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Abstract

This study builds a theoretical model of the yield-based MPCI crop insurance policy for
a risk averse rice farmer in Indonesia and presents the comparative statics analysis of policy
variables on yield through the coupling, wealth, and insurance effects. Moreover, Using yield
data from 1979 to 2014 for the Tuban Regency, this study applies numerical optimization to
the model and simulates the effects of different policies on input use, certainty equivalents,
indemnity payment, and premiums. The theoretical analysis shows that no coupling effect
exists for change in the coverage level, while a coupling effect exists for change in the sub-
sidy implying that farmers can impact the size of their payments by adjusting inputs and thus
yield. For wealth effect, if the price market higher than the average cost of production, the
wealth effect is ambiguous. If the price market smaller than the average cost of production,
the wealth effect for the coverage levels is ambiguous, while the wealth effect for subsidy lev-
els is negative, indicating a marginal increase in the subsidy reduces input use. For insurance
effect, the analysis shows a positive sign for coverage level, revealing that an increase in the
coverage level triggers the farmer using more inputs. On the other hand, the insurance effect
for subsidy levels generates a negative sign, where higher subsidy cause the farmer to reduce
input use. The numerical analysis shows that MPCI crop insurance indicates a moral haz-
ard. At coverage levels < 30%, the farmer does not expect to receive any indemnity payment.
However, for coverage levels at or above 40%, the farmer expects indemnity payments, which
triggers a reduction in input use as the farmer tries to maximize both insurance payments and
market revenue simultaneously. For certainty equivalent, farmers prefer the highest coverage
level. For expected indemnity and insurance payment, farmers receive the highest payment for
the largest high coverage level and subsidy. Hence, the result indicates that MPCI insurance
with high coverage levels and low premium subsidies is suggested to Indonesian government
since such policy results improving the farmers’ wellbeing while mitigating moral hazard fac-

ing the insurance provider.
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Chapter 1. Introduction
1.1 Background Information

Rice is one of the world’s most important staple food crops as nearly 50 percent of the
world population consumes this commodity (Mohanty, 2013). Rice comprises about 10 per-
cent of the world’s agricultural land and accounts for around 20 percent of total global grain
production (Thorburn, 2015). In Indonesia, rice is particularly important both as a subsistence

crop and for the livelihood for rural farmers.!

As the main staple food, rice provides nearly
half of the caloric intake of an average Indonesian (Pasaribu, 2010). Rice is the foremost
commodity grown in Indonesia with rice area in 2015/16 estimated at 12.2 million hectares,
attributing to 30 percent of total planted area in the country (Shean, 2012, 2015).

In Indonesia, rice production is highly concentrated on the islands of Java and sumatera,
and 60 percent of total production comes from Java alone (Shean, 2012). Figure 1.1 shows
the top five Indonesian rice producing provinces: (1) South sumatera, (2) West Java, (3) Cen-
tral Java, (4) East Java, (5) South Sulawesi (Indonesia-Invesments, 2015). The 2013 national
census data published by Badan Pusat Statistic (Central Bureau of Statistic) indicates that
among the 26.14 million of total agricultural households in Indonesia, 70 percent are rice farmer
households. These households own very small farms with an average size of less than 1 hectare
(the majority of farmers cultivate 0.1 - 0.5 hectares) and have attained low education levels
(only 1.94 percent earn a Bachelors degree) (Shean, 2012; BPS, 2014).

According to FAO (2016), Indonesia is the third largest global rice producer after China
(first) and India (second). However, Indonesia is still a net rice importer because consump-
tion continues to outpace supply as the Indonesian population grows. Indonesia has imported
rice for multiple decades. Figure 1.2 shows Indonesia’s rice production, consumption, and

imports from 1960 to 2015. President Suharto implemented a policy of heavy subsidy for

I'This holds true for many Asian countries where rice accounts for 90% of global rice con-
sumption and occupies about one third of total agricultural land (Thorburn, 2015; GRiSP, 2013).



Figure 1.1: Indonesia: Rice Central Production
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rice production in 1970sand 1980s with the objective of achieving self-sufficiency; this was
first achieved in 1984 when imports reached zero. The government implemented fertilizer
subsidies and constructed irrigation infrastructure, which were key for newly developed high-
yielding rice varieties (Trewin and Erwidodo, 1993). However, the high costs (high budgetary
expenditure, economic inefficiency, welfare costs, and environmental damage) associated with
such policies resulted in only temporary self-sufficiency (Trewin and Erwidodo, 1993). Im-
ports subsequently increased as production could not keep pace with the population growth.
From the mid-1990s onwards, Indonesia has been a net importer of rice although the magni-
tude of its imports varies year to year depending on domestic production. In fact, from 1998
to 2001, four years following the Asian financial crisis of 1997-1998, Indonesia became the
largest rice importer in the world at 18 percent of the world’s total imports (Warr, 2005). Fig-
ure 1.2 reveals that historical growth rates of rice production appear to be slowing compared to
the 1970s and the 1980s. The average growth of rice production is about 600 thousand tones
per year between the year 1960 and 1987, but has since slowed to nearly 300 thousand tones
per year between 1988 and 2014. This figure also shows that since 1983 rice production has
greatly fluctuated. Pests and diseases outbreaks, natural disasters such as floods and droughts,

and global change of climate are some of the mainsprings that causes variability of rice pro-



Figure 1.2: Indonesia: Rice Mill Production, Consumption, and Import (Million Tonnes)
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duction (Pasaribu, 2010). Therefore, many poor Indonesian rice farmers face substantial risks,
making their income and main food source highly vulnerable to variables outside of their con-
trol.

The national census reported that 39.96 percent of rice farming households experienced
crop loss due to pests and diseases in 2013 (BPS, 2014). Pests and diseases caused a national
production loss of about 327 thousand tons in 2008 (Pasaribu, 2010). Moreover, because of
brown plant hopper outbreaks, rice crop production in 1998 and 2011 declined by 12% com-
pared to the preceding years (Sudaryanto, 2014). Rice farming in Indonesia is also risky due
to natural disasters (Sayaka and Pasaribu, 2014). Given the country’s location on the Pacific

Ring of Fire, almost all areas in Indonesia are frequently plagued by earthquakes, tsunamis,



floods, and droughts, resulting in destructive effects on the land area and ruining food crop
harvests. Table 1.1 provides the number of natural disasters that have occurred since 1970
and their impacts on all crops. The table indicates that during the period 1970-2011, a to-

tal of 3,446,708 ha of crops were damaged as a result of 7,576 hazard events. Sudaryanto
(2014) reports that between 2007 and 2013, 8% of an annual average of 13.12 million hectares
of rice crop in Indonesia are vulnerable to natural disasters. The 2005 earthquakes that hap-
pened in Nias Island (North sumatera) devastated the irrigation infrastructure, caused drought
in the agricultural areas, and reduced the rice production rate due to a disruption in produc-
tion (Lassa, 2012). Many other places in Indonesia encounter similar losses after disasters
occur. Natural disasters that impact agricultural production will adversely affect the livelihood
of many farmers because these agricultural households, where the majority are small scale sub-
sistence farmers living in rural areas, are affected significantly by such losses which, not only
impacts on their ability to feed themselves, but also to earn income.

Climate change is another risk that Indonesian rice farmers face. Climate change will
likely lead to a sea level rise and changing precipitation patterns which will lead to more un-
certainty in Indonesian rice agriculture. Indonesia is an archipelagic country where many
agricultural activities are located along the coast and increasing sea level may account for a
loss of agricultural land due to inundation and increased soil salinity, influencing crop growth
and yield (Forster et al., 2011). Also, changing precipitation patterns will increase uncertainty
associated with water availability and the ability to produce water intensive agricultural com-
modities such as rice (Forster et al., 2011). In other words, climate change causes agricultural
activities to become more unpredictable due to the irregularity of harvest and planting seasons.
Climate change also increases the frequency of El Nino events that frequently hit Indonesia
(Case et al., 2007). EIl Nino events will exacerbate dry and wet seasonal trends by triggering
more extreme droughts in the dry season and more extreme floods in the wet season. Nearly
426,000 hectares of rice crop area were affected by the El Nino droughts in 1997 (Measey,

2010). The national census survey in 2013 revealed that about 48 percent of households that

4



Table 1.1: The Number of Natural Disasters and General Crop Damage Assessments

Type of hazards X events X of crop Average Crop
damages (ha) | damage (ha/event)

Floods 1970-2011 3,980 1,187,349 298
Drought 2003-2011 1,411 1,667,766 1,182
Earthquake-Tsunamis 1970-2010 268 60,673 227
Landslides 1999-2011 1,596 52,273 33
Landslides + Floods 1970-2011 305 287,046 941

Plague 1990-2009 17 191,601 11,271

Total 7,576 3,446,708 455

Source: (Lassa, 2012)

grow wetland paddy experienced a 25 percent decline in production or productivity due to cli-
mate change (BPS, 2014).

