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Abstract 

Silver (Ag) has been well known for its antimicrobial activity for a long time. Recent 

research showed the potential of Ag nanoparticles as emerging antimicrobial agents. However, 

little quantitative analysis has been performed so far to decipher the mechanism of interaction 

between nanoparticles and bacteria. Here, a detailed analysis based on kinetic growth assay and 

colony forming unit assay has been carried out to study the antimicrobial effect of Ag 

nanoparticles against Escherichia coli (E. coli) bacteria. It was observed that the presence of Ag 

nanoparticles increased the lag time of bacterial growth while not affecting the maximum growth 

rate significantly. Besides, they can inhibit bacterial growth in the exponential phase by killing 

some E. coli bacteria cells. A quantitative model was developed to describe the observed 

antimicrobial behaviors of Ag nanoparticles. The model can successfully predict the 

experimental measurements. In addition, a mathematical approach to extract the model 

parameters using experimental data has also been described. It is expected that the model along 

with the parameters will help to understand the antimicrobial activity of Ag nanoparticles. 
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CHAPTER ONE 

Introduction  

1.1 History of using antimicrobial agents 

Different plants were used to heal wounds thousands of years ago [1]. Allantoin is found in 

Comfrey (Symphytum officinale) which is antibacterial as well as a healing agent [1]. Leaves of 

St John's wort (Hypericum perforatum) are also supposed to have some healing effect in 

perforating wound [1]. Grasses have always been used as bandages for soothing [1]. Honey, 

animal fats and butter were later used in wound treatment [1]. Antagonistic behavior of some 

microorganisms against bacteria was first observed by William Roberts (1874) and John Tyndall 

(1876) [2]. Roberts reported inhibition of bacteria on Penicillium glaucum covered media and 

Tyndall was able to explain the hostility between bacteria and moulds (multicellular filament 

fungus) [2]. In 1897, Ernest Duchesne, while working towards his PhD, observed the 

antimicrobial activity of Penicillium glaucum [3]. This is the first known published research on 

the antimicrobial activity of moulds [3]. In 1928, Sir Alexander Fleming proposed the existence 

of penicillin in Penicillium chrysogenum secretion preventing the growth of bacteria [4]. The 

improvement in this field encouraged the scientists to pursue further research for more 

antibiotics [5]. In 1939, Rene Dubos was able to synthesize the first naturally derived antibiotic, 

tyrothricin [6]. It contained gramicidin and tyrocidine [6]. Tyrocidine attacked both gram-

positive and gram-negative bacteria whereas gramicidin was able to inhibit gram-positive 

bacteria [6]. In fact, gramicidin was used to treat wounds and ulcers during World War II [6]. 

However, it was not suitable against systemic infections due to toxicity [6]. 
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Fig. 1.1: A magnified electron microscopic image of E. coli [7] 

E. coli, discovered by Theodor Escherich in 1885, is a rod-shaped gram-negative bacterium 

frequently found in lower intestine of warm-blooded lives [8]. Although most of them are found 

inside the body, they are capable of surviving outside the body [9]. They are 2 μm long, 0.5-2 

μm in diameter while the cell volume is 0.6-0.7 μm3 [9]. Most frequently used temperature for E. 

coli growth is 37 0C [9]. E. coli can transfer DNA from generation to generation through 

conjugation, transduction or transformation [9]. Bacterial strains (sub-type of bacteria having 

exclusive properties to differentiate from other strains) are host specific [9]. By knowing which 

strain is present in human body, it can be determined where the contamination arises from (for 

instance, from another human or animal) [9]. Although use of temperature beyond 37 0C is not 

recommended for E. coli growth, protocol has been developed to grow E. coli (DH5alpha) up to 

49 0C [10]. It means that E. coli (DH5alpha) can go through mutation that enables them to grow 

at temperature beyond 37 0C [10]. E. coli can grow in any medium (for instance, LB) containing 

ammonium phosphate, sodium chloride, magnesium sulfate, potassium phosphate, glucose and 

water. Both aerobic and anaerobic respiration can drive the growth of E. coli [11]. E. coli is 

termed as facultative anaerobic. It uses oxygen for growth wherever it is present. However, it can 
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still grow through anaerobic respiration if oxygen is present. Therefore, its growth is accelerated 

if water increases in the environment [12].  

Many of the E. coli bacteria are nonpathogenic and can be good source of vitamin K2 thereby 

benefitting the host [13]. However, some can cause food contamination and food poisoning [14]. 

Harmful strains can cause gastroenteritis, urinary tract infections, neonatal meningitis etc [15]–

[17]. Gastroenteritis is a complex biological response of stomach and small intestine to 

pathogens or damaged cells [18]. Vomiting, diarrhea, abdominal pain and fever are some of the 

common syndromes [18]. When part of the urinary tract (kidneys, bladders, ureters and urethra) 

is affected by bacterial infection, it is termed as urinary tract infection [19]. Bladder infection 

(cystitis) occurs when lower urinary tract is affected whereas infection in the upper urinary tract 

is called kidney infection (pyelonephritis) [20]. Pain with urination, frequent urination and fever 

are some symptoms of urinary tract infection [19], [20]. Neonatal meningitis is a complex 

response of the meninges (membranes protecting brain and spinal cords) and a serious medical 

problem in infants [21]. The possible symptoms are fever, poor appetite, vomiting, diarrhoea, 

neck rigidity, jaundice etc. [15]–[17], [22]. Properly cooking food, use of gloves, clean drinking 

water, pasteurization etc are some of the ways to prevent contamination [9].   

E. coli has been widely used in research for the following reasons: 

 E. coli has small genome size with respect to eukaryotes. They have about 4400 genes 

whereas humans have almost 30000 genes [23], [24]. 
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 E. coli can grow at the rate of one generation per twenty minutes in regular growth 

conditions. This allows for preparation of high-density cultures overnight rather than 

waiting for weeks or months [23]. 

 E. coli are generally innocuous when handled with hygiene [23]. 

 E. coli can be easily transformed with plasmids and other vectors. Transformations with 

other bacteria are often less successful [23]. 

Herodot first mentioned the use of silver container for water transportation [25]. The Greeks, the 

Romans and the Egyptians used silver for water and food conservation [26]. Being a noble metal, 

silver is generally not affected by acid or water. But it can release some metal ions which 

account for antimicrobial activity on the metal surface [25]. Metallic silver (Ag) and silver ions 

(Ag+) have been used for its resistive activity against microorganisms such as bacteria [27]. 

Nowadays, various biomedical applications such as dental treatment and catheters take 

advantage of bacterial suppression by Ag+ [27]. Ag has also been used in refrigerators, 

dishwashers and other electrical appliances [27]. In addition to Ag+ ions, Ag nanoparticles have 

also shown significant bacterial suppression [27].  

Change in chromosomes and genetic materials through plasmids and transposons (another DNA 

sequence, capable of altering cell’s genetic identity and mutations) from time to time have made 

bacteria resistant to antimicrobials agents [28]. Bacteria causing respiratory and urinary 

infections and diarrhea became resistant to all older antibiotics by 1992 [28]. This led to decrease 

in approved number of antibiotics in US and subsequent increase in threat to public health [29]. 

It requires the research for potential new antimicrobial agents and new bacteria treatment 

approaches [29]. These include modifying existing antibiotics as well as searching for new 
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naturally obtained antimicrobials [29]. Nanoparticles provide specific advantage in terms of 

fighting bacteria due to their unique physical attributes such as smaller dimension, higher surface 

to volume ratio etc. [29]. Nanoparticle dimension is in the same proportion of bacterial sizes and 

systems thereby providing more interactions with nanoparticles [29]. The high surface to volume 

ratio of nanoparticles increases the number of effective ligands (and therefore, more valence 

bonds) on the surface [29]. This incorporates increased number of bacterial interactions [29]. 

Based on these properties, nanoparticles have been incorporated with antibiotics using both 

covalent and noncovalent bonds for increased activity against bacteria [29]. Several previous 

experiments showed the antibacterial activities of Nanoparticle also [30]–[32]. 

