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5j and with the statistical model in Fig. 5l. Meanwhile the results for the FFPE tissue in Figs. 5m-

o show good correlation similar to other FFPE tissue cases. The ROC curves in Fig. 5p indicate 

that both fresh and FFPE tissue have reasonable detection for the two regions of tissue.  

For comparing the results across several samples, there are a few ways to quickly describe 

the ROC curve. These include the 5% or 10% false positive sensitivity (the true positive ratio when 

the false positive ratio is 0.05 or 0.1) or the area under the curve. To relate these two values, an 

ROC curve with a true positive ratio of 0.9 when the false positive ratio is 0.1 would generally 

have an area under the curve of 0.8 to 0.9, so a ROC area above 0.8 would be considered good 

correlation. The ROC area for all tumor samples with two regions is shown in Fig. 6. The FFPE 

tissue THz imaging can be seen to have a curve area above 0.8 in all cases, which is expected due 

to the pathology being taken from the exact surface imaged in the FFPE tissue blocks. THz imaging 

of fresh tissue can also be seen to have relatively good detection in most cases. There were some 

cases where the detection was lower, such as in tumor sample 1 where the tissue had been frozen. 

This was done in an optimal cutting temperature (OCT) medium that couldn’t be cleared for 

imaging. Other cases of low detection were tumor samples 3 and 7A, where significant fluid had 

accumulated under the tissue, and tumor sample 4, where there was a difference in the scanned 

surface between the pathology and fresh tissue image (see Fig. 4). In general, THz imaging shows 

good detection between distinct regions of fat and cancer tissue in the freshly excised mice tumors, 

and the challenges in cases with lower correlation are clearly identified. For most cases the tissue 

Figure 6. Area under ROC curve for nine samples with two regions. 
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morphing was able to resolve differences in tissue shape between the fresh tissue and pathology, 

even for the severe case in sample 8A, though not all cases were corrected and there is a potential 

to improve the pathology correlation with a more robust morphing algorithm. 

3.2. Classification of samples with three tissue regions 

The excision of some larger tumors included muscle tissue from the abdominal wall of the 

mouse. Muscle is not anticipated in human breast cancer excisions, but arose in these samples due 

to the limited space for the tumors to grow in the fat deposits of the mice. As such they are 

examined here to test the statistical model. In this section, results of unsupervised (non-regression) 

and supervised (regression) approaches are shown in Fig. 7. The regression model used data from 

tumor sample 9B as an arbitrary training sample. The training used the regions defined in the 

morphed pathology to collect intensity distributions for each tissue type for building the model. 

The images of sample 9B are not shown here but its statistics are shown later in Fig. 11.  

For tumor sample 8B, the pathology in Fig. 7a shows that the cancer is mostly along the 

center and the upper right part of the tissue. This sample was unique in that the center of the cancer 

had mostly fatty tissue with some cancer mixed in. The other fat deposits and muscles can be seen 

on the lower edge. These regions translate more or less directly into the morphed pathology in Fig. 

7b, with a few small gaps represented in white color that are imposed to the morphed pathology 

and model classification. However, for the THz image of the fresh tissue in Fig. 7c the fat region 

at the core of the tissue cannot be seen, and there is a spot of very high reflection over the fat 

deposit on the left side. The latter is most likely fluid pooled beneath the fat, and the inability to 

see the cancer distributed through the fat could be from fluid and loose cells being distributed on 

the surface during bisection. There is also a possibility that the surface changed significantly 

between the fresh THz image and pathology. The classification model results using the Normal 
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distribution in Fig. 7d show a generally good assignment of fat and cancer regions, but for muscle 

regions it focuses on areas of borderline reflection between high and low regions rather than a 

separate broad region. The classification image is improved somewhat using the regression model 

in Fig. 7e. Here, all higher reflections are considered cancer while the region of fat is mostly 

unchanged. However, the region of muscle tissue in the pathology is still not indicated by the 

model. Therefore while there does appear to be some small difference in the THz image along the 

lower edge where the muscle is in pathology, it is not detected for correlation.  