The risks caused by pest and disease outbreaks, natural disasters, and the effects of climate
change are particularly difficult for the 41.7% of rural rice farming households that the 2004
National Socio-Economic survey (Susenas) classifies as poor (McCulloch, 2008). Because
more than 85 percent of farm households are self-funded (the remaining 15% of the house-
holds have access to farm credit), production risks may contribute to the decline in the total
rice farming area because, when substantial crop loss occurs, farm households may sell their
assets such as land for income (Bappenas, 2014). In fact, the 2013 national census data re-
ported that 19.02 percent of farm households would sell their land in order to deal with the
funding constraints (BPS, 2014). Furthermore, risk-averse individuals may change investments
decisions from agricultural investments into non-agricultural investment because of high risks
associated with agricultural activities, especially in the suburban areas where much of agri-
cultural land turns into new manufactury infrastructures and urban homes. During the period
from June 1998 to June 2003, nearly 12,600 hectares of total rice land were converted into
non-agricultural land (Bappenas, 2014). In addition, the average rice area expansion rate went
from 138,000 hectares a year between 1960-1998 to only 9,000 hectares a year between 1999-
2010 (Shean, 2012). Therefore, a risk transfer instrument is needed to assist farmers mitigate

the risky rice production activity.



Agricultural insurance is one of the financial tools that can assist agricultural producers
in mitigating risks attributed to adverse natural events (Mahul and Stutley, 2010). Crop in-
surance has been widely used in high-income countries to reduce farm income instability. In
recent years, governments in many developing countries have started studying the benefits of
agricultural insurance, and some have even implemented pilot insurance programs. In Indone-
sia, because rice is a crucial commodity and is a major source of livelihood for many small
scale subsistence farmers, the Ministry of Agriculture developed the pilot Asuransi Usaha Tani
Padi (AUTP) insurance program for the planting season of 2012-2013. This program was de-
signed to promote agricultural development, food security, and mitigate risk against crop yield
loss due to pests and diseases outbreak, earthquakes, tsunamis, floods, and droughts (Pasaribu
and Sudijanto, 2013). Before this pilot project was implemented, several studies were con-
ducted to explore the effect of farmers’ perceptions on agricultural insurance as the platform to

conduct the pilot project.

1.1.1 Background on Agricultural Insurance in Indonesia

The Indonesian Center for Agricultural Socio-Economic and Policy Studies (ICASEPS), a
division under the Ministry of Agriculture, conducted the first survey study on rice farm in-
surance in 2008 to evaluate farmers’ perceptions on agricultural insurance (Pasaribu, 2010;
Sayaka and Pasaribu, 2014). The survey was conducted in collaboration with the Food and
Agriculture Organization (FAO) and administered in two key rice producing regions: Simalun-
gun Regency of North sumatera Province and Tabanan Regency of Bali Province.> The fol-
lowing year ICASEPS continued to administer the survey in the same provinces and regencies,
but the funding was only from the Ministry of Agriculture. In Simalungun Regency, the sur-
vey was administered to farmers in two villages (with a total planted area of 510 ha or 0.6%
of the total rice area in the regency), whereas in Tabanan Regency the survey was conducted

in only one village (with a total planted area of only 300 ha or 1% of the total rice area in

2 Rice area in Bali is account for 23% of agricultural area in the province (BPS-Statistic of
Bali Province, 2014).



the regency). In 2010, the survey was expanded to Deli Serdang Regency in North Sumat-
era Province and to Jembaran Regency in Bali Province. Surveys were conducted only for
farmers (around 30 to 40 farmers or 1% of the farmers) who encountered harvest failure due to
pest and disease attacks (e.g. brown plast hopper, rats, and blast), flood, and drought. Based
on the survey, the calculation of the sum insure (the maximum indemnity the farmer could re-
ceive) was based on the size of planted area, harvested area, yield, and cost of production of
paddy rice at the village level within the subregencys. However, an insurance claim that was
equal to the production value was most preferable by the farmers. The survey revealed that
the farmers in both provinces responded positively toward the agricultural insurance and they
expected the agricultural pilot project to be implemented in 2012.

The first pilot Asuransi Usaha Tani Padi (AUTP) or rice insurance program was imple-
mented in the planting season of 2012-2013. The insurance covered the risks caused by pests,
diseases, flood, and drought. AUTP was an indemnity based crop insurance given to a group
of farmers (kelompok tani/POKTAN) in East Java Province and South sumatra Province (Kawan-
ishi and Mimura, 2015). In indemnity based crop insurance, the insurance claim was deter-
mined by measuring loss or damage in the field soon after the damage occurs and the damage
measured in the field was applied to the agreed sum insured for the crop (Bryla-Tressler et al.,
2011).

Initially, the pilot project was planned to be implemented in three provinces: South Suma-
tra, West Java, and East Java. However, due to some technical reasons,> the pilot project was
conducted only in South Sumatra and East Java (Sayaka and Pasaribu, 2014). In East Java
Province, the pilot rice crop insurance was conducted for 470.87 ha (0.3 % of the total rice
area) occupied by 25 groups of farmers located in Tuban and Gresik regencies. Whereas, the
pilot program in South Sumatera Province was implemented for 152.25 ha (0.13% of the to-
tal rice area) owned by 17 groups of farmers in East OKU regency (Sudaryanto, 2014). For

the pilot project, the payment to the farmer or sum insured was determined based on the aver-

3Lack of field coordination in the province of West Java (Pasaribu and Sudijanto, 2013).



age cost of production per hectare in the two provinces, which was 500 USD per ha. Farmers
could make an insurance claim only if total crop damage was greater than or equal to 75%

of the total planted area, and the payment was equal to the sum insured times the number of
damaged acres (Pasaribu, 2013).* The total premium cost was 15 USD per ha, of which the
government subsidized 80% (or 12 USD per ha) and the farmers were only required to pay
20% (or USD 3 per hectare).

As reported by Pasaribu and Sudijanto (2013), the farmers in Tuban and East OKU regen-
cies experienced heavy flooding, and over 75% of the total planted area, approximately 80 ha
of the total area in Tuban regency and 7.28 ha of the total area in East OKU regency, were af-
fected by the flood. Therefore, payment was made to cover the damage. Since the total area
claimed was 87.28 ha (Tuban and East OKU regency), the total indemnity payment in the both
regency received was around 43,640 USD. Pasaribu and Sudijanto (2013) showed that the pi-
lot project worked successfully and they recommended that a similar pilot project should be
further expanded.

Correspondence with Pasaribu (2015) explained that in 2015, the government has allocated
approximately 140 Million USD to support this agricultural protection instrument. While the
indemnity based crop insurance provides some protection to rice farmers against disasters,
yield-based Multi-Peril Crop Insurance (MPCI) crop insurance, as is implemented in many
developing countries around the world, is a more feasible and accurate method to insure ru-
ral rice farmers. Therefore, the Ministry of Agriculture is considering MPCI crop insurance
programs in Tuban and Gresik, where sufficient data exists. Therefore, studying the impact
of MCPI insurance in these two key growing regions will be valuable to policy makers in the

Ministry of Agriculture.

1.2 Objective
The present study aims to: 1) develop a model of a risk-averse Indonesian rice farmer

with access to yield-based MPCI crop insurance, 2) derive comparative statics for changes in

“Insurance claims were paid within 14 working days.
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premium subsidies and coverage levels on the coupling, wealth, and insurance effects, 3) cali-
brate the model to a representative rice farmer in Tuban regency in Indonesia, 4) apply numer-
ical optimization to the model and simulate the effects of different coverage and subsidy levels

on input use, certainty equivalents, indemnity payments, and premiums.

1.3 Organization

The organization of this thesis is as follows. The second chapter reviews the literature
on crop insurance in Indonesia and crop insurance in developing countries. The third chap-
ter develops a theoretical model detailing the mathematical formulation of crop insurance and
provides theoretical analysis of wealth, insurance, and coupling effects. The fourth chapter
presents numerical analysis that consist of three sections: (1) data, yield distribution, and cal-
ibration, (2) the simulations and results, and (3) conclusion and recommendation. The final

chapter provides the summary, the main conclusions, and the potential extension of the thesis.



Chapter 2. Literature Review

Although voluminous literature on crop insurance for developed countries exists, economic
analysis of crop insurance in developing countries has received comparatively little attention.
Despite relatively minimal academic attention, many developing countries have established
crop insurance programs to mitigate risks to farmers. This chapter critically reviews previous
academic studies on crop insurance in Indonesia as well as other developing countries. Then
this chapter discusses the difference between past studies and the contributions of this study to

the literature.

2.1 Crop Insurance in Indonesia

Crop insurance for rice production was first introduced in Indonesia in 2012 on a pilot ba-
sis, and as such, very few studies have considered the impact of this policy on farmers. Be-
fore the implementation of the pilot project two studies examined the importance of crop in-
surance to mitigate risk associated with agricultural production. After the pilot project was
actualized, only one study has analyzed whether it would be feasible to implement different
types of crop insurance policies that were not part of the pilot project.

Before the implementation of the pilot project, Kansal and Suwarno (2010) analyzed five
concepts of integrated risk management to address agricultural risks' in the Way Jepara irri-
gation area in the province of Lampung on Sumatra island. The integrated risk management
concepts include (1) risk identification, (2) risk assessment, (3) decision making under risk and
uncertainty, (4) implementation of integrated risk management, and (5) and monitoring of inte-
grated risk management. The risk identification process was studied by utilizing several tools
and methods such as official documents, environmental scans, on-site inspections, interviews,

and statistical analysis. Most of the official documents in 2008 were analyzed in this study.