1.2 Silver nanoparticles 

The release of silver from nanoparticle depends on the size and surface functionalization of the 

nanoparticles, temperature and composition of ambient medium [33], [34]. Silver nanoparticles 

(AgNPs) are known for 120 years [35]. Ag nanomaterials can be synthesized in both ‘bottom-up’ 

and ‘top-down’ approaches [36]. The top down method consists of bulk metal grinding followed 

by stabilization of metal particles by using protecting agents [36]. In the bottom-up approach, Ag 

nanoparticles can be obtained from reduction of metals, electrochemical methods or 

sonodecomposition [36]. Commonly, Ag nanoparticles are synthesized by reducing soluble silver 

salts with agents like ethylene glycol, glucose, citrate etc. [25]. Different types of Ag 

nanoparticles, such as sphere, bipyramid [37], discs [38], rods [39], cubes can be found in 

literature based on the conditions of reaction [25].  

AgNPs show distinctive optical properties [40]. When exposed to electromagnetic radiation, 

their conduction electrons behave as surface plasmon polariton resonances [40]. This property 
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depends on specific factors like: acceleration of conduction electrons by incident electric field, 

restoring forces due to polarization and electron confinement within dimension smaller than the 

wavelength of light [40].  

Ag has been used for antimicrobial application for hundreds of years [25], [26]. Despite the 

antimicrobial activity of Ag, they can be harmful to humans and nature also [36]. The toxic 

nature of AgNPs has been a major concern in its application [41], [42]. It has been reported that 

AgNPs need to release Ag+ ions before behaving as toxic material and they cannot produce 

toxicity in only nanoparticle form [41]. However, when they produce such toxicity, they can 

cause damage to human cells [42]. It can damage mitochondria and increase reactive oxygen 

production based on amount of dose [42]. It also accounts for dose dependent DNA damage 

which is more prominent in cancer cells [42]. Besides, AgNPs stored in laboratory gradually 

release Ag+ ions over time thereby showing more toxicity to human cells than fresh AgNPs [43]. 

A large amount of Ag that is dumped as industrial waste accounts for the increased toxicity in 

the environment [36]. The detrimental effects on humans and other living species include the 

discoloration of skin (argyria) and (argyrosis) [36]. Moreover, soluble silver can cause liver and 

kidney damage, respiratory and intestinal tract irritations etc. [36], [44].  

1.3 Applications of nanoparticles against bacteria 

Comprehensive research on the antimicrobial activity of Ag nanoparticles started developing 

around 2004 [30], [45].  Both antimicrobial efficacy and antimicrobial mechanism of AgNPs 

have been studied in recent years [30]–[32], [46]–[49]. 
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Antibacterial mechanism of nanoparticles have been tested against Bacillus Calmette-Guerin 

(BCG, used as a substitute of TB for developing anti-TB drug) [31] . BCG can be developed 

from Mycobacterium bovis [31]. Mycobacterium bovis is the cause of bovine tuberculosis [31]. 

Single drug therapy often fails to remove infection as well as giving rise to antibacterial 

resistance [31]. This leads to the use of multi-drug therapy method [31]. However, phenomena 

like drug induced disease and presence of multidrug resistant bacteria have obliged researchers 

to look for new approaches [31]. Silver attacks multiple components in a bacterial cell, so cells 

cannot be readily resistive to silver [31]. Both gold and silver NPs have been tried before to some 

extent to observe their antibacterial activity using similar size and shapes [31]. Their growth was 

observed by the method of Colony Forming Units (CFU) [31]. In CFU assay, agar (a semisolid 

base) is first mixed with a nutrient medium and then poured onto a petri dish [50]. The solution 

solidifies on the petri dish as it cools down [50]. A dilute bacterial culture is then spread over the 

solidified nutrient medium where each cell grows into a separate colony over time [50]. Since all 

the cells in the colony grow from a single cell, they have homogeneous DNAs [50]. Each colony 

is formed over time and they can be counted either manually or by using software to get an 

estimation [51]. Both transmission electron microscopy (TEM) and field emission scanning 

electron microscopy (FE-SEM) were used to analyze the dynamics of bacteria-NP interaction 

[31]. It shows the potential of using NP against multi drug resistant bacteria [31].  

AgNPs have been extracted from Trianthema decandra (saponin) and their antimicrobial activity 

was observed using Kirby–Bauer method [32]. The antimicrobial activity was observed against 8 

different bacteria, where it was found that antimicrobial activity was more conspicuous against 

gram-negative bacteria than gram positive bacteria [32]. The size of AgNPs is 250 times smaller 
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than a bacterium (37.7–79.9 nm) enabling it to easily stick to the cell walls resulting the death of 

the cell [32]. 

NP toxicity on bacteria depends on both bacteria type and size, shape, surface charge and 

chemical composition[52]. The bacteriostatic and bactericidal effects depends for by the size and 

dose of the AgNPs [46]. Both Minimum Inhibitory Concentration (MIC) and Minimum 

Bactericidal Concentration (MBC) against a specific bacterial strain account for the size and 

dose of Nanoparticle to be used [46]. The efficacy of nanoparticles increases with decrease in 

dimension as 10 nm and lower dimensional nanoparticles have been more effective than the 

higher ones [46]. Different shapes of AgNPs were tested against E. coli to determine the 

significance of shape on its antimicrobial activity [47]. Nanoscale size and presence of {111} 

plane were proposed to govern the biocidal efficiency of AgNPs [47]. Therefore, it was reported 

that AgNPs exhibit shape-dependence antimicrobial activity against gram-negative E. coli [47]. 

Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were found to be the most and 

least affected by Nanoparticles respectively [46].  

Apart from E. coli and S. aureus, Enterococcus faecalis (E. faecalis) was also tested against 

AgNPs to determine its MIC and MBC against E. faecalis [48]. 5 µg/mL was detected as MIC 

and MBC of AgNPs against E. faecalis thereby validating the potential bactericidal effects of 

AgNPs [48]. Therefore, it was proposed in intra canal medicaments as irrigants [48].  

To observe the antimicrobial mechanism of AgNPs on microorganisms, yeast, E. coli and S. 

aureus were treated with AgNPs [49]. Yeast and E. coli were found to be inhibited by low 

concentrations of AgNPs [49]. However, growth-inhibitory effect on S. aureus was mild [49]. 

Electron beam resonance spectroscopy was used to analyze the free-radical generation by AgNPs 
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[49]. The results suggested the potential use of AgNPs against microorganisms [49]. To explore 

further mechanism, surface properties and the parameters that affect the surface states of AgNPs 

were studied [30]. These properties are believed to influence the release of Ag+ ions thereby 

regulating the potential antimicrobial mechanism [30]. 

1.4 Mechanism of silver-bacteria interaction 

Gram-negative bacteria was exposed to different concentrations of AgNPs and their effect was 

observed using both scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM) [45]. It was found that the nanoparticles penetrated through the cell walls to the 

membranes to cause death of bacteria cells [45]. Combining focused ion beam (FIB), scanning 

electron microscopy and energy dispersive X-ray spectroscopy, Ag nanoparticles can be traced 

inside a cell [25]. Inside the cell, presence of silver causes the condensation of DNA [53]. DNA 

replication (and subsequent cell growth) takes place when a relaxed state prevails in DNA [53]. 

Condensation of DNA restrains DNA molecules from replication, leading to ultimate death of 

the cell [53].  

Therefore, death of a cell through interaction with AgNP appears to be associated with the 

structure of DNA. DNA (Deoxyribonucleic Acid) contains all the genetic information and 

instructions regarding growth and functioning of all living organisms [7]. Two biopolymer 

strands spiral around each other to form the double helix structure of DNA [54]. Nucleotides 

accumulate together to form these DNA strands [54]. Therefore, they are called polynucleotides 

[54]. Each nucleotide consists of a sugar group (deoxyribose), a phosphate group and one of the 

four nitrogen-containing nucleobases (Adenine, Thymine, Guanine and Cytosine) [7]. Each 

DNA string coils around a cylindrical protein (Histones) forming a Chromatin [7]. The 
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chromatin further convolutes to develop a condensed structure called Chromosome [7]. One of 

the many differences between bacteria and other cells is the presence of Plasmid[55]. Plasmids 

are also small DNA structures (double-stranded) found in bacteria cells [55]. However, they are 

physically isolated from chromosomal DNA and capable of replicating themselves independently 

[56]. They carry only additional genes (not the essential genetic information like chromosomal 

DNA) to help them survive in particular conditions [56].  