Figure 7. Correlation results for samples 8B and 9A. For tumor sample 8B, images (b-e) for freshly 

excised tissue and images (f-i) for FFPE tissue; (a) pathology image; the (b) morphed pathology 

mask, (c) THz image, (d) Normal distribution model classification, and (e) regression model 

classification; and the (f) morphed pathology mask, (g) THz image, and (h) Normal distribution 

model classification, and (i) regression model classification. For tumor sample 9A, images (k-n) 

for freshly excised tissue and images (o-r) for FFPE tissue; (j) pathology image; the (k) morphed 

pathology mask, (l) THz image, (m) t-distribution model classification, and (n) regression model 

classification; and the (o) morphed pathology mask, (p) THz image, and (q) t-distribution model 

classification, and ® regression model classification. 
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The FFPE tissue results show a similar challenge. The morphed pathology in Fig. 7f and 

THz image in Fig. 7g both show very close agreement with the pathology in Fig. 7a. However, 

this sample involves both muscle tissue and necrotic cancer tissue (seen as faded areas in the cancer 

in pathology or low reflection spots in the cancer in the THz image), which both have reflection 

in between the cancer and fat and tend to overlap. The result in Fig. 7h indicates that the 

classification model classified almost all of the lower reflection areas as fat, with only the spots of 

highest reflection being classified as cancer and the small amount of midrange values considered 

as muscle. The regression model in Fig. 7i shows significant improvement in this case with 

accurate detection of the fat and mostly accurate detection of cancer, though once again the muscle 

tissue is not classified by the model.  

Similar challenges are seen for tumor sample 9A, shown in Figs. 7j-r. In this sample the 

region of muscle is relatively small in the upper left part of the pathology image in Fig. 7j, leaving 

primarily cancer in the center and fat on the left and right sides. The morphed pathology in Fig. 7k 

is consistent with the pathology image in Fig. 7j. Meanwhile the THz image of the fresh tissue in 

Fig. 7l once again shows the challenge of clearing fluid from under the tissue. Here the high 

reflection of fluid in the tissue decreases the expected area of fat on the left and completely covers 

the fat on the right. As with the previous case, the classification (non-regression) model in Fig. 7m 

classifies the tissue regions of high and low reflection as cancer and fat, respectively, while the 

transition tissue region between them is classified as the muscle tissue. The regression model in 

Fig. 7n did not improve the results of Fig. 7m. The FFPE tissue results in Fig. 7o-r are similar to 

tumor sample 8A. Here the reflection of the muscle and some of the necrotic cancer tissue overlap 

in the THz image in Fig. 7p, resulting in most of the cancer region being classified as muscle in 

the classification (non-regression) model results in Fig. 7q. The regression model in Fig. 7r 
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correctly defines most of the cancer region but does not classify any noticeable muscle region. In 

both samples shown here, the THz images show differentiation in heterogeneous regions of tissue 

that can be directly compared to the original pathology. However this heterogeneity is lost when 

reducing the morphed pathology and classification model to just three regions. 

The ROC curves in Fig. 8 show the challenge for the current statistical model to classify 

the tissue when three regions are present (cancer, fat, muscle). For the fresh tissue images of tumor 

sample 8B, the ROC curves in Fig. 8a show relatively lower areas under the curves (0.6551 for 

cancer, 0.5967 for muscle, and 0.6244 for fat). This is due to the fact that even if a classification 

image meets the decision rule for the three regions, the certainty of the classified tissue type in the 

probability maps of the model may still be low. Meanwhile the FFPE tissue results in the same 

figure show that the cancer and fat are both reasonably detected while the muscle is not, which 

agrees with the visual correlation of the tissue. Using the regression model for sample 8B provides 

the ROC curves in Fig. 8b. The regression model is shown to not significantly change the results 

Figure 8. ROC curves for sample 8B using (a) Normal distribution model classification and (b) 

regression model classification, and for sample 9A using (c) t-distribution model classification 

and (d) regression model classification. 
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9B. This resulted in some cases of fat tissue being classified as cancer in the statistical model. In 

correlating the pathology to the THz images of fresh tissue, a change in tissue shape occurred 

going through histopathology processing. These concerns can be addressed in future work by 

drying the tissue thoroughly using a lint-free filter paper, using tissue marking ink for orienting 

tissue between imaging and pathology, and mounting tissue sections on a rigid surface (i.e. 

cardboard) for formalin fixation. Additional challenges in shape comparison of THz images of 

fresh tissue to pathology can be improved with more rigorous morphing techniques, such as 

adopting a mesh-based morphing (ongoing research) instead of the interpolation used in this work. 