IThe authors identified several areas of risk (earthquake, drought, flood, deforestation, ero-
sion, failure of irrigation systems, soil degradation, pests and disease, political instability, and
inappropriate laws and regulation) faced by Indonesian farmers.

10



The process of risk assessment was examined by analyzing the probability and the magnitude
of losses caused by natural calamities (earthquake, drought, flood), pest and disease outbreak,
and political and economic situation. Decision making under risk and uncertainty analysis
focused on actions if a given risk is realized. For example, the authors recommend crop in-
surance as a risk transfer action for earthquake, drought, flood, failure of irrigation systems,
soil degradation, and pests and disease. Implementation of integrated risk management ex-
amined several practices and methods to be implemented in the Way Jepara irrigation area.
Among many practices and methods crop insurance is one of the methods suggested to be im-
plemented, especially multi peril crop insurance (MPCI), because such insurance can cover
many perils.” The author also emphasized monitoring integrated risk management to ensure
that all of the methods and practices are administered as expected. The results showed that
the widespread damage from the identified risks has a massive adverse impact on the irrigation
and cultivated area. This impact ultimately reduced yield and farmers’ incomes which exacer-
bates both poverty and hunger in the long term. Based on these results, a risk transfer instru-
ment such as crop insurance is proposed as one of the key methods to minimize the impact of
the risks burdened by farmers.

Pasaribu (2010) presented a formal analysis to formulate a pilot program before crop insur-
ance was made available to the Indonesian rice sector. A survey of farmers and other stake-
holders regarding the possibility of implementing rice farm insurance was discussed in the pa-
per. Pasaribu (2010) designed a survey of rice insurance for farmers in two villages (Panombeian
Panei in the Simalungun regency in North Sumatra province and One Subak in the Riang Gede
regency in Bali province) in order to obtain farmers’ perspectives on rice farm insurance. The
survey demonstrated that rice farmers and local governments responded enthusiastically toward

the plan of implementing insurance in their areas. The two regencies committed to coopera-

2In addition to crop insurance, the author’s also recommend catchment area management, sed-
iment and flood control, irrigation management and practices, fertilizer application, management
of pests, weed, and disease, strengthening of legal system, and improvement of laws, regulation,
and policies.

11



tively implementing the crop insurance program by constructing an agricultural insurance task
force. While several farmers also agreed to forfeit government premium assistance, a com-
promise was suggested where the farmers and local government would each pay half of the
premium cost. The suggested premium cost was 3.5% of the sum insured typically measure
as the cost of production which varies by region. Pasaribu (2010) found that the creation of
a rice farm insurance policy should be authorized by the National Rice Insurance Commission
(NRIC) formed by The Ministry of Agriculture. This commission consists of several agencies
such as the Ministry of Finance, the National Development Planning Agency (Bappenas), and
the Ministry of Home Affairs. The NRIC was in charge of constructing that insurance policy
package and determining the maximum sum insured, premium rates, and premium subsidy of
the insurance. The Ministry of Agriculture then had to approve the final policy package de-
veloped by NRIC.

After the realization of the pilot project, Kawanishi and Mimura (2015) analyzed risk to
rice farmers in the Tuban and Gresik Regencies in East Java Province to develop a broader
risk management portfolio to make the pilot successful and explore the possibility of imple-
menting a weather index insurance for those pilot sites. To provide insight into additional
risk management tools, Kawasaki and Mimura analyzed risk prevention by testing whether rice
harvest failures during the rainy season for rice farmers located in the Bengawan Solo river
basin would be more severe than for farmers located outside the river basin. The Bengawan
Solo river basin is the largest basin on Java island in which both regencies, Tuban and Gresik,
are located. Heavy floods and landslides frequently occur in this river basin during the rainy
season which could adversely affect the magnitude of rice harvest failures in this area. The
author employed an independent sample t-test to test if rice harvest failures were statistically
different in the Bengawan Solo river basin than in the surrounding areas. The authors used lo-
cation as the independent variable and the adjusted values of monthly rice harvest failure area
as the dependent variable. The independent variable was divided into two location groups:

regencies located in the Bengawan Solo river basin and all other regencies in East Java. The
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adjusted value in the dependent variable is the result of dividing the monthly rice harvest fail-
ure area with the total rice area for each of the regencies. The analysis showed that rice har-
vest failure during the rainy season in the regencies around the Bengawan Solo river basin
was significantly larger compared to those in the remaining regencies in the province. This
result indicated that farmers in the river basin will receive more indemnity payments when
indemnity-based crop insurance is implemented because payments are based on crop losses.
Kawasaki and Mimura found that, due to the degradation of Wonogiri reservoir, which was
mainly designed for flood control in this basin, floods occur more frequently during the rainy
season and can have a tremendous effect on rice production. Hence, risk prevention manage-
ment in the reservoir, such as rejuvenating the dead storage and upgrading the capacity of the
spillway, is suggested to reduce flood risk in this basin so that crop insurance can be imple-
mented.

Next, Kawasaki and Mimura generated scatter plots of monthly rainfall data and rice har-
vest failure data for the pilot sites from 2000 to 2010 to examine the correlation between the
weather parameter and crop harvest failure. The scatter plots are studied to consider the pos-
sibility of implementing weather index insurance in the pilot locations. The scatter plots re-
vealed that some tremendous losses occurred without regard to locally observed rainfall, in-
dicating the issue of risk basis (i.e., weather index fails to predict the losses of the insured).’
Thus, the result indicates that implementing a weather index insurance, where the determina-
tion of risk cover based on locally recorded rainfall, is not applicable in the pilot project lo-
cations. In this context, weather index insurance cannot be based on locally recorded rainfall
and other index metrics would need to be developed.

Kawasaki and Mimura further investigated the potential of basis risk related to weather in-
dex insurance by comparing the correlation coefficients of monthly rice harvest failure with
the correlation coefficients of monthly rainfall in 29 regencies in the East Java province. The

outcome showed that correlation coefficients of monthly rice harvest failures between regen-

3The authors emphasized that a huge loss happened in January 2008 was the result of a heavy
rain in the upper part of the river, causing severe flood downstream in the basin area.
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cies are lower than those of monthly rainfall, indicating that rice harvest failure is more area-
dependent than rainfall-dependent in East Java. Therefore, the result further highlights the
potential problem of basis risk related to weather index insurance.

Based on this analysis, this thesis provides an in depth analysis of multi-peril crop insur-

ance for Indonesia, which avoids the basis risk of weather index insurance.

2.2 Crop Insurance in Developing Countries

In recent years, crop insurance in developing countries has followed actuarial methods with
the objective of mitigating risk to farmers for crop loss due to adverse weather, pests, and dis-
ease. As a result, farmers are better able to fulfill essential needs, including food for the fam-
ily. Several crop insurance studies in developing countries exist in literature;* however, this

subsection focuses only on papers that study crop insurance in developing Asian countries.

2.2.1 Weather Index Crop Insurance

Research has been conducted to explore the potential for using weather index insurance
to provide risk transfer management for poor rural farmers. Giné et al. (2007) provides em-
pirical analysis of rainfall insurance in southern India. The analysis of the study focused on
2006 calender year of insurance contracts. Their study is divided into three distinct sections.
In the first section the authors studied the probability distribution of indemnity payments us-
ing historical rainfall data from 14 different meteorological department stations in India. This
study estimates the hypothetical indemnity payment for each weather station by applying the
insurance contract in each station to historical rainfall data. The insurance policy is admin-
istered to cover rainfall that occurs in the monsoon season (June to September). The policy
contract is differentiated in three stages of monsoon rainfall, i.e., monsoon rainfall during sow-
ing stage, monsoon rainfall during flowering stage, and monsoon rainfall during harvesting

stage. The insurance payments in the stage of sowing and flowering are associated with low

4See, for example, crop insurance analysis in Burkina Faso (Sakurai and Reardon, 1997),
in Hungaria (Sporri et al., 2012), in Kenya (Janzen and Carter, 2013), in Romania (Dragos and
Mare, 2014), in Serbia (Birovljev et al., 2015).
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rainfall. An indemnity of 10 rupees per each millimeter is paid if the rainfall falls between
the upper threshold (70 mm) and the lower threshold (10 mm). The higher indemnity of Rs
1000 (Flat payment) is paid if the rainfall drops below the lower threshold, and zero payment
will occur if the rainfall exceeds the upper threshold. However, in the third stage an indem-
nity is paid if the rainfall goes above the upper threshold of 70 mm. The result of estimated
payments in all stages shows that the insurance is not actuarially fair since the average pre-
mium is higher than the average estimated indemnity payment. The distribution of indemnity
payment reveals that the probability of getting zero payment is 11 percent, the probability of
getting indemnity payment double to the average premium is 5 percent, and the probability of
getting an indemnity payment of Rs 1000 is 1 percent.