 

Figure 1.2: A simplified model of a helical DNA. Sticks and ribbons represent The base pairs 

and sugar phosphate backbones respectively [7] 
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Inclusion of amino-substituted pyrimidines with gold nanoparticles were effective against multi 

drug resistant bacteria [57]. These pyrimidines do not have bactericidal effect on their own [57]. 

However, pyrimidine capped nanoparticles damage bacterial cell membrane using magnesium or 

calcium [57]. This proves that nanoparticles are the ones that are responsible for the bacteria cell 

membrane damage [57].  

1.5 Motivation of the work 

Although Ag has been used extensively to treat wounds for a long time, antimicrobial 

mechanism of Ag nanoparticles has not been persistently described [32]. Based on the literature 

reviewed so far, research on antimicrobial mechanism of AgNPs has been focused on two 

directions: exploring efficiency of AgNPs as potential antimicrobials and investigating 

experiment-based antimicrobial mechanism of AgNPs [30]–[32], [45]–[48], [53], [58]. Despite 

these advancements, little quantitative analysis has been performed so far regarding the 

antibacterial mechanism of Nanoparticles. A quantitative approach would help to characterize 

the antimicrobial activity of nanoparticles. Moreover, a quantitative model would help to 

understand and predict the antimicrobial behavior of AgNPs in specific growth medium. In this 

work, kinetic growth assays and CFU assays were performed using AgNPs against E. coli 

bacteria. Based on the experimental observations, a quantitative approach has been undertaken 

for better understanding of experimental findings. It was found that the presence of AgNPs 

mainly affected the lag time instead of the growth rate of the bacteria. A quantitative model has 

been developed to explain these experimental observations.  
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CHAPTER TWO 

Experiment 

2.1 Synthesis of silver nanoparticles (AgNPs) 

In this study, AgNPs were synthesized using polyol method with poly (vinylpyrrolidone) as the 

capping agent (Fig. 2.1). Polyol method is the synthesis of metal-containing compounds in poly 

(ethylene glycol)s, which act as both the solvent and reducing agent [59]. It was first introduced 

to produce fine metal powders such as Copper (Cu), Gold (Au), Palladium (Pd), Ag, Cobalt (Co), 

Nickel (Ni), Iron (Fe) and their alloys [59]. This method is considered as an apparently easy 

method among all the physical, chemical or electrochemical processes [60].  

A 250 mL round-bottom flask with a stirring bar was set up in a 150 0C oil bath, followed by the 

addition of 50 mL ethylene glycol (EG, J.T. Baker). As the temperature reaches equilibrium 

(after 30~45 minutes), EG solutions of 0.6 mL of 3 mM NaHS (Alfa Aesar), 5 mL of 3 mM HCl 

(Alfa Aesar), 12.5 mL of 0.25 g poly(vinylpyrrolidone) (PVP, M.W.=55,000, Sigma-Aldrich), 

and 4 mL of 282 mM silver trifluoroacetate (AgTFA, Alfa Aesar) were added successively one 

after another. It was damped in an ice bath after the peak of localized surface plasmon resonance 

(LSPR) reached ~430 nm. When it was cooled, acetone was added to the reaction with a ratio of 

5:1 and centrifuged at 6000 rcf (Relative Centrifugal Force) to collect the product. The resulting 

pellet was purified twice by re-suspension in water and centrifugation at 20000 rcf for 10 min. 

The final pellet was re-suspended in 10 mL of water for later use. 
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Fig. 2.1: Schematic representation of the reaction to produce AgNP 

2.2 Characterization of silver nanoparticles (AgNPs) 

The synthesized nanoparticles have been characterized by various techniques as shown below. 

● Transmission Electron Microscopy (TEM) was used to image the synthesized AgNPs 

using a TEM microscope (JEOL JEM-1011) with an accelerating voltage of 100 kV. A typical 

TEM image is shown in Fig. 2.2, where irregular shapes of the AgNPs were observed: spheres, 

short rods, triangles and tetrahedrons. The sizes of the AgNPs in the TEM images were analyzed 

and we determined that the average diameter of the NPs was 39.5±10.7 nm. The distribution of 

the size of AgNPs was shown in Fig. 2.3, indicating two peaks at ~30 nm and ~50 nm. 

● The size of the AgNPs were measured independently with another technique, dynamic 

light scattering (DLS), which has been commonly used for determining the hydrodynamic 

diameter (i.e., size) of small particles, polymers, and biological macromolecules in aqueous 

solutions [61].  The hydrodynamic diameter of our AgNPs was measured with Brookhaven 

ZetaPALS), giving a size distribution as shown in Fig. 2.3. The average size was found to be ~69 

nm with the polydispersity index (PDI) of 0.327. Polydispersity means the distribution of 
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molecular mass or shape in the sample and high value of PDI proves the existence of 

polydispersity in our sample. The polydispersity index is dimensionless and a value greater than 

0.7 suggests a very broadly distributed sample thereby being not suitable for DLS [62]. Since 

DLS assumes all the particles as spherical, it may not accurately estimate the size of the irregular 

nanoparticles.  

● The silver concentration of our AgNPs stock solution was measured by atomic absorption 

spectroscopy [63]. A flame atomic absorption (AA) spectrometer (GBC 932) was used, and we 

determined that the concentration was 2500 ppm (μg/mL). .  

● The composition of our AgNPs was determined by X-ray powder diffraction (XRD), 

which is a convenient tool to determine the spacing between lattice planes (h, k, l - miller 

indices) thereby confirming the existence of a specific material [64]. For a face centred cubic 

structure, all of h, k and l have to be either odd or even [64]. We measured peaks at 38.04, 44.22, 

64.34, 77.24, and 81.38 degree (Fig. 2.4), which correspond to {111}, {200}, {220}, {311}, and 

{222} crystallographic planes. The X-ray diffraction result confirmed the existence of metallic 

face centred cubic Ag in the sample (200, 220, 222 - all even and 111, 311 – all odd).  

● To characterize the charges on our AgNPs, we also measured the zeta potential of the 

AgNPs. When a particle is dispersed in a medium, a conventional slipping plane separates 

between the mobile fluid and the fluid attached to the surface. The electric potential between the 

dispersion medium and this plane is called zeta potential [65]. The zeta potential of our AgNPs 

was determined as -8.50 mV +/- 2.04 mV, which shows that PVP-capped AgNPs are somewhat 

negatively charged as found in the literature also [66]. 
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Fig. 2.2: Transmission Electron Microscope (TEM) photograph of AgNPs 

 

 

 

Fig. 2.3: Size distribution of AgNPs from the TEM image in Fig. 2.2 
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Fig. 2.4: X-ray powder diffraction pattern of AgNPs 

2.3 Growth of bacteria 

The following bacteria, antibiotic and medium were used for the growth of bacteria in this study. 

● DH5α is an E. coli strain that is most frequently used in cloning application. It contains 

multiple mutations enabling high-efficiency transformations [64]. 

● Ampicillin is an antibiotic used against infections from both gram-positive 

(Streptococcus pneumoniae, Staphylococcus aureus etc.) and gram-negative (Neisseria 

meningitidis, Haemophilus influenzae etc.) bacteria. It is regarded as one of the most effective 

and safe medicines for a health system [67].  

● Plasmid pOEGFP2 (a gift from Dr. David McMillen at the University of Toronto) carries 

ampicillin resistance and Enhanced Green Fluorescent Protein (EGFP). Green Fluorescent 

Protein (GFP) is a protein first collected from the jellyfish Aequorea victoria [68]. Its emission 
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peak (509 nm) is in the lower green part of the visible spectrum [68]. Therefore, when it is 

exposed to light from blue to ultraviolet range, it shows bright green fluorescence [68]. 

● Lysogeny broth (or Luria broth, LB) is an industry standard nutritionally rich medium 

widely accepted and used for the growth of E. coli [69].  