However, there is still a need for a true comparison against THz imaging of fresh tissue to 

determine accuracy, and future work will look into other common imaging techniques (e.g. CT, 

radiography, etc) to have a direct comparison for fresh tissue imaging. 

For the 4 samples where muscle tissue is present, overlap between muscle and cancer tissue 

reflections in the THz image creates some challenge in correctly classifying these regions. While 

muscle is unlikely to be present in surgical sections of human breast cancer, other kinds of fibrous 

tissue may be present and thus it requires investigating more advanced models for three tissue 

regions. Ongoing research is focusing on spontaneously generated breast cancer tumors from 

transgenic mice, which have natural tumor structures and fibrous tissue more comparable to human 

tissue for more accurate assessment of THz imaging. Another area in which the approach could be 

improved is the classification model. The statistical models used here show success when handling 

samples with two regions but tend to miss areas of a third region of tissue. In general the models 

presented here can classify three tissue regions if the reflection from the regions are distinct. It was 

observed in human tumors that the model was not able to fully classify cancer and fibroglandular 

tissue for the same reason where cancer and fibrous tissue have close properties [42]. Future work 
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will focus on new detection methods and advanced models to address this challenge. The obtained 

results demonstrate promise for THz imaging of freshly excised tumors and shed the light on the 

main challenges that need to be resolved before it can be implemented on human tissue.  
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Chapter 7: Conclusions 

Over the course of this work, THz has proven effective in distinguishing between breast 

cancer tissue and healthy tissues in both FFPE and fresh tissue applications. The first experimental 

THz imaging of FFPE breast cancer tissue showed good contrast between infiltrating ductal 

carcinoma and healthy tissue with strong correlation to pathology, even for subwavelength sample 

thicknesses of 10, 20, and 30 μm [1]. It also showed that this contrast exists even for dehydrated 

tissue, showing that water content of the tissue is not the sole reason for THz differentiation 

between tissue types. While inherent contrast had been shown independent of water for other tissue 

types, such as cirrhotic liver [2], this was, to the authors’ knowledge, the first published indication 

of this trend in breast cancer tissue. It has further been shown for brain cancer that the presence of 

water in fresh tissue can further increase the contrast between cancer and healthy tissue [3], which 

is still under investigation for breast cancer tissue. The work in [1] further showed that THz can 

reach reasonable resolution for distinguishing between small regions of tissue when compared to 

pathology, though it obviously cannot distinguish individual cells like optical techniques. 

The work in [4] expanded the THz imaging applications with the use of transmission 

imaging, as well as investigating both lobular carcinoma and infiltrating ductal carcinoma. The 

results showed excellent comparison to pathology for both reflection and transmission imaging 

setups for 20 and 30 μm tissue on polystyrene slides. Furthermore, spectroscopy algorithms were 

developed in order to characterize the tissue from imaging in transmission or reflection. While 

transmission imaging was shown to have lower resolution than reflection due to the additional 

focusing mirrors in the reflection setup, transmission spectroscopy was shown to have far less 

susceptibility to phase distortions from slide thickness or poor tissue adhesion. Meanwhile 

reflection imaging is better for imaging fresh tissue in the future due to its improved resolution 

and the high absorption of fresh tissue, which agrees with observations made in literature as well 
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[5]. The development of reflection models also allowed for polarization approximation of an 

arbitrarily polarized beam via experimental methods, which was necessary for reflection 

spectroscopy using THz images in the future [4]. 

The progression of samples from flat sections to three-dimensional blocks of tissue showed 

increasingly good differentiation between cancer and noncancerous tissue for both lobular and 

infiltrating ductal carcinoma in [6]. Upper and lower boundaries of the tissue were clearly seen 

throughout the paraffin blocks without the need to physically section the tissue, with a THz 

reflection occurring at each change in interface at depth. The 3D datasets could be segmented to 

look at different planes of the data as well, with a developed time of flight algorithm providing 

depth information based on the time delay between peaks. Finally, several image processing 

techniques showed enhancement of THz imaging of flat sections. Most methods did not 

appreciably improve the imaging of the three-dimensional blocks, save for unsharp masking and 

edge detection using a Sobel operator. While manual image processing continues to be effective 

for producing THz images, successful image generation here does set a precedent for automated 

techniques in the future [6]. 