In the second section, they examined whether insurance payouts are correlated through
time and correlated across different policy contracts. The averaged standard deviation of 11
contracts for each weather station was calculated and was compared with the standard devia-
tion of the mean indemnity payment averaged across the 11 contracts. This calculation was
conducted in order to examine the degree of cross-sectional dependence in the payment. The
calculation demonstrated that the standard deviation of the mean indemnity payment is 46 per-
cent smaller than the averaged standard deviation of the contracts, indicating there was a cor-
relation of payment in the cross-section. Moreover, Giné et al. (2007) estimated two autore-
gressive models in order to check the time-series correlation in the indemnity payment. Stage
insurance payment is the dependent variable for both models. The independent variable in
the first model is lagged stage payment. While in the second model, two additional variables
such as a dummy variable of lagged payment (1 if the lagged payment is greater than 0) and
cumulative rainfall in the previous stage, were included as the independent variables. The re-
gressions of both models showed that the degree of persistence in indemnity payment is sta-
tistically insignificant. Moreover, both of the additional lagged variables in the second model

were not significantly correlated with the insurance payments, indicating that the issue of stale
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pricing (farmers could take advantage if the insurance providers is late on updating the price
before the pricing based on rainfall shocks) was unlikely to happen in the insurance practice.

In the third section, the authors evaluate the correlation between insurance indemnity with
several macroeconomic variables such as GDP per capita, the inflation rate, and the change
in the Indian treasury yield. The result of the regression showed that none of the macroeco-
nomics variables besides Indian GDP per capita were significantly correlated to the insurance
payment. The Indian GDP per capita and the insurance payment develop negative correlation.
The economic interpretation of this relationship is that a 1 percent point drop in GDP growth
would increase the expected insurance payment around 15 percent.

The following reviews focus on crop insurance studies in Bangladesh. Hossain (2013) an-
alyzed several issues in implementing weather index insurance in Bangladesh.> The study
found that heterogeneity of farm land and local risk variations, heterogeneity of climatic condi-
tions, limited insurance capacity, and state and external support are the major challenges in ac-
tualizing weather index insurance. Heterogeneity of farm land and local risk variations would
lead to an inaccurate calculation of indemnity payments and premiums. Heterogeneity of cli-
matic conditions in Bangladesh required a multi-peril weather index insurance to work because
a single-peril weather insurance is incompatible to cover crop losses caused by numerous cli-
matic factors. Limited insurance capacity restrained the development of weather index insur-
ance due to the inadequacy of infrastructure and the unavailability of appropriate expertise.
The author also argued that lack of state and external support would prevent weather index
insurance from working effectively as a risk transfer instrument because the implantation of
such insurance would need a government support such as subsidy. As a solution, the author
suggested several ways to address the challenges in implementing weather index insurance in
Bangladesh: (1) proper preparation for index measurement and premium determination, (2)
flexible product design using fewer number of perils and multi-peril options and different risk

layering, (3) wider stakeholder involvement, (4) reinsurance facilities from a national and inter-

>The author also analyzed the general problem in implementing weather index insurance in a
developing country.
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national level with technical support and wider area of coverage may increase viability, and (5)

proper feasibility studies and further research.

2.2.2  Area-Based Crop Insurance

Area based-crop insurance is another alternative insurance program that is developed to
mitigate agricultural risk. Clarke et al. (2015) designed an insurance demand-elicitation ex-
ercise for farmers in rural Bangladesh in order to find farmers’ interest in insurance products.
For the demand-elicitation experiment, farmers were presented with a chart that consisted of
three sections in which three categories of insurance were offered: agricultural insurance for
the Aman (summer monsoon) season, agricultural insurance for the Boro (winter dry) sea-
son, and other types of insurance that offer coverage for the full year (life insurance). Next,
each farmer was given 30 stickers that could be used to purchase their preferred type of in-
surance. However, if the farmers were not interested in buying any insurance they could save
their money in their savings account, where each sticker would represent 20 Taka. Moreover,
farmers could also choose to save their money in a group savings account that was offered in
selected rounds. A group savings account would benefit farmers by lending some money back
to the farmers with a low interest loan. The group saving account were worth 5 stickers (100
Taka) if the farmers agreed to opt for the savings account.

The result of the demand-elicitation exercise showed that most of the stickers (around 90
percent) were contributed to the insurances (life insurance and agricultural insurance), whereas
only 10 percent were contributed to individual savings. The results parallel with the economic
theory stating that farmers will be more interested in buying insurance products that provide
coverage for the risks they normally face. However, the farmers’ focus varied on the different
types of insurance (not only agricultural insurance but also life and disability insurance) since
they are exposed to a plethora of risks. The result also established that farmers divided their
endowment between life and disability insurance and agricultural insurance. The author re-
alized that the result obtained from the demand-elicitation exercise was considered inaccurate

in conveying the demand of insurances because during the exercise, the farmers’ choices were
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framed around risk management that made having any insurance more important compared to
other alternatives. Therefore, using the household data affected by each shock collected from
Borga Chashi Unnayan Project (BCUP), Clarke et al. (2015) ran a regression to assess whether
the demand for each insurance product attributed to the prevalence of the risks faced. The au-
thor also ran a regression to see whether the farmers’ concern about risk was reported in the
Customized Insurance in Bangladesh (CIB) survey. Both of the results were compared and
they found that farmers’ demand for area yield and drought insurance varies with the preva-
lence of the risk that the insurance covers (prevalence risk is more sensitive compared to im-
portance risk).

Clarke et al. (2015) also ran a regression of demand for area-yield insurance on price in
order to assess the relationship between those two variables (demand and price). The result
showed that the demand and price for area-yield insurance established a negative interaction,
where the demand of area-yield insurance decreases if the price is randomly increased. Ad-
ditionally, Clark ran a regression to find how group savings offered in selected rounds would
affect the demand for other insurances (life insurances and agricultural insurances). The re-
gression concluded that group savings did not significantly affect a farmer’s decision about
buying agricultural insurances, but it did significantly affect the demand of life insurances.

Another study focused on area-based yield insurance and multi-peril crop insurance. Us-
ing data from wheat farmers in two counties in China, Zhang et al. (2011) established an em-
pirical model for area-based yield insurance (AYI) and multi-peril crop insurance (MPCI). The
authors then compared risk reduction percentage and risk reduction percentage per premium of
both types of insurances to explore the insurance effectiveness. Using the Kernel-smoothing
approach to generate a yield model distribution of both counties, the authors found that MPCI
had higher average risk reduction effectiveness compared to AYI; while for the average risk
reduction per premium, MPCI and AYI presented consistent values. However, in terms of pre-
miums, MPCI generated greater payment than AYI. This is relevant to the theory that MPCI

has the most expensive administration costs and is considered susceptible to moral hazard and
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adverse selection problems. Although the result of the calculation showed that MPCI has
higher effectiveness compared to AYI, the authors suggested that AYT is more applicable in
China since the farmers owned very small farms (average size between 3-10 Mu). The trans-
action costs of MPCI would be very high for insurers and adjusters to identify every small
farm’s loss claim. The moral hazard and adverse selection problems would also be very se-
rious in China. Nevertheless, the authors noted it is important to ensure the homogeneity of a
given area first before using AYI. The result of this study indicated that AYI is more powerful

than MPCI in Xingtai County in China, but it has worse performance in Zaoqgiang County.

2.3 Contribution to Literature

Since the implementation of the pilot project of AUTP rice farm insurance, few studies
have been focused on the feasibility of implementing alternative crop insurance in Indonesia.
Kawanishi and Mimura (2015) generated scatter plots of monthly rainfall data and rice harvest
failure data to examine the feasibility of implementing weather index insurance in Indonesia.
Several studies can be found that closely relate to Indonesian crop insurance by studying the
performance of crop insurance in similar developing countries. Giné et al. (2007) estimated
hypothetical indemnity payment for weather index insurance in India and built a regression
model to find a correlation between the crop insurance and economic growth variables. Zhang
et al. (2011) established an empirical model for area-based yield insurance (AYI) and multi-
peril crop insurance (MPCI) and compared the effectiveness of both insurances. The authors
compared the premium payment, the average risk reduction, and the average risk reduction per
premium between area-based yield insurance (AYI) and multi-peril crop insurance (MPCI).

Unlike in any previous study, this thesis develops a model of a risk-averse Indonesian rice
farmer with access to yield-based MPCI crop insurance and examines the effect of MPCI pol-
icy, such as different coverage and subsidy levels on input use, certainty equivalents, indemnity
payment, and premiums. The current study is a pioneering work for MPCI product insurance

as there has been no previous study in Indonesia discussing these subjects.
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Chapter 3. Theoretical Model and Analysis

This chapter provides the theoretical model of the yield-based MPCI crop insurance policy
for a risk averse rice farmer in Indonesia and presents the comparative static analyses of the
effect of policy variables on yield through the coupling, wealth, and insurance effects. The
theoretical model of the yield-based MPCI crop insurance policy in Indonesia is discussed first,

then the analysis of wealth, insurance, and coupling effects is presented.

3.1 Model for Yield-Based MPCI Crop Insurance Policy in Indonesia

Multiple-peril crop insurance (MPCI) allows a farmer to insure again yield losses based
on a specified percentage (typically between 50% and 70%) of their historical average yield
(Bryla-Tressler et al., 2011). The model represents a wetland risk averse rice farmer in In-
donesia that has access to a yield-based MPCI crop insurance policy. The farmer follows a

Cobb-Douglas production function that is given by
§=z%x% & 3.1

where § is the random actual yield per hectare, z is productivity parameter, / is input used for
labor, x is the composite inputs that include intermediate inputs (pesticide and fertilizer) and
capital, oys are share parameters, and € is a random variable (centered on zero) portraying
yield variation. The farmer’s market revenue (market price p times random yield) and to-
tal cost (wage rate w times labor plus and composite input price r times composite input) per

hectare are
TR(¢) = pJ,
TC = wl+rx.