Escherichia Coli bacteria DH5α (Thermo Fisher Scientific) was transformed by plasmid 

pOEGFP2 carrying ampicillin resistance and Enhanced Green Fluorescent Protein (EGFP). This 

bacteria was grown overnight in LB medium (EMD Millipore) containing 100 μg/mL (standard 

working concentration) ampicillin (G-Biosciences) in an orbital shaking incubator (Thermo 

Scientific)  at 37 oC and 250 rotation per minute (rpm). The green fluorescence of pOEGFP2 was 

convenient for verification. Next day, concentration of the overnight culture (OD600) was first 

determined using a NanoPhotometer C40 (Implen Inc.). It was then diluted into LB medium to 

achieve the desired concentration. This time, instead of ampicillin, AgNPs or Ag+ ions (in form 

of AgNO3) was added to the LB medium. These new cultures were incubated in the shaking 

incubator again at 37 oC and 250 rpm. The new cultures were used in the kinetic growth curve 

experiments and/or colony forming unit experiments, as described below. 

2.4 Kinetic Growth Curve Experiments 

In a typical kinetic growth curve experiment, the growth of the second-day cultures was 

monitored by measuring the concentration (OD600) using the NanoPhotometer C40 every 45 

minutes for 12 hours and then at 24 hour, 30 hour and 36 hour time periods. For the kinetic 

growth curve experiments with fixed initial concentration of bacteria, the overnight culture was 

diluted to achieve OD600 value of 0.05. The concentrations used for AgNPs were 0, 1, 5, 10, 20, 
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30, 40 μg/mL and for AgNO3, the concentrations were 0, 1, 2, 5, 7, 10 μg/mL. For the 

experiments with varying initial concentrations of bacteria, the fixed initial concentration was 20 

μg/mL for AgNPs and 5 μg/mL for AgNO3. The varying initial OD600 concentrations of E. coli 

bacteria were 0.001, 0.005, 0.01, 0.05, 0.1, and 0.2.  

For the experiments for halted growth of E. coli bacteria in the exponential phase, the procedures 

were similar as the experiments for lag phase (i.e., OD600 = 0.05). The overnight culture was 

diluted in LB medium to achieve the concentration of OD600 = 0.05 and allowed to grow in the 

shaking incubator at 250 rpm and 37 oC until it reached the OD600 value of ~0.5. Then AgNPs 

were added to the sample so that the final concentrations of AgNPs become 0, 20, 40, 80 μg/mL. 

For Ag+ ions, the final concentrations were 0, 10, 20, 40, 60 μg/mL. OD600 values of these 

samples were measured every 45 minutes for ~15 hours using NanoPhotometer C40.   

2.5 CFU Assay and Time Kill Measurements 

For CFU assay and time kill measurements, E. coli bacteria DH5α containing plasmid pOEGFP2 

were grown overnight in LB medium with ampicillin (working concentration=100 μg/mL) in a 

shaking incubator at 37 oC and 250 rpm. On the second day, overnight culture was diluted in 

fresh LB medium to achieve OD600 concentration of 0.05. It was allowed to grow in the shaking 

incubator at 250 rpm and 37 oC until it reaches 0.3-0.5. Then it was diluted again to 0.005 and 

AgNPs or Ag+ ions were added to it to the desired concentration. The samples were taken back 

to the incubator at 37 oC and 250 rpm. A small volume was taken at different time intervals (0, 1, 

2, 3, 4 … hours) and diluted in LB medium 100-10000 times. 100 μL of each dilution was plated 

on LB agar plates and incubated at 37 oC. Ampicillin (working concentration = 100 μg/mL) was 
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added while preparing the LB agar plates to avoid contamination. The number of colonies on the 

LB agar plates was counted manually the next day. 
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CHAPTER THREE 

Experimental observations and data analysis 

3.1 Kinetic Growth Curve assay: 

Previous works included the synthesis of AgNPs from Lycopersicon esculentum (Red tomato). 

To observe their antimicrobial activity, E. coli was inoculated on LB agar plates at presence of 

different AgNP concentrations. The MIC (Minimum Inhibitory Concentration) was determined 

as 50 μg/mL [70]. These previous results were first verified through kinetic growth curve assay 

and CFU assays. For the kinetic growth curve assay, bacterial cell density was observed through 

measuring the OD600 values of the solutions.  

In the kinetic growth curve consisting of different concentrations of AgNPs and an initial 

bacteria OD600 = 0.05, it was observed that 40 μg/mL AgNPs was able to suppress the growth of 

bacteria for 12 hours (Fig. 3.1). For lower concentrations (20 and 30 μg/mL), the growth of 

bacteria was temporarily suppressed; they started growing later on (Fig. 3.2). However, for 

concentrations below 10 μg/mL, no significant suppression was observed.  
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Fig. 3.1: Suppression of the growth of bacteria by different concentrations of AgNPs (up to 12 

hours)  

 

 

Fig. 3.2: Suppression of the growth of bacteria by different concentrations of AgNPs, fitted with 

Gompertz model (up to 36 hours) 
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3.2 Colony Forming Unit (CFU) assay 

For further verification of suppression, CFU assays were performed with AgNPs (0, 10, 20, 40 

μg/Ml, Fig. 3.4) and Ag+ ions (0, 2, 5, 10 μg/mL, in AgNO3 form in Fig. 3.5). In CFU assay, the 

growth of E. coli was also suppressed in presence of AgNPs thereby producing similar results 

(Fig. 3.4). These results were consistent with previous reports found on literature [31], [45], [71]. 

The number of colonies should vary linearly with the estimated concentration of the culture since 

they are diluted from the same bacteria culture. The CFU assays concur with this concept as we 

can see from Fig. 3.3 where number of colonies are plotted against estimated concentration of 

the culture.  

 

 

Fig. 3.3: Relation between number of colonies and concentration of diluted culture in the log 

scale, inset: linear relationship is observed in the linear scale 
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Fig. 3.4: CFU assay of E. coli bacteria with different concentrations of AgNPs 

 

 

Fig. 3.5: CFU assay of E. coli bacteria with different concentrations of AgNO3 

 



24 

 

One issue with the addition of AgNPs is the increase of OD600 value and thereby opacity of the 

solution (Fig. 3.1 and Fig. 3.2). AgNPs exhibit high absorption and scattering of light. When 

light of a specific wavelength impinges on the metal surface, the conduction electrons experience 

a collective oscillation, which is known as Surface Plasmon Resonance (SPR) causing such high 

absorption and scattering of light. This property can be customized by changing the shape and 

size of nanoparticles. Smaller particles have absorption peaks at around 400 nm. On the contrary, 

larger particles show increased scattering, have broader peaks that shift towards longer 

wavelengths (red-shifting). Therefore, as the concentration (i.e. number of nanoparticles) 

increases, OD600 will increase (Fig. 3.6) and more light will be absorbed thereby producing 

higher peaks (Fig. 3.7). Light absorption by AgNPs at 600 nm hampers the process of 

determining MIC (minimum inhibitory concentration) of E. coli bacteria due to two reasons: 

 Determining MIC entails observing visible bacterial growth in the culture medium 

containing antimicrobial agents. However, addition of high concentration of AgNPs makes it 

difficult to observe bacteria growth separately due to high opacity caused by AgNPs. 

 Addition of AgNPs of concentration ≥100 µg/mL itself can produce OD600=1.5 which is 

almost equal to the asymptotic value in a kinetic growth curve of E. coli. Therefore, running a 

kinetic growth curve assay of E. coli bacteria with AgNP of ≥100 µg/mL concentration to 

observe the bacterial growth is impractical. 
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Fig. 3.6: Increase in OD600 with the increase of AgNP concentration 

 

 

Fig. 3.7: Absorption spectra of different concentrations of AgNPs in LB medium 
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We have seen in the aforementioned experiments that bacteria starts to grow after 12 hours for 

40 μg/mL. It proves that the MIC is beyond 40 μg/mL in this experimental condition which 

agrees with the result of [70]. The OD600 value of the sample reached its maximum asymptotic 

value by 30 hours (Fig. 3.2). This value is consistent with the values for samples with lower and 

no concentrations of AgNPs (Fig. 3.2). It is necessary to make sure that there was no 

contamination. We experiments with multiple samples to make sure that all the samples provided 

similar results. Moreover, no bacterial growth was observed in samples containing only LB 

medium and only AgNPs. This ruled out any possible contamination in the experiments.  

The results from the experiments with AgNPs prove that suppression by AgNPs is only 

temporary. To determine if the temporary suppression by AgNPs is unique, we ran kinetic 

growth curve assays with Ag+ ions in the form of AgNO3 (instead of AgNPs). Previous work 

showed that Ag+ ions account for the condensation of DNA and subsequent death of cells [53]. 