THz investigation of carbon-based particles using phantoms in [7] showed the potential of 

onion-like carbon for increasing the contrast in fresh breast cancer tissue. OLC showed improved 

interactions above other similar carbon particles in PDMS, polyethylene tablets, and the cancer 

phantoms, despite being much smaller than the wavelength of the THz frequency range. 

Furthermore, this was done without the need for external sources or excitations as part of the 

imaging setup [8]. Since OLC can be functionalized to attach selectively to cancer and has been 

seen to have low toxicity, it possesses strong potential as a contrast agent in future work [9], [10]. 
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However, some additional investigation is needed into the toxicity and reasonable concentrations 

in a surgical setting to truly model the contrast enhancement [7]. 

Expanding THz imaging to fresh tissue in the form of xenograft mouse tumors was 

effectively shown in [11]. This included pathology morphing and a Bayesian mixture model for 

statistical analysis that had yet to be applied to THz imaging. Investigation across 13 samples 

showed statistically significant discrimination between tissue regions when two regions were 

present (cancer and fat). The challenges identified for this work were: (1) excess fluid in and 

around the tissue, including water and necrotic blood, (2) correlation of fresh tissue to pathology 

following changes in tissue shape and position in the histopathology process, and (3) the algorithm 

used to interpolate the digitized pathology to a small resolution. These are being addressed by a 

more thorough method for drying the tissue, mounting the tissue on a rigid surface (cardboard) for 

formalin fixation to maintain tissue structure, and more rigorous morphing algorithms. Additional 

challenges included overlapping properties of muscle and necrotic cancer causing similar 

reflection. Future work is transitioning toward spontaneously generated transgenic mice tumors, 

which have more naturally occurring vasculature and are therefore less prone to necrosis. 

Meanwhile muscle is not anticipated in human breast cancer tissue, but is still of interest due to its 

similarity to other fibrous or connective tissues. Finally, more powerful classification models are 

being investigated to provide better automatic assessment of THz images in the future [11]. 

In all cases of THz imaging seen in the published works of this dissertation, THz has been 

shown to provide inherent contrast between cancer and healthy tissues with strong agreement with 

pathology, especially for FFPE tissue where water content is not a critical concern. For THz 

imaging of fresh tissue there is good contrast between cancer and fatty tissue, but the primary 

challenge is in determining and enhancing the contrast between fibrous and cancerous tissue. 
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While these regions are seen to be clearly distinct in spectroscopy [12], this represents a single 

group’s work and other supporting spectroscopy does not exist. As such one area in which THz 

applications for breast cancer can expand is with spectroscopy of freshly excised human samples 

for healthy fat and fibrous tissue as well as breast cancer to validate the contrast seen between 

tissue types. In this way the existing spectroscopy in literature can be supported by a second set of 

data. The spectroscopy results can be further implemented to produce more accurate tissue 

phantoms and propagation models in future work. For the final objective of human tissue 

applications, freshly excised surgical tissue from biobanks has been examined already but has yet 

to be published [13]-[15]. The tissue handling methodology and model-based THz imaging in this 

work are already in place to conduct human tissue spectroscopy and imaging, and can serve as a 

strong basis for to develop an intraoperative breast cancer application. 
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Appendix A: Additional Published Work 

In addition to the published works in this dissertation, the author has also published another 

peer-reviewed journal paper outside of the experimental terahertz work and based instead on 

scattered fields and  as follows: 

T. C. Bowman, A. M. Hassan, and M. El-Shenawee, “Imaging 2D Breast Cancer 

Tumor Margin at Terahertz Frequency using Numerical Field Data based on 

DDSCAT,” Applied Computational Electromagnetics Society Journal, vol. 28, no. 

11, pp. 1017-1024, November 2013. 

In this work, the discrete dipole approximation (DDSCAT) was first used to 

computationally generate numerical field data from a breast cancer model. This work was based 

on the spectroscopy results showing differentiation at THz frequencies between cancer and healthy 

tissue in [1] and inspired by preliminary THz imaging of FFPE tissue on slides. DDSCAT was 

selected for this purpose due to its proven effectiveness in generating scattered fields from 

heterogeneous objects in both two and three dimensions [2], [3]. Breast cancer tumor models were 

generated with comedo and papillary-type structures using the tumor growth models developed in 

[4]. A Rytov approximation was used to convert the scattered field data into a THz image and 

calculate the dielectric properties of the scattering tumor. The results showed effective 

reconstruction of the tissue regions when using lower permittivity values than fresh tissue while 

maintaining the