Farmers can also enroll in MPCI where they receive an indemnity payment in low produc-

tion years and pay a premium. The MPCI indemnity payment per hectare is

MPCIi (&) = p/ max [O,nyh —)7] ,
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where p/ is the average cost of production per hectare, y” is the historically insured average
yield, and 1 is the MPCI coverage level. In MPCI, if the realized yield is less than the in-
sured yield, an indemnity is paid equal to the difference between the actual yield and the in-
sured yield (a percentage of average of historical yield), multiplied by a pre-agreed value of
sum insured per unit of yield (Bryla-Tressler et al., 2011). For AUTP, the sum insured is de-
termined based on the average cost of production per hectare (projected value) (Pasaribu and
Sudijanto, 2013). Parallel with AUTP, the average cost of production per hectare is used to
determine the sum insured for this crop insurance model. The actuarially-fair premium rate

(¢) is determined as the expected indemnity payment:
o — / MPCIi(8)dG (),

where G (&) is the cumulative distribution function of the stochastic yield.
The net benefit () that rice farmers receive is the sum of total revenue and MPCI indem-
nity payments minus the government subsidized (o) premium rate and total costs, all multi-

plied by planted acres (a):
w(l,x;&)=(TR(&)+MPCIi(§)—(1—0)9 —TC)a.

Thus, the farmer’s problem is to choose inputs to production (/,x) such that expected utility

(EU) from profits is maximized:
max EU = max / Uln(1,x:8)]dG (&), (3.2)
X X

where U [r1] = 1 —exp[—B(7)?] is the Expo-Power utility function, f3 is the coefficient of risk
aversion and 0 < 1 is the decreasing absolute risk aversion (DARA) coefficient, respectively.!

Moreover, the certainty equivalent CE is calculated to find the impact of different policies on

I Also note that for the Expo-Power utility function defined here, @ = 1 implies constant abso-
lute risk aversion and 6 > 1 implies increasing absolute risk aversion.
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the farmer:

CE = U '(EU), (3.3)
B 1/6
(log(lﬁ EU)) . (3.4)

The certainty equivalent converts optimal utility in to a dollar per hectare and measures the

amount of money farmers are willing to except to eliminate the risks.

3.2 Theoretical Analysis of Coupling, Wealth, and Insurance Effects

The conceptual analysis in this chapter decomposes the impacts of key MPCI policy pa-
rameters (coverage level ) and premium subsidy rate ¢) into their coupling, wealth, and insur-
ance effects following Hennessy (1998). For tractability, the production function is simplified
by only allowing for one input to production m which is a composite of / and x and yields the
maximization problem

max / U [ (m:&, w)]dG (&), (3.5)

where y is a policy variable that represents the coverage level 11 and subsidy level o.

First order condition is
/ Us [ (m3 &, W)] 7o (m: &, w) dF (8) = 0. (3.6)

To analyze the impact of a small change in the policy parameter Y input use m, totally differ-

entiate the first-order condition

[ Usn 1170 () () U [ o () dF () —
[ AL Ry Y Ux (10 ()~ Us [ 7y () dF () dy = 0

Unrr |-
where A[-] = — UM[[]] is the absolute risk-aversion function. Solving for a change in the com-
|-
posite input for a change in a policy variable yields
dm ~ -
s ——/U,r Ty () dF (&) /U,r () T (-) dF (8) (3.7)
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where @ = [ (Urz [ on (*) Ton (+) + Uz [] Tmm (+)) dF (€) < 0. The sign of % is ambiguous,
however we can gain further insight into the impact of the policy variables on composite input
use by breaking Equation (3.7) into three separate outcomes: the coupling, wealth, and insur-
ance effects. The coupling effect is characterized by the first term on the right-hand-side of
Equation (3.7):

—% / Us [ oy () dF (B). (3.8)

The key feature of the coupling effect is that a farmer can influence the size of the government
payment through input uses, which implies that 7,y (-) # 0. Since —% and marginal utility
Uz ] are both positive, the sign of 7,y (-) dictates the sign of the coupling effect and thus the
effect of y on input use.

The second term on the right-hand-side of Equation (3.7), contains both the wealth and

insurance effects:

= [ ALy () Ul 7 () @), (39)

Integration by parts is applied to separate these two effects. First, redefine the first two terms
of the integrand as J (-,&€) =A[-]my (-). Then, Equation (3.9) can be written as

= 1B 1 ()P (€) .10

Let u =J(-,&) and dv = Uz [| Wy, (-) dF (&), then du =J'(-,&) and v = [Ur[-| my (-) dF (&) dE.
Applying the integral by parts formula to the numerator of Equation (3.10) and multiplying

both sides by @ yields
Yo =7 (&) [Uxl1mn(VaF @) - [ [Usl)mn()aF @7 (82,

where

J(8) =Ag[]mz () Ty (1) +A[] e (+). (3.11)
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At the optimal input use, [ Uz [-] 7y (-)dF (€) = 0 from the first-order condition given in Equa-

tion (3.6), then
o — —//U,r [ 70 (-)dF (8)J (-, E) dE.

Following Hennessy (1998), assume an increase in production leads to higher risk 7,z (-) >
0, which implies that [Ug[| 7, (-)dF (€) < 0. Therefore, because @ < 0, Y@ is positive,
implying input use increases, if J'(-,v) < 0. Thus, determining the sign of J' (-, V) is vital
in assessing the directional impact of policy parameters on input use through the wealth and
insurance effects.

In Equation (3.11), the first term is the wealth effect and the second term is the insurance
effect, which are key in determining the impact of a policy variable on input use. For the

wealth effect, A [] < 0 for DARA utility. Thus, if p > p/, then
+ _

A\

-~ A\
7 ~\

m(-) = <p —pf) 5z (m)— (1 — ) oMP" (m) and the impact of the wealth effect on input

A N
~ Y 7\

use is ambiguous. However, if p < p/, then 7z () = (p —pf> & (m)— (1 — o) $¥F (m) < 0

and the impact of the wealth effect on input use is negative (positive) if 7y (1) <0 (7y () > 0).
For the insurance effect, A[-] > 0 and impact on input use is positive (negative) if myz (-) <0
(Tye (-) > 0). Table 3.1 summarizes the results of the comparative statics, which are discussed

next.

Table 3.1: Comparative Statics of Policy Parameters

Policy Parameter Coupling \Yealth ; Insurance Total
p>p/ [ p<p
Coverage level (1) 0 ? ? +
MPCl Premium subsidy (o) — ? - —

3.2.1 Coupling Effect of n and o
The effect of policy variables, 1 and o, on input use through the coupling effect is pre-

sented here. Because the yield guarantee (coverage level time the historical yield ny") does

24



not depend on input use, no coupling effect exists for the coverage level . More formally,

because @5/ (m) = [ p/5(m)dG (&) and ¢piF" (m) = 0, then

T (1) = — (1= 0) iy’

(m) =0 and no coupling effect exists for changes in the coverage
level.

However, because the premium subsidy is multiplicative with the premium rate which de-
pends on input use, a coupling effect exists for o and farmers can impact the size of their pay-
ments by adjusting inputs and thus yield. Specifically, since 9/7C! (m) = — [ p/5,, (m)dG (8) <

0, then g () = §MPC (m) < 0. Consequently, higher subsidies lower premium costs to farm-

ers which incentivizes farmers to reduce input use to collect higher net insurance payments.

3.2.2 Wealth Effect of n and ¢

This subsection provides the conceptual framework on how the policy variables affect input
use through the wealth effect. Note that, as discussed above, if p > p/ then the wealth effect
is ambiguous, and the impact of a small change in either policy variable is either positive or

negative depending on other market conditions. If p < p/, then the wealth effect may be de-

MPCI

termined. For the coverage level, 7, (-) = p/y" — (1 - o) P

(m) is ambiguous because the
first term on the right-hand-side ( p! 'yh) is positive and the second term on the right-hand-side
(-(1-o0) ¢,17VIPCI (m)) is negative since ¢),11VIPCI (m) = [ p/y"g(8)d& > 0. Therefore, the im-

pact of 1 on input use through the wealth effect is also indeterminate. However, a marginal

increase in the subsidy level reduces input use as 7s () = ¢MP! (m) > 0.

3.2.3 Insurance Effect of 1 and &

This subsection provides the analysis on how policy variables affect input use through the
insurance effect. For the coverage level, the insurance effect is positive because

e () =—(1—-o0) (PT%PCI (m) < 0 since (])T%PCI (m) = p/ny"g (&) > 0. Therefore, an in-
crease in the coverage level will result in the farmer using more inputs. However, the insur-

ance effect for the subsidy rate is negative because 75z (-) = ¢MF! (m) >0
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given that 97! (m) = p/ (ny" —5(m)) g (8) > 0 since ny" — §(m) > 0 for an indemnity

payment to be made. Thus, higher subsidy levels cause the farmer to reduce input use.
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Chapter 4. Numerical Analysis

To quantify the direction and magnitude of the impact of the coverage level and premium
subsidy, the model given by Equation (3.2) is calibrated to an average rice farmer in Tuban
Regency in Indonesia and then numerically optimized to analyze changes in the policy param-
eters. The first section in this chapter discusses data sources, the estimation of the yield dis-
tribution, and the calibration of the remaining parameters. The second section discusses the

simulation and results, and the final section provides conclusions and recommendations.