In this work, concentrations of 0, 1, 2, 5, 7 and 10 μg/mL were used. Antimicrobial effect of Ag+ 

ions on E. coli bacteria was observed as shown in Fig. 3.8. For concentrations up to 10 μg/mL, 

bacteria were suppressed temporarily like AgNPs. Even in the case where bacteria were 

suppressed till 12 hours (10 μg/mL), bacteria started to grow in the second day (Fig. 3.9). 

However, for higher concentrations (≥30 μg/mL), bacteria was completely suppressed and no 

growth was observed up to 10 days. 

An interesting similarity was observed between the kinetic growth curves of Ag+ and AgNPs. 

For both cases, the suppression was observed through extension of lag times, not through 

decrease in maximum specific growth rate. When the suppression stage is over, bacteria starts to 

grow in the same growth rate for both Ag+ (Fig. 3.9) and AgNPs (Fig. 3.2). The difference is 
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observable in lag time, not in their growth rate. In case of AgNPs (for 20 μg/mL or 40 μg/mL), 

the initial suppression of growth is conspicuous in terms of lag time (up to 5 hours and 12 hours, 

respectively). But when bacteria started to grow, it grew in the same rate as the samples having 

lower concentrations of NPs (1, 5, 10 μg/mL) or even no NP at all. Similarly, for lower 

concentrations of Ag+ ions, samples having 5 μg/mL and 7 μg/mL were able to stop the growth 

for 4 hours and 9 hours respectively. However, after the suppressed state, bacteria started to grow 

in the same rate as the sample having no Ag+ ion. For quantitative analysis, the empirical growth 

curve was fitted with modified Gompertz model: 

𝑦 = 𝐴. 𝑒𝑥𝑝{−𝑒𝑥𝑝[
𝜇𝑚𝑒

𝐴
(𝜆 − 𝑡) + 1]} 

 

 

Fig. 3.8: Kinetic growth assay of E. coli with different concentrations of AgNO3 (up to 12 hours) 
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Fig. 3.9: Kinetic growth assay of E. coli with different concentrations of AgNO3 (up to 36 hours, 

fitted with Gompertz model) 

 

 

Fig. 3.10: A growth curve [71] 
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Mathematical models can be used to assume how microorganism may behave at different 

conditions like pH, temperature, presence of water etc [71]. Since they can predict the behavior 

of bacteria, modeling of bacterial growth is an important field of study [71]. To build a 

mathematical model, bacterial growth needs to be recorded and analyzed [71]. There are 

different parameters that are normally considered while forming a mathematical model[71]. 

When the graph is plotted as log (number of organisms) vs time, it takes a sigmoidal shape [71]. 

Bacterial growth rate starts from zero and then quickly reaches to a maximum value (maximum 

specific growth rate, 𝜇𝑚) [71]. In practice, this is determined by calculating the slope of the most 

linear part of the growth curve [71]. The asymptote of 𝜇𝑚intersects the x-axis at a specific 

positive value [71]. This is defined as the lag time, λ [71]. Therefore, in a time dependent growth 

curve, lag time corresponds to a time length when bacteria start to show maximum growth rate 

[71]. After this, bacterial growth rate starts decreasing until the growth reaches a maximum value 

[71]. This maximum value at this stage is denoted as the Asymptote (A) [71]. The region right 

after t=λ is the exponential phase followed by a stationary phase [71]. 

A number of models have been developed over time such as: Gompertz [72], Richard [73], 

Schnute [74] etc. Among these models, Schnute model entails all the features of other models 

and can be considered as a comprehensive model [71]. By determining specific parameters and 

95% confidence intervals, the most suitable model can be chosen [71]. Although all the models 

provide reasonably good fitting, Schnute model and Richard model face overflow problems at 

times [71]. However, Gompertz model never exhibits such problem [71]. Therefore, Gompertz 

model is the mostly accepted model of all based on 95% confidence limit and Student t test [71]. 

Gompertz model provides satisfactory results for L. Plantarum, Pseudomonas putida, 

Staphylococcus aureus, Candida parapsilosis etc. [71]. 
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Due to the widely accepted feature of Gompertz model, it was used to fit data derived from 

kinetic growth curve experiments. From the fitting, growth rate (μ) and lag time (λ) parameters 

were extracted and plotted against the concentrations of AgNPs and AgNO3 (Fig. 3.11-Fig. 

3.14). From Fig. 3.11-Fig. 3.12, it was observed that growth rates were similar (within error) 

irrespective of the concentrations for both AgNPs and AgNO3. On the other hand, significant rise 

in lag time (λ) with increasing concentration was observed for both AgNPs and AgNO3 (Fig. 

3.13-Fig. 3.14). This dose dependence of lag time can be fitted well with quadratic functions.  

 

 

 

Fig. 3.11: Relation between maximum specific growth rate (µm) and concentration of AgNP 
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Fig. 3.12: Relation between maximum specific growth rate (µm) and concentration of AgNO3 

 

Fig. 3.13: Relation between lag time (λ) and concentration of AgNP 
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Fig. 3.14: Relation between lag time (λ) and concentration of AgNO3 

 

Fig. 3.15: Parabolic dependence of lag time (λ) on concentration of AgNP 
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Fig. 3.16: Parabolic dependence of lag time (λ) on concentration of AgNO3 

Previous work on the effect of antibiotics over bacteria can be found in literature [75]. It was 

found that increase in antibiotic concentration reduces growth rate, but lag time is barely affected 

[75]. Therefore, based on the difference between previous work on antibiotics and this study on 

AgNPs and Ag+ ion, it can be reported that that antimicrobial property of AgNP is somewhat 

different from traditional antibiotics. 

3.2 Time-kill curves: 

To find out if bacteria were actually killed by AgNPs or Ag+ ions, time-kill curves were 

produced using CFU assay. For the CFU assay, samples containing bacteria treated with 

different concentrations of AgNPs (0, 10, 20, 40, 80 µg/mL) and Ag+ ions (5 µg/mL) were plated 

on LB agar plates and incubated overnight. The number of colony counts is directly proportional 

to the number of live cells in the sample. In Fig. 3.17, number of bacteria colonies reduced for 
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first few hours due to the presence of Ag+ ions (5 µg/mL) and AgNPs (20 µg/mL). For 5 µg/mL 

Ag+ ions, number of colonies reduced from 100 to 0 in 3 hours. It indicated the death of more 

than 99% of bacteria cells. On the other hand, for 20 µg/mL AgNPs, around 67% of bacteria 

cells were killed before bacteria started to grow again. Nevertheless, both Ag+ ions and AgNPs 

were able to kill a fraction of E. coli bacteria. 

From Fig. 3.17, it can be said that killing of bacteria follows an apparently straight line for both 

Ag+ ions and AgNPs. Therefore, killing by AgNPs or Ag+ ions can be explained by a simple 

differential equation: 

𝑑𝑛

𝑑𝑡
= −𝛼. 𝑛(𝑡) or 

𝑛(𝑡)~𝑒−𝛼𝑡 

Where, α represents the killing rate by the antimicrobial agent.  

Moreover, from Fig. 3.17, it appears that killing rate of Ag+ ion is higher than AgNPs since the 

number of colonies decreases more rapidly than AgNPs. A possible reason might be that AgNPs 

first need to release Ag+ ions before killing thereby taking more time to start killing bacteria 

since AgNP alone does not show any toxicity towards E. coli without releasing Ag+ ion [41].  

The dependence of bacteria killing kinetics on the concentration of AgNPs can also be analyzed 

using time-kill curves of Fig. 3.18. Here CFU assays were performed for E. coli treated with 

different concentrations of AgNPs (0, 10, 20, 40, 80 µg/mL). It can be observed that larger 

number of cells were killed in presence of higher concentration of AgNPs before bacteria started 

to regrow (Fig. 3.18). Besides, the time from addition of AgNPs to the point where bacteria 
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started to regrow (i.e. effective killing time) also increases with the increase in concentration of 

AgNPs (Fig. 3.18). However, the killings rate look similar for all the concentrations used (Fig. 

3.18). 

From Fig. 3.4, Fig. 3.5 and Fig. 3.18, it is quite clear that exponential growth phase shifts right in 

presence of AgNPs. Therefore, the time it takes for the bacteria to be prepared for growing 

exponentially gets longer with the addition of AgNPs compared to the case where no AgNP was 

added. In other words, the lag times increased with the increase of AgNP concentrations which 

complies with the observation from kinetic growth assays. 

