audio

clip that contains fairly noticeable background noise. It is still able to clearly identify the

best match at 60 seconds, although the calculated error value at that point is slightly

higher at 33.23. This number could be further improved by a various number of pre-

processing techniques designed to remove background noise that are outside the scope

of this project [8].

� of �10 14

Figure 8: A graph of the calculated error value for a clip starting at second 60 of “Me and Your Mama” by
Childish Gambino (with digitally added background noise) compared to the same song’s saved features

5. Measuring Success

To measure the success of this methodology, I looked at two main use cases. First, any

query clip that contains at least three seconds of possibly distorted audio from any of

the songs in my database should be recognized as the original song, and only the

original song. Second, any song not meeting the above use case should not

erroneously match to a song - that is, I should not have any false positives. For the

scope of this paper, I added 10 songs to my database, picked a random point from each

song and gradually added noise until it was not able to be recognized. To add this noise

I took an audio clip of a large crowd [6], overlaid it onto the original song file and used

Audacity [7] to adjust the gain of the background noise file in order to get differing levels

of noise (in 5dB increments). In every case, the correct song was recognized without

background noise and with limited background noise. While the exact amount of

background noise that the algorithm could handle varied with each song, and is difficult

to measure, they seemed to all stop correctly identifying songs when, to my ear, the

background noise volume overtook the song noise volume. For the other case, I simply

input query clips that were not a part of songs in my database and made sure that none

of them returned a match. I tried 10 different clips varying from 3 seconds to 10 seconds

and found that none returned a match.

6. Conclusion

The results of this project establish the validity of using computer vision techniques as a

viable option in the identification of music and other audio samples. While the technique

described in this paper does not offer any immediate improvements over current state-

� of �11 14

of-the-art technology for audio recognition, it does offer comparable performance using

very rudimentary computer vision algorithms. Possible improvements and next steps

that are discussed in the following section seem very promising in terms of offering real

improvements in terms of speed and accuracy of audio recognition. Additionally, the use

of computer vision in this way opens the door to looking at some of the unique benefits

of that particular technology, such as its ability to identify various transformations and

images in various contexts. Utilizing this kind of algorithm could move the field to be

better able to recognize “transformations” of songs such as live performances, covers,

and digitally altered versions in a way that audio recognition has not yet been able to

accomplish. Overall, I view this paper as a success in terms of accomplishing most of

what I set out to do and setting the foundation for a wide number of potential uses and

improvements in the future.

7. Shortcomings and Future Improvements

7.1 Time and Space Complexity

In the future, I would like to see this code expanded in a number of ways. First, and

perhaps most importantly, there are a number of ways the efficiency, both in terms of

time complexity and space complexity, of the process could be improved. Currently, all

the stored key points and descriptors of known songs are stored in a multi-dimensional

nested list that is looped through in an extremely naive proof-of-concept sort of way.

Because of this, there is a O(n^2) operation to find the best key point matches on each

3 second frame of each song in the database. This could be significantly improved

using trees and/or hash tables and a more efficient matching algorithm. Additionally,

� of �12 14

although multithreading is currently being used to analyze more than one song at a

time, moving the project to a cluster of computers could significantly improve the

performance boost that this provides.

7.2 Feature Detection Algorithm

Second, because the point of this project was to prove the possible benefits of using

computer vision in general as applied to music recognition, I did not spend too much

time proving one techniques superiority over another’s. My final code uses the SURF

feature detection algorithm because it was a slightly simpler implementation than other

methods. However, more advanced algorithms would almost certainly outperform the

current implementation so there is a lot of room for improvement in that area.

7.3 Recognition of Different Alterations

Lastly, one of my original stretch goals in this project was to use some of the unique

advantages of computer vision to allow for recognition of potentially altered songs.

Given my time constraints, I had to focus on the case of added noise to the original

sample. However, I believe these types of algorithms could also be applied to cases

where the song has been modified in other ways such as a changed tempo or a change

in pitch.

� of �13 14

8. References

[1] P. Cano, E. Batlle, T. Kalker, and J. Haitsma. A review of algorithms for audio

fingerprinting. In Workshop on Multimedia Signal Processing, 2002.

[2] J. Haitsma and T. Kalker. A highly robust audio fingerprinting system. In Proceedings

of International Conference on Music Information Retrieval, 2002.

[3] Shazam Entertainment. http://www.shazam.com/

[4] S. Papert. The Summer Vision Project. MIT AI Memos, 1966.

[5] Y. Ke, D. Hoiem, R. Sukthankar. Computer Vision for Music Identification. 2005

[6] Crowd Talking 1. https://www.soundjay.com/ambient-sounds.html

[7] Audacity. http://www.audacityteam.org/

[8] B. Boashash, editor, Time-Frequency Signal Analysis and Processing – A

Comprehensive Reference, Elsevier Science, Oxford, 2003

� of �14 14

http://www.shazam.com/
https://www.soundjay.com/ambient-sounds.html

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2017

	Music Feature Matching Using Computer Vision Algorithms
	Mason Hollis
	Recommended Citation

	Paper