4.1 Data, Yield Distribution, and Calibration

The analysis here focuses on the Tuban Regency which is located in the northern part of
East Java Province, one of the largest Indonesian rice producing provinces. The Tuban Re-
gency can be found 675 kilometers east of Jakarta and 101 kilometers northwest of Surabaya
which is the capital of the East Java Province. The size of Tuban Regency is about 1839.94
square kilometers with a population in 2014 of around 1.3 million (BPS-Statistic of Tuban Re-
gency, 2015b). Like many other places in Indonesia, the climate in Tuban is tropical with an
average rainfall of about 2,277 millimeters per year. Crops mainly grown in the area are rice
and casava. In Tuban, the average household comprises of four or five persons and it owns

0.1 - 0.5 Ha of arable land.

4.1.1 Data

Yearly yield data from 1979 to 2014 for the Tuban Regency are collecting from Statis-
tics of Tuban Regency (BPS-Statistic of Tuban Regency, 2015a). Data on the value of pro-
duction and cost of production per hectare per planting season of wetland paddy, which are
used to calculate the market price and input prices, are available from the Statistic of East Java

Province (BPS East Java, 2015).
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4.1.1.1 Detrending and Correcting for Heteroskedasticity

Before estimating the yield distribution, the yield data are detrended to account for tech-
nology changes over time. Several methods for detrending exist. This thesis follows Tejeda
et al. (2008) and uses two time regressors, one linear and one squared, to detrend the Tuban
yield data. We correct for heteroskedasticity in the data. Heteroskedasticity is the term used
when the scatter of the errors is non-constant over the range of the independent variable. Het-
eroskedasticity is a concern because it can lead to bias in parameter estimates. Therefore,
correcting heteroskedasticity in the data is imperative in order to provide a factual estimated
densities. adopt previous literatures (Ramadan, 2011; Tejeda et al., 2008) which applied the
following method to detrend and correct heteroskedasticity in the yield data. First, we cal-
culate the estimated error by taking the difference between the actual yield and the estimated

yield from regressing the yield data on the linear and squared time trend regressors:
e =yt —

where y; = BO — Blt — ﬁ’ztz, [§,~s are estimated parameters, and t = 1,2,...,7 is a linear time

trend. Then detrended yield y; is calculated as

Je=yr(1+ ﬁ),
Yt
where yr is the yield data for the last data year 2014 and y, is the yield data ranging from
1974-2014.

Next, we transform the county data into farm-level data by additional disturbance to the
variance of the regency yield data. When evaluating insurance indemnity payment and premi-
ums, it is crucial to obtain accurate estimates of farm-level yield probability density functions
(PDF) (Xu, 2004). However, due to an insufficient time trend in farm-level yield data, crop
yield PDF’s are not possible to estimate accurately. To address this problem, Goodwin (2009)

assumes a farm versus county or farm versus State yield relationship that appears reasonable

by adding additional variance to county data that is normally distribution N (0, c), where o is
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Figure 4.1: Histogram of Detrended Yield Data
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75% of the standard deviation of the detrended state average yield. Therefore, this thesis uses
such method to obtain parameters of farm-level yield.

Based on the production function specification Equation (3.1) in Chapter 3, the € is an ad-
ditive term representing yield randomness that has a mean of zero. Therefore, to estimate &,
the detrended yield data are normalized by subtracting the mean detrended yield. This results
in a disturbance term that is consistent with the theoretical model. See figure 4.1 for a his-

togram of detrended yield data for Tuban.
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4.1.2 Yield Distribution

Parametric and nonparametric methods are the two main techniques used to estimate a den-
sity. However, this thesis will focus only on parametric methods due to the availability of the
data. We include normal distribution since Just and Weninger (1999) consider such distribu-
tion as an empirical distribution for studying crop insurance programs and production under
uncertainty. Moreover, the skew normal distribution is also considered in this thesis because
yield data is often found to be non-symmetrical. The skew normal distribution has a shape
parameter that regulates the skewness, which can account for a continuous variation from nor-

mality to non-normality.

4.1.2.1 Normal Distribution
Using the detrended yield data described in section 4.1.1.1, this section estimates normal
distributions by applying a maximum likelihood estimation method. The density function of a

normal distribution with mean p € (—oo,0) and standard deviation o > 0) is given by

- N2
F6low) = ——exp |- CBE]

where a support of j € (—eo,00). The parameters are estimated using the Maximum Likelihood

estimator (ML). Therefore, based on an i.i.d. random sample, the likelihood function is

. . _ _ 1 &
L(o,ulyi,....yr) =0 "(2x) "/Zexp [_F Z(Yz—.u)zl,
=1

and the log-likelihood is given by

N N n n 1 &
l(o,ul3, ... 37) = —7 In(2m) — Eln(Gz) Gy Y 5 —u)*.
t

Given the detrended yield data, maximum likelihood estimates ¢ and u
that optimizes (o, lt|J1,...,7). This optimization is performed numerically using the R
software using the “nlm” Newton-type algorithm. Table 4.1 displays the parameter estimates

for the normal distribution.
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Table 4.1: Normal PDF: Parameter Estimates
Parameter

Mean 0.000
Standard deviation | 4.633

4.1.2.2 Skew Normal Distribution

Using the same data from section 4.1.1.1, we also estimate the skew normal distribution by
applying a maximum likelihood estimation method. The skew-normal distribution with loca-
tion €, scale @ > 0, and asymmetry A parameters, which was introduced by Azzalini (1985), is

role0.) =50 (T8 @ (2727,

O]
where ¢ is the density function of the normal distribution and @ is the cumulative distribution
function of the normal distribution. We estimate the parameters by using Maximum Likeli-
hood methods (ML). Therefore, based on an independent and identical distribution random
(i.i.d.) sample, the likelihood function is

- ~ 2 Vi —€ Vi —€
L(gawaM}’l»---,YT) == _(P ( )(p (A ),
tl—l(l) 0] w

=1

and the log-likelihood is given by

2 1 y, — € 1 y, — €
1(&,@, A1, 57) = nlog =+ Y log o (2—) + ¥ log (A1),
o = () =~ ()

1

1

With the detrended yield data, maximum likelihood estimates €, ® and A
which optimizes /(g,®,A|J1,...,¥7). As with the normal distribution, this optimization is
perform numerically using the R software using the “nlm” Newton-type algorithm. Table 4.2

provides the parameter estimates for the estimated distribution.

Table 4.2: Skewed Normal PDF: Parameter Estimates

] Parameter
Mean 0.013
Standard deviation | 4.650
Gamma -0.415
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Figure 4.2: Plot Skew and Normal Distribution over the Histogram
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4.1.2.3 Goodness of Fit Tests

Figure 4.2 plots the histogram of the detrended normalized yield data and the normal and
skewed normal density functions based on the MLE parameter estimates. Because skewed
normal density is off center of the normal density, this figure suggests that the yield data are
positively skewed. Next, more formal goodness of fit tests are presented in order to determine
which model suitably fits the data. Three goodness of fit tests are used to analyze the model
selection for skew normal distribution and normal distribution: Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), and Cumulative Delta.

AIC and BIC assess the goodness of fit term by weighing model precision against the num-
ber of parameters. This analysis thus evaluates the statistical relevance of additional precision
of more parameters. The formula for AIC and BIC are given by AIC; = —2log(L;) + 2k; and
BIC; = —2log(L;) + k;log(n), where k; is the number of parameters in the i distribution, L;
is the value of the maximized likelihood function evaluated at the estimated parameters, and

n is the number data points. By construction, the lowest AIC and BIC values give the most

32



accurate distribution without over fitting. Cumulative Delta, on the other hand, evaluates a
distance between the empirical distribution function and the theoretical distribution function.
We compare the cumulated delta (the cumulative sum of the absolute values of the difference
between the empirical and the theoretical distribution functions) between the two models. The
model with the lowest cumulative sum is the better suited parameterization.

Table 4.3 reports the results of AIC and BIC. The result of the AIC test for skew normal
distribution is higher compared to that of normal distribution. This indicates that, based on
AIC, the skew normal distribution less preferable than normal distribution. However, the AIC
result is contradicted to the BIC result where the skew normal distribution performs better than
normal distribution because skew normal has a low BIC score. Similarly, Figure 4.3 graphical
shows that the cumulative delta for the skew normal distribution is lower than that of the nor-
mal distribution. This indicates that skew normal distribution performs better than the normal
distribution. Given the smaller BIC and cumulative delta of the skew normal distribution, this
distribution is the better suited parameterization of the Tuban yield size distribution and is used

in the analysis below.