 

 

Fig. 3.17: Time-kill curve for E. coli bacteria in LB medium without Ag (red circles), 5 µg/mL 

AgNO3 (green squares), 20 µg/mL AgNPs (blue triangles) 
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Fig. 3.18: Time-kill curves for E. coli bacteria in LB medium against different concentrations of 

AgNPs 

So far the growth curves discussed were generated for AgNPs and Ag+ ions added in the lag 

phase (with an initial OD600=0.05 of bacteria). To see whether they can suppress the growth 

when bacteria is already in the exponential phase, kinetic growth assays were performed by 

adding AgNPs to the E. coli culture after the OD600 value of bacteria reached ~0.5. Due to high 

absorption of light by AgNPs (Fig. 3.6 and Fig. 3.7), sudden jumps in OD600 readings were 

recorded as seen in Fig. 3.19. However, change in bacteria growth can be observed as the slopes 

get gentler. By subtracting the OD600 values generated by only AgNPs from the overall OD600 

values, the change in bacteria growth becomes quite clear. In Fig. 3.21, the decrease in bacteria 

growth is observable after the addition of AgNPs in the exponential phase. Similar results were 

observed after the addition of AgNO3 in the exponential phase of bacteria growth. The change in 

OD600 values is seen in Fig. 3.20 whereas halted growth in the exponential phase is evident in 

Fig. 3.22 after subtracting the contribution by AgNO3 to OD600 readings. 
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Fig. 3.19: Change in OD600 readings after the addition of AgNPs in exponential phase  

 

Fig. 3.20: Change in OD600 readings after the addition of AgNO3 in exponential phase 
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Fig. 3.21: Halted growth of bacteria after the addition of AgNPs in exponential phase 

 

Fig. 3.22: Halted growth of bacteria after the addition of AgNO3 in exponential phase 
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One observation from time-kill curves and kinetic growth assays is that addition of AgNPs or 

Ag+ ions causes little decrease in kinetic growth assays whereas number of colonies in CFU 

assays drops significantly. This is because of the difference in outcomes of these methods. In the 

CFU assays, only the live cells grow into colonies whereas OD600 reading by NanoPhotometer 

considers all cells that are not lysed. The OD600 reading by NanoPhotometer cannot distinguish 

between alive and dead cells. Therefore, this observation indirectly suggests that killed cells by 

AgNPs or Ag+ ions were most likely not lysed, but dead only. This result is also consistent to a 

model by Zhou et al. [31] and works using TEM imaging and X-ray microanalysis [53], [76]. 
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CHAPTER FOUR 

Quantitative Model and Verification 

 

Fig. 4.1: Schematic representation of the proposed SAD model 

4.1 Proposed Quantitative model: 

A quantitative model has been proposed based on the experimental results to explain the 

antimicrobial properties of Ag+ ions and AgNPs. The model should satisfy the experimental 

observations from kinetic growth assays, CFU assays and time-kill curves. Followings are the 

conspicuous experimental findings: 

I. Presence of AgNP slowed down the bacterial growth by extending the lag time (λ) 

II. Despite the increase in lag time, maximum growth rate (𝜇𝑚) was not affected by the 

addition of AgNPs. 
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III. AgNPs killed some E. coli bacteria cells. Although the killing rate was somewhat 

independent of AgNP concentration, survival percentage dropped with the increase of 

AgNP concentration. 

IV. AgNP can partially or completely stop the bacterial growth in the exponential phase. 

The developed model is shown in the Fig. 4.1. When Ag is added in the form of either AgNP or 

Ag+ ions, bacteria is pushed to the suppressed state, S. As a result, bacteria experienced two 

potential states: 

01. Some of them get killed thereby moving to the dead state (D) 

02. Others take some time to adapt to the surroundings and then get back to the active state 

(A). In the active state, they grow and reproduce normally like untreated cells. 

This model has been termed as Suppressed-Active-Dead (SAD) model. Bacterial cell number as 

a function of time n(t) can be a starting point to go through the model [77]. At any moment, the 

growth of bacteria can be described by the differential equation, 

𝑑𝑛(𝑡)

𝑑𝑡
= 𝑘. 𝑛(𝑡) 

Where, k is the specific growth rate and it depends on the surroundings [77]. If the growth 

medium of bacteria is unlimited, bacteria growth is exponential and surrounding conditions 

remain unchanged [77]. Therefore, k remains unchanged and can be expressed as  

k=k0=constant 
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However, if the growth medium is limited, bacteria have to fight for available resources as the 

number of cells increase [77]. Let the initial available resource be 1. As the population increases, 

the growth rate will become  

𝑘 = 𝑘0(1 −
𝑛

𝐴
) 

Where, k0 is the initial growth rate and A is asymptotic cell density [77]. It is noticeable that, 

growth rate becomes zero when n=A [77]. It gives the equation for the bacterial growth as 

𝑑𝑛(𝑡)

𝑑𝑡
= 𝑘0(1 −

𝑛(𝑡)

𝐴
). 𝑛(𝑡) 

Solving the differential equation gives the bacterial growth curve equation: 

 
𝑛(𝑡) =

𝐴

1 + (
𝐴 − 𝑛0
𝑛0

. 𝑒−𝑘0𝑡)
 

(1) 

At t=0, cell number is n0.  

At t=∞, cell number reaches the asymptotic value A [77]. Depending on how k is defined, 

different models can be formulated [77]. 

Optical Density (OD600) of the sample corresponds to the cell number in the sample. Therefore, 

same equation applies for both OD600 value of the bacteria culture and the cell density [78].  

The proposed model entails the transitions from one stage to the other (S→A and S→D). Thus 

three sets of differential equations altogether represent the SAD model: 



43 

 

 𝑑𝑛𝑎
𝑑𝑡

= +𝛽𝑛𝑠 + 𝑘0 (1 −
𝑛𝑎

𝐴 − 𝑛𝑑 − 𝑛𝑠
)𝑛𝑎

𝑑𝑛𝑠
𝑑𝑡

= −𝛼𝑛𝑠 − 𝛽𝑛𝑠

𝑑𝑛𝑑
𝑑𝑡

= +𝛼𝑛𝑠 }
 
 

 
 

 

 

(2) 

Where, α = killing rate when bacteria are transforming from the suppressed state to the dead state 

and β = wake-up rate for the bacteria while shifting from suppressed state to active state. 

4.2 Application in experimental condition for Verification 

After the SAD model was numerically solved, it was found that the predictions from the SAD 

model matched with the key observations in the aforementioned experiments. Using this model, 

different growth curves have been plotted in Fig. 4.2. These plots have the same killing rate α but 

varying wake-up rate β. Since all the cells, dead or alive, contribute to the OD600 values, all 

bacteria cells ( nOD = na + ns + nd ) were considered for plotting. It has been assumed that the dead 

cells have not been lysed in the entire process. Moreover, the shape of the growth curves were 

also similar (sigmoid) to the logistic growth (blue curve in Fig. 4.2 and Eq. 1) of the ‘wild type 

sample’ (sample where bacteria are grown without the presence of any potential suppressive 

component, for example Ag+, AgNPs etc.).  

Logistic growth represents the bacterial growth when resources are limited and each individual 

has to fight for existence. Therefore, it provides the maximum final population that a limited 

environment can sustain. Exponential regions of the growth curves corresponding to different 

wake-up rates were parallel to each other and the ‘wild type’ sample. It proves that the maximum 

growth rates 𝜇𝑚were not affected by either the addition of the suppressed state or the wake-up 
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rate, β. On the other hand, the lag time extension for smaller wake-up rates was easily 

observable, which was apparently due to higher concentrations of Ag. 

Time-kill curves were generated using the SAD model where live bacterial cell population (both 

active and suppressed, nCFU=na+ns) were plotted against time with different wake-up rates. This 

model replicated the time-kill curves generated experimentally from the CFU assay as shown in 

Fig. 4.3. In the time-kill curves using the SAD model, the number of bacteria colonies first 

decreased and then rose again in the similar manner as we saw in the time-kill curves using CFU 

assay. Besides, the threshold point moves lower in the upright direction corresponding to longer 

killing time and smaller wake-up rates. This also matches with the use of higher concentration of 

Ag in the experimental time-kill curves. 