Table 4.3: Goodness of Fit Result
Distribution AIC BIC

Skew Normal 217.70 213.08
Normal 216.56 213.48

4.1.3 Calibration

Now that the yield density is estimated, we calibrate the remaining parameters in the model
for the simulation analysis. The Expo-Power utility function U [r] = 1 —exp[—B(7)?] is ap-
plied to calculate farmers’ expected utility, where [ is the coefficient of risk aversion, 6 < 1
is the DARA coefficient (Saha et al., 1994). Based on Love and Buccola (1991) and Saha
et al. (1994), this parameter ranges from 0.5 to 2.7. We assume a risk aversion coefficient
of B = 1, which is within the range suggested by Love and Buccola (1991) and Saha et al.

(1994). Moreover, since there is no literature on DARA utility for Indonesian rice farmers,
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Figure 4.3: Cumulated Delta
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this thesis utilizes U.S. farmers’ DARA utility researched by Saha et al. (1994) which suggests
6 =0.4.

The production function used is ¥ = z/%x% + & where [ is labor, x is a composite of in-
termediate inputs and capital, o and o, are share parameters with o + o, < 1, and the total
cost is T7C = wl +rx. Using the 2014 rice yield in Tuban regency and the data from BPS East
Java (2015), we calculate data on the market price per quintal metrics(p), the composite price
for intermediate inputs (r), and the price of labor (w). The share parameters for the produc-
tion function are calculated by utilizing value of inputs and total production data. The share
parameters of @; and @, are calculated by dividing the value input costs with the value of pro-
duction. Given share parameters, input data, and assuming € = 0 implying an average year,
the productivity parameter (z) is calibrated by performing a grid search over z to match the
2014 yield data.

Next, parameters of the government policy on MPCI are provided. For average cost of

production per hectare (pr), we use the total cost of production in 2014 because such data are
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the latest data provided by the statistics of East Java Province. The historical insured average
yield (y;) is taken from the mean yield for the last five years (2010-2015) which is parallel to
the computation regulated by the U.S. Department of Agriculture (four to ten years) (Edwards
and Hofstrand, 2003). All the parameters used for the simulation analysis are summarized in
Table 4.4. Finally, as elaborated in the subsequent section, this thesis specifies several scenar-
ios on different coverage levels n (10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%) and
subsidy levels ¢ (5%, 10%, 15%, 20%, 25%).

Table 4.4: Calibrated Parameters for the Model

Parameters | Value |
Input and Output Price p=21.77
pw =17.85
px=3.41
Production Function o =0.48
o, =0.21
z2=2.179
Indemnity payment in MPCI | p, = 16.08
Yn = 64.31
Utility Function B=1
0=04

4.2 Simulation and Results

To quantify the impacts of MPCI Insurance on Indonesian rice farmers, we numerically op-
timized the model expected utility given in Equation (3.2). This simulation analysis consists
of the baseline and several MPCI policy scenarios (changing in coverage levels and premium
subsidies). The baseline scenario, consistent with the calibration of the model, is performed
without MPCI insurance in place. Thus, in the baseline, the farmer is fully exposed to all
risk. To consider a wide range of policy options, the alternate scenarios comprises of five dif-
ferent premium subsidies (o) and nine different coverage level (). We increase the premium
subsidies from 5% to 25% and coverage level from 10% to 90%. Next, we compare the pol-

icy scenarios and baseline simulation results to quantify the impacts of MPCI Insurance on
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labor, composite of variable input, output, expected indemnity, premium payment, and certainty
equivalent.

Tables 4.5 and 4.6 report the results for labor and the composite input used in Indonesian
rice farming. The baseline simulation indicates that the optimal input use for labor and com-
posite input without applying MPCI insurance is $85.485 and $85.434 per Ha, respectively,
meaning that when the insurance program is not in place the optimal amount of money that
farmers will pay for labor and composite input are $85.485 and $85.434 per Ha, respectively.
The labor and composite input use remain constant when the premium subsidies are increased
to 25% and the coverage level are raised to 30% because, for these very low coverage levels,
the farmer does not expect to receive any indemnity payment. With no expected payment, the
farmer does not alter their optimal input use. However, for coverage levels at or above 40%,
the farmer expects indemnity payments, which triggers a reduction in input use as the farmer
tries to maximize both insurance payments and market revenue simultaneously. This high-
lights the moral hazard on MPCI crop insurance. Intuitively, for non-zero expected indemnity
payment (i.e., coverage levels above 40%) the lower coverage level leads to a larger reduc-
tion in input use than the higher coverage level, because at farmers are incentivised to lower
inputs, and thus yield, in order to receive larger indemnity payments. With higher coverage
levels, farmers are more likely to received an indemnity payment and thus have less incentive
to reduce input use to receive payments. As the subsidy level increases, farmers earn more
revenue from crop insurance relative to market revenue, which the farmer takes advantage of
by reducing input use to increase the size of the indemnity payments.

The input use for labor reduces by 73% when the coverage level is increased to 40% while
holding the premium subsidy constant in 25% (Table 4.5). The lowest reduction (15%) takes
place when we eliminate the premium subsidy and raise the coverage level to 90%. The high-
est decrease of the composite of variable inputs (73%) also happens when the coverage level
and subsidy are increased to 40% and to 25%, respectively. The composite of variable input

drops slightly (15%) when the premium subsidy is removed and the coverage level of 90% is
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implemented (Table 4.6). In this case, farmers can set up the input use in order to lower the
production and get more insurance payment. Based on the table results, providing small pre-
mium subsidy with high coverage level, such as imposing subsidy of less than 15 % and and
coverage level of higher than 70%, may more preferable to reduce the moral hazard since the
reduction of the input uses will be less than 40% if such policy applied. These input results
are consistent with the theoretical findings summarized in Table 3.1 where an increase in the
coverage level will increase input use through the insurance effect and an increase in the sub-

sidy will decrease input use through the coupling, wealth, and insurance because p < p/.

Table 4.5: Impact on Labor $/Ha
Subsidy levels, o

0% \ 5% \ 10% \ 15% \ 20% \ 25%

0% | 85.458 85.458 85.458 85.458 85.458 85.458
10% | 85.458 85.458 85.458 85.458 85.458 85.458
20% | 85.458 85.458 85.458 85.458 85.458 85.458
30% | 85.458 85.458 85.458 85.458 85.458 85.458
40% | 23.526 23.421 23.317 23.185 23.059 22.873
50% | 32.063 31919 31.775 31.600 31.373 31.086
60% | 41.375 41.187 40.940 40.662 40.256 39.583
70% | 51.297 51.032 50.702 50.175 48.926 43.225
80% | 61.831 61.378 60.679 57.710 50.116 43.226
90% | 72.716 71731 66.143 57.741 50.116 43.227

Coverage Levels n

Table 4.6: Impact on Composite of Variable Inputs
Subsidy levels, o

0% \ 5% \ 10% \ 15% \ 20% \ 25%
0% | 85.434 85.434 85.434 85.434 85434 85.434
10% | 85.434 85.434 85.434 85.434 85.434 85.434
20% | 85.434 85.434 85.434 85.434 85.434 85.434
30% | 85.434 85.434 85.434 85.434 85.434 85434
40% | 23.524 23418 23311 23.183 23.041 22.867
50% | 32.054 31.909 31.766 31.599 31.365 31.082
60% | 41.363 41.181 40.929 40.650 40.256 39.573
70% | 51.285 51.020 50.688 50.156 48.912 43.213
80% | 61.813 61.359 60.660 57.694 50.102 43.214
90% | 72.695 71.711 66.125 57.724 50.102 43.213

Coverage Levels
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Next, we discuss the impacts of MPCI insurance on expected output reported in Table 4.7.
The baseline output is consistent with the scenario output as the premium subsidy is increased
to 25% and the coverage level is boosted to 30%. Parallel with the input use, the reduction
in the output also only appears when the coverage levels is at 40% and above. The output
reduction is about 60% with a premium subsidy of 25% and a coverage level of 40% are im-
posed. However, output only declined by about 10% if the coverage level is increased to 90%
without any premium subsidy. Thus, regulating small premium subsidy with high coverage
level is a possible solution to minimizing moral hazard in MPCI insurance. Table 4.7 implies
a similar result as Table 4.5 and Table 4.6 where imposing a subsidy of less than 15% and
coverage level of higher than 70% are more propitious. The impact of changes in the cov-
erage level and premium subsidy on output are consistent with the input results which conform

to the theoretical findings in Table 3.1.

Table 4.7: Expected Output: Qu/Ha
Subsidy levels, o

0% \ 5% \ 10% \ 15% \ 20% \ 25%
0% | 63.111 63.111 63.111 63.111 63.111 63.111
10% | 63.111 63.111 63.111 63.111 63.111 63.111
20% | 63.111 63.111 63.111 63.111 63.111 63.111
30% | 63.111 63.111 63.111 63.111 63.111 63.111
40% | 25.565 25.485 25.405 25305 25.205 25.065
50% | 31.756 31.656 31.556 31.436 31.276 31.076
60% | 37.967 37.847 37.687 37.507 37.247 36.808
70% | 44.138 43.978 43.778 43.458 42.698 39.149
80% | 50.308 50.050 49.650 47.935 43.423 39.149
90% | 56.361 55.825 52.742 47953 43.423 39.149

Coverage Levels n

Results for expected indemnity, calculated as [ MPCIi(&)dG (€), are reported in Table
4.8. As discussed above, for coverage levels at 30% and below the farmer does not receive
any indemnity payments. However, for coverage levels above 30%, increasing both the pre-
mium subsidy and coverage level leads to incremental increases in expected indemnity. The
lowest expected indemnity ($7.784/Ha) is collected in the scenario where the premium sub-
sidy is eliminated but the coverage level is 40%. Whereas, the highest expected indemnity
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($301.221/Ha) is obtained in the scenario where the premium subsidy and coverage level are

both at their highest level of 25% and 90%, respectively.

Table 4.8: Expected Indemnity ($/Ha)

Subsidy levels, o
0% \ 5% \ 10% \ 15% 20% \ 25%
0% 0 0 0 0 0 0
- 10% 0 0 0 0 0 0
o« | 20% 0 0 0 0 0 0
% 30% 0 0 0 0 0 0
—~ | 40% | 7.784 8.529 9.314 10350 11.445 13.071
:%) 50% | 10.138 11.221 12.361 13.799 15.826 18.515
§ 60% | 12.595 14.046 16.088 18.515 22221  28.858
8 70% | 15.826 17.965 20.771 25.497 37.364 94.388
80% | 19.373 23.103 29.175 56.518 129.073 197.800
90% | 24.893 33.177 82.644 159.652 232.493 301.221

Table 4.9 informs the results for expected MPCI payment to farmer,

calculated as [ [MPCIi(€)— (1 —0)¢|dG (&) = o¢. Note that when the subsidy rate is
zero, the expected indemnity payment is exactly equal to the premium, and the expected pay-
ment to the farmer is zero (first column in Table 4.9). For coverage levels above 30% and
subsidy level greater than zero, the payment to the farmer is equal to the subsidy rate time
the premium rate (c¢). The table shows that as the subsidy and coverage level increase,
the higher the insurance payments the farmers receive. That is for a coverage level of 40%
and subsidy of 5%, the farmer will received on average an insurance payment of $0.426/Ha.
However, with a coverage level of 90% and subsidy of 25%, the farmer will receive an average
insurance payment of $75.305/Ha.

Table 4.10 presents the results for the certainty equivalent calculated from Equation (3.4).
The certainty equivalent at the baseline is $80.546/Ha. The addition of subsidy levels result
in no change of certainty equivalent until the coverage level increases to 40%. Therefore, the
farmers will be better off by increasing coverage level to 40% and above. The results show
that the farmers prefer the highest coverage level for each of the subsidy levels. Furthermore,

the highest certainty equivalent is obtained when the subsidy level and the coverage level are
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Table 4.9: Expected MPCI Payment to Farmer ($/Ha)

Subsidy levels,

O%\ 5% \ 10% \ 15% \ 20% \ 25%

0% 0 0 0 0 0 0

- 10% | O 0 0 0 0 0

@ [20% | 0 0 0 0 0 0

% 30% | O 0 0 0 0 0
— | 40% | 0 0426 0.931 1.552 2289 3.268
go 50% | 0 0561 1236 2.070 3.165 4.629
§ 60% | 0 0702 1.609 2.777 4444 7.215
8 70% | 0 0.898 2.077 3.825 7.473 23.597
80% | 0 1.155 2918 8478 25.815 49.450
90% | 0 1.659 8264 23948 46.499 75.305

increased to 25% and 90%, respectively. Thus, the farmers benefits the most from policy

combination under such scenario.

Table 4.10: Certainty Equivalent ($/Ha)

Subsidy levels, o

0%

5%

[10% | 15% | 20% | 25%

0%

10%

20%

30%

40%

50%

60%

Coverage Levels n

70%

80%

90%

80.546
80.546
80.546
80.546
91.770
92.431
92.932
93.299
93.550
93.697

80.546
80.546
80.546
80.546
91.777
92.439
92.942
93.312
93.566
93.719

80.546
80.546
80.546
80.546
91.785
92.449
92.954
93.327
93.585
93.757

80.546
80.546
80.546
80.546
91.793
92.459
92.968
93.344
93.614
03.848

80.546
80.546
80.546
80.546
91.802
92.471
92.984
93.368
93.685
93.995

80.546
80.546
80.546
80.546
91.812
92.485
93.003
93.415
93.808
94.192

4.3 Conclusions and Recommendation

This section concludes several findings resulting from the simulation and suggests some
recommendation relative to the simulation. Based on the certainty equivalent, farmers prefer
the highest coverage level. For the 90% coverage level, farmers prefer the highest subsidy
level. For expected indemnity, farmers prefer high premium subsidies and high coverage lev-
els. The highest expected indemnity is obtained in the scenario where the premium subsidy

and coverage level escalate to 25% and 90%, respectively. Similarly, for insurance payment,
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farmers receive the highest payment for the largest high coverage level and premium subsidy.
Thus, the farmers prefer either high coverage level with small subsidy or small coverage level
with high subsidy. Based on the input and output table, MCPI can have substantial moral haz-
ard implications. Farmers can set up the input use in order to lower the production and get
more insurance payment. To mitigate the moral hazard, Indonesian government can possibly
offer an insurance with high coverage levels and low premium subsidies.

As the result of all findings in the simulation, MPCI insurance with high coverage levels
and low premium subsidies is suggested to Indonesian government since such policy benefits
both farmers and the insurance provider. Although in certainty equivalent the farmers prefer
the highest both coverage levels and subsidy levels, the farmers are still better off if the gov-
ernment only provides small subsidy levels with high coverage levels. In addition, continued
collection of yield data is imperative to assess premium rates, especially collecting seasonal
rice yield data since Indonesia has two rice planting seasons. The two seasons are for the
months October-March and April-September, and the yield variation in each planting season is
dissimilar. Normally, the yield data of October-March planting season (wet season) is higher
than the yield data of April-September (dry season). Therefore, collecting the yield data for

each planting season is necessarily important to calculate more a accurate premium rate.
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Chapter 5. Summary and Research Extension

This thesis constructs a model of the yield-based MPCI crop insurance policy for a risk
averse rice farmer in Indonesia and presents the comparative statics analyses of the effect of
policy variables on yield through the coupling, wealth, and insurance effects. Using yield data
from 1979 to 2014 for the Tuban Regency, this study applies numerical optimization to the
model and simulate the effects of different coverage and subsidies levels on input use, certainty
equivalents, indemnity payment, and premiums. The result from the theoretical analysis indi-
cates that no coupling effect exists for changes in the coverage level, while a coupling effect
does exists for change in the premium subsidy implying that farmers can impact the size of
their payments by adjusting inputs and thus yield. The analysis for wealth effect, on the other
hand, shows several implications. If the market price p is higher than the average cost of pro-
duction p/, the wealth effect is ambiguous, and thus the impact of a small change in either
policy variable is either positive or negative depending on other market conditions. Moreover,
if the market price p is smaller than the average cost of production p/, then the wealth effect
may be determined. The wealth effect for subsidy levels is negative, indicating a marginal
increase in the subsidy levels reduces input use. Unlike for the subsidy levels, the wealth ef-
fect for the coverage levels is ambiguous. Furthermore, the analysis of the insurance effect for
coverage levels shows a positive sign, revealing that an increase in the coverage level will re-
sult in the farmer using more inputs. Conflicting with the coverage level, the insurance effect
for subsidy levels generates a negative sign, where higher subsidy levels cause the farmer to
reduce input use.

The result from the numerical analysis shows that MPCI crop insurance results in moral
hazard. At very low coverage levels (<30%), the farmer does not expect to receive any in-
demnity payment. However, for coverage levels at or above 40%, the farmer expects indem-
nity payments, which triggers a reduction in input use as the farmer tries to maximize both in-

surance payments and market revenue simultaneously. For non-zero expected indemnity pay-
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ments (i.e., coverage levels above 40%), the lower coverage levels and higher subsidies lead to
a larger reduction in input use than the higher coverage level and lower subsidies. Therefore,
providing small premium subsidy with a high coverage level may be more preferable to reduce
the moral hazard. For certainty equivalent, the result reveals that farmers prefer the highest
coverage level. Also, for the 90% coverage level, the results also indicate that farmers prefer
the highest subsidy level. For expected indemnity and insurance payment, farmers receive the
highest payment for the largest high coverage level and premium subsidy. Thus, at any given
subsidy rate, the farmers prefer high coverage level. However, if given the choice, the farmer
prefers both the highest coverage level and subsidy rate. To sum up, the numerical analysis
results indicate that MPCI insurance with high coverage levels and low premium subsidies is
suggested to Indonesian government since such a policy improves the farmers’ wellbeing while
mitigating moral hazard facing the insurance provider.

The results from this study can be used as empirical evidence to assist the policy makers
in the Ministry of Agriculture in implementing MPCI crop insurance in Indonesia. However,
future studies such as conducting numerical analysis for Gresik Regency and conducting re-
search on area-based insurance, are highly recommended in order to foster the development
of crop insurance in Indonesia. The analysis has several limitations due to data availability
that subsequent studies could overcome as yield data becomes more available. The numeri-
cal analysis in this thesis utilizes the county-level yield data due to the lack of farm-level yield
data. Thus, since the county yield data are available, conducting research on area-based in-
surance may provide more valuable analysis to develop a better crop insurance for Indonesian
farmers. Moreover, collecting seasonal rice yield data is imperative to calculate a more accu-

rate premium rate since the yield variation in each planting season is dissimilar.
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