The experimental results show that introduction of AgNPs or Ag+ in the exponential phase of 

bacterial growth interrupts the growth. This phenomenon can also be predicted from the SAD 

model. For this, the bacteria population was first estimated considering the initial condition that 

all the bacteria were in the active state. When the OD600 value reached 0.5, Ag was added 

thereby virtually pushing all the cells to the suppressed state. After this, bacteria cell density (nOD 

= na + ns + nd ) was determined as a function of time according to the SAD model. The results 

accurately predicted the suppression of bacteria as we can see in Fig. 4.4: smaller wake-up rates 

(i.e. higher Ag concentration) slowing bacterial growth. We can see from Fig. 3.19-Fig. 3.22 

how well the interpretations from the model matches with the experimental results.  
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Fig. 4.2: Simulated kinetic growth curves of E. coli bacteria using SAD model (α=0.71) 

 

 

Fig. 4.3: Simulated CFU count using the SAD model (α=0.71) 
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Fig. 4.4: Simulated growth curves of E. coli bacteria in the exponential phase using the SAD 

model (α = 0.71) 

One significant point of the proposed model is that it can explain both bacteriostatic and 

bactericidal properties of antimicrobial elements. However, the real definitions of ‘bacteriostatic’ 

or ‘bactericidal’ are somewhat arbitrary [79]. Strictly speaking, bacteriostatic agents are 

supposed to inhibit the growth of bacteria in a stationary phase, not entirely kill them [79]. On 

the other hand, bactericidal agents are supposed to kill the bacteria entirely [79]. Nevertheless, in 

reality, bactericidal agents cannot kill every bacterium within 18-24 hours of the test whereas 

bacteriostatic agents kill some bacteria within that period [79]. Bacteriostatic agents can even kill 

up to 90%-99% of bacteria, but to be called as bactericidal, they have to kill at least 99.9% of 

them [79]. Besides, bacteriostatic or bactericidal properties also vary depending on growth 

conditions, bacterial concentration and time length of test [79]. The proposed model can 

anticipate bacteriostatic or bactericidal properties based on two parameters, α and β. A high α 
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value indicates a possible bactericidal effect whereas a high β value emphasizes the existence of 

bacteriostatic effect.  

SAD model can be extended to formulate more complicated models and can be used to explain 

the behavior of persisters. Persisters are fractional quiescent bacterial cells that can survive 

exposure to bactericidal drugs and are able to revive under specific conditions [80]. The number 

of persisters depends on the culture medium, type of antibiotic agent, exposure time, antibiotic 

concentration etc. [80]. It means that persisters surviving in one condition may not survive in 

another condition [80]. Models have been proposed before to explain the heterogeneous 

mechanism of persisters [80]. The SAD model can also be extended to explain persisters’ 

mechanism alongside using as an effective model for bactericidal or bacteriostatic agents. 

4.3 Parameter extraction and Application 

In the quantitative model, the antimicrobial activity is determined by two parameters: α (the 

killing rate) and β (the wake-up rate). These parameters can be extracted using the experimental 

results. Bacteria killing was observed in the initial portion of the time killing curves (before the 

threshold points where bacteria have not started growing) derived from CFU assays. Therefore, 

this portion can be used to determine the value of α. Up to 80 μg/mL of concentrations have been 

used and the killing rate was found to be independent of the concentration of AgNPs (Fig. 3.18). 

Consequently, a single line was enough to be fitted for different concentrations of AgNPs with 

the initial portion of the time killing curves (Fig. 4.5 and Fig. 4.6). It was found that α= 0.71 ± 

0.03 hr-1 (Fig. 4.6). The value of α (i.e. killing rate) for Ag+ ions was apparently larger than 

AgNPs. 
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Fig. 4.5: Use of empirical time-kill curves to determine killing rate, α 

 

Fig. 4.6: Magnified view of Fig. 4.9 to show the data points used for fitting 
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Using the value of the killing rate α, the value of wake-up rate β can be determined. The plan is 

to optimize β for the model with the derived value of α=0.71 so that growth curves plotted from 

the model (Eqns. 2) overlay the experimental kinetic growth curves (Fig. 3.1, Fig. 3.2, Fig. 3.8, 

Fig. 3.9). This process is similar to curve fitting through numerical least-square regression 

method. The main objective of this method is to achieve minimal value of the squared residuals  

S=∑ (𝑦𝑖 − 𝑦𝑖
∗)2𝑛

𝑖=1  

Where, 𝑦𝑖are the measured values and 

𝑦𝑖
∗ = 𝑓(𝑥𝑖, 𝛽) are the fitted values. 

However, while calculating the value of 𝑦𝑖
∗ = 𝑓(𝑥𝑖, 𝛽), instead of using an explicit function 

𝑓(𝑥𝑖, 𝛽), the model in Eqns. 2 were solved to obtain the fitted y values in least square curve 

fitting. Moreover, by determining different 𝛽 values from different kinetic growth curves of E. 

coli for different concentrations of AgNPs, the relation between wake-up rate 𝛽 and 

concentration of AgNPs in the growth media can be obtained. However, while fitting the growth 

curves to determine 𝛽, no information regarding the concentration of AgNPs was required. It 

proves that although determination of 𝛽 does not explicitly depend on the concentrations of 

AgNPs, these two are strongly correlated with each other. We can see this on Fig. 4.7 where 

logarithm of wake-up rate 𝛽 is linearly related to the concentration of AgNPs. Representing the 

straight line with the equation 𝑙𝑛𝛽 = 𝜅𝑠. [𝐴𝑔𝑁𝑃] + 𝜃𝑠(where [AgNP] means the concentration of 

AgNPs) and fitting with 𝑙𝑛𝛽 − [𝐴𝑔𝑁𝑃] plot gives 𝜅𝑠= -0.39 ± 0.03 and 𝜃𝑠= 4.2 ± 0.8. The 

negative slope in Fig. 4.7 indicates that higher concentrations of AgNPs would result longer lag 

phases which concurs with the experimental observation (Fig. 4.13-Fig. 4.16). 
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Fig. 4.7: Relation between wake-up rate β and AgNP concentration 

 

Fig. 4.8: Relation between wake-up rate β and initial concentration of bacteria when AgNPs were 

added 
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Fig. 4.9: Suppression of bacteria (with different initial concentrations) by AgNPs up to 12 hours 

 

 

Fig. 4.10: Suppression of bacteria (with different initial concentrations) by AgNPs up to 36 hours 
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Fig. 4.11: Suppression of bacteria (with different initial concentrations) by Ag+ ions up to 12 

hours 

 

 

Fig. 4.12: Suppression of bacteria (with different initial concentrations) by Ag+ ions up to 36 

hours 
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Fig. 4.13: Relation between maximum specific growth rate (μm) and initial concentration of 

bacteria when AgNPs were added  

 

 

Fig. 4.14: Relation between lag time (λ) and initial concentration of bacteria when AgNPs were 

added  
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Fig. 4.15: Relation between maximum specific growth rate (μm) and initial concentration of 

bacteria when AgNO3 were added 

 

 

Fig. 4.16: Relation between lag time (λ) and initial concentration of bacteria when AgNO3 were 

added 
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Fig. 4.17: Simulated growth curves using SAD model for different initial OD600 

Similarly, the dependence of wake-up rate 𝛽 on the initial concentration of E. coli bacteria cells 

(estimated as OD600 value) can be calculated. For this, kinetic growth assays were performed 

with fixed initial concentration of AgNPs (20 μg/mL) but different initial concentrations of E. 

coli bacteria. It has been observed that the growth curves shifted to the right with the drop of 

initial concentration of bacteria (Fig 4.9-Fig. 4.12). By fitting the growth curves, we can see that 

maximum specific growth rates μm remains similar (Fig. 4.9-Fig. 4.16). However, the lag time 

rises with the drop of initial bacterial concentration OD600 (Fig. 4.9-Fig. 4.16). The SAD model 

can reproduce these empirical observations (Fig. 4.17). From this set of growth curves at 

different initial OD600 values, the wake-up rates can be determined. The logarithm of the wake-

up rate was also found linear following the equation:  

𝑙𝑛𝛽 = 𝜅𝑑. 𝑂𝐷600
0 + 𝜃𝑑 
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By curve fitting (Fig. 4.8), the following values were found: 

𝜅𝑑=38 ± 9 and 

𝜃𝑑= -5.2 ± 0.9  

The positive slope of curve in Fig. 4.8 indicates that lower initial concentrations of bacteria 

would result in longer lag phases which is consistent with experimental observation (Fig. 4.13-

Fig. 4.16). From the kinetic growth curves, the wake-up rates were found to be exponentially 

related to the concentrations: 

 𝛽 = 𝑒𝜅𝑆.[𝐴𝑔𝑁𝑃]+𝜃𝑆  and 𝛽 = 𝑒𝜅𝐷.𝑂𝐷600
0 +𝜃𝑑  (3) 

Or, 

 𝛽 = 𝛽0. 𝑒
𝜅𝑆.[𝐴𝑔𝑁𝑃]+𝜅𝐷.𝑂𝐷600

0
 (4) 

Where, 𝛽0 is a constant factor consisting of both 𝑒𝜃𝑆and 𝑒𝜃𝑑.   

We can see that wake-up rate depends on both initial concentration of bacteria and concentration 

of AgNPs. However, these two dependencies are derived from two independent sets of growth 

curves (one by varying concentration of AgNP and the other by varying initial concentration of 

bacteria) although resulting the same characteristic equation (4). Therefore, these two 

dependencies can be utilized to verify the SAD model. By comparing equation (3) and (4), we 

see: 
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 𝛽 = 𝑒𝜅𝐷.𝑂𝐷600
0 +𝜃𝑑 =  𝛽0. 𝑒

𝜅𝑆.20+𝜅𝐷.𝑂𝐷600
0

𝛽 = 𝑒𝜅𝑆.[𝐴𝑔𝑁𝑃]+𝜃𝑆 = 𝛽0. 𝑒
𝜅𝑆.[𝐴𝑔𝑁𝑃]+𝜅𝐷.0.05

} 
(5) 

Which gives- 

 𝑒𝜃𝑑 = 𝛽0. 𝑒
𝜅𝑆.20 and 𝑒𝜃𝑆 = 𝛽0. 𝑒

𝜅𝐷.0.05 (6) 

As both 𝜃𝑠 and 𝜃𝑑 were derived using 𝑂𝐷600
0 = 0.05 and [𝐴𝑔𝑁𝑃]= 20 μg/mL, if the SAD model 

is correct, we expect: 

 𝜃𝑠 − 𝜃𝑑= 𝜅𝐷. 0.05 − 𝜅𝑆. 20 (7) 

Putting the values obtained for 𝜃𝑠,𝜃𝑑,𝜅𝐷 and 𝜅𝑆, we get 

LHS = 𝜃𝑠 − 𝜃𝑑= 9.4 ± 1.2  

RHS= 𝜅𝐷. 0.05 − 𝜅𝑆. 20= 9.7 ± 0.8  

It proves that Eqn. 7 is true thereby justifying the model. A sigmoid relation between the killing 

percentage of bacteria and concentration of AgNPs can be plotted as Fig. 4.18 using the SAD 

model and the empirical relation between wake-up rate and concentration of AgNPs, [AgNP]. 

Previous experimental works also showed tolerance in cells as the concentration of AgNPs 

changes [41]. 
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Fig. 4.18: Predicted percentage of killed E. coli bacteria as a function of AgNP concentration 

using the SAD model 
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CHAPTER FIVE 

Discussion and Conclusion 

The antimicrobial activity of AgNPs and Ag+ were analyzed using kinetic growth curve and CFU 

assay for E. coli bacteria and a quantitative model was formed based on the experimental 

observations. Kinetic growth assay shows that AgNPs and Ag+ ions do not change the maximum 

specific growth rate but extends the lag time thereby delaying the growth of bacteria. Lag times 

in kinetic growth assays increase with the increase in concentration of AgNPs and decrease in 

initial concentration of E. coli bacteria. Ag kills some E. coli bacteria as we can see from the 

time-kill curves obtained from the CFU assay. However, the killing rate is apparently 

independent of AgNP concentration. From the time-kill curves, it was also observed that Ag+ 

ions were more efficient in killing bacteria cells compared to AgNPs. 

A quantitative model has been proposed to characterize these antimicrobial characteristics of 

AgNPs and Ag+ ions. This model has been termed as Suppressed-Active-Dead (SAD) model and 

has some significant features. It can replicate the experimental phenomena (kinetic growth 

assays and time-kill curves) quite well and hence can potentially be used to predict the 

antimicrobial activity of AgNPs. The key parameters of the model (killing rate α and wake-up 

rate β) can be extracted from the experimental data. The dependency of wake-up rate β on the 

concentration of both AgNPs and E. coli bacteria can also be determined experimentally. Finally, 

the model can be a potentially alternative method to characterize the antimicrobial property of 

AgNPs and Ag+ ions, rather than the conventional Minimum Inhibitory Concentration (MIC) and 

Minimum Bactericidal Concentration (MBC) methods. 
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On the other hand, this model has some limitations. Our model is based on experimental 

phenomena and can predict the outcome of AgNPs and E. coli interaction. It can neither explain 

how bacteria are pushed to and contained in the suppressed state nor describe the mechanism of 

the suppressed state at the molecular level. Moreover, how bacteria cope up with the suppressed 

state and wake up to regrow are not explicable by the model. Further investigations at molecular 

level are required to explain these mechanisms. An immediate future work might be the use of 

different shapes of nanoparticles to explore how the shapes and sizes affect the maximum 

specific growth and lag time in kinetic growth of bacteria. While conducting the presented 

research, the opacity of AgNP solution was a problem in kinetic growth curve assays. Use of a 

more advanced instrument might be helpful to determine the concentration of the solution in 

kinetic growth assays without being affected by nanoparticle concentration. Besides, the 

presented work included only the effect on Escherichia coli. The effect on other microorganisms 

must be explored to observe whether this is a unique feature of E. coli suppression by AgNPs or 

AgNPs are capable of suppressing other types of bacteria also. The effect on lag time and 

maximum growth rate for other bacteria needs to be analyzed to see its difference with 

antibiotics in case of different types of bacteria. 

Although previous works included the change in cell physiology with the introduction of 

nanoparticles, the use of super resolution spectroscopy can be a good tool to investigate the 

mechanism of bacteria suppression by AgNPs and how bacteria climb up through the suppressed 

state and start to regrow. Moreover, it will help to understand the resistive nature in bacteria and 

how bacteria have been able to cope up with antibiotics for ages so that preventive measure can 

be taken.  
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TO:  

  

Dr. Yong Wang  

FROM:  

  

Ines Pinto, Biosafety Committee Chair  

RE:  

  

New Protocol  

PROTOCOL #:  

  

16037  

PROTOCOL TITLE: single-cell 

level  

Elucidation of mechanism behind plasmid maintenance in bacteria at  

  

APPROVED PROJECT PERIOD: Start Date April 14, 2016 Expiration Date April 13, 2019  

  

The Institutional Biosafety Committee (IBC) has approved Protocol 16037, “Elucidation of 

mechanism behind plasmid maintenance in bacteria at single-cell level”. You may begin your 

study.  

  

If modifications are made to the protocol during the study, please submit a written request to the 

IBC for review and approval before initiating any changes.    

  

The IBC appreciates your assistance and cooperation in complying with University and Federal 

guidelines for research involving hazardous biological materials.  
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MEMORANDUM  

  

July 14, 2017  

TO:  

  

Dr. Yong Wang  

FROM:  

  

Ines Pinto, Biosafety Committee Chair  

RE:  

  

New Protocol  

PROTOCOL #:  

  

18004  

PROTOCOL TITLE:  

environment changes  

Physically-based, single-cell investigation of bacterial response to  

  

APPROVED PROJECT PERIOD: Start Date July 13, 2017 Expiration Date July 12, 2020  

  

The Institutional Biosafety Committee (IBC) has approved Protocol 18004, “Physically-based, 

single-cell investigation of bacterial response to environment changes”. You may begin your study.  

  

If modifications are made to the protocol during the study, please submit a written request to the 

IBC for review and approval before initiating any changes.    

  

The IBC appreciates your assistance and cooperation in complying with University and Federal 

guidelines for research involving hazardous biological materials.  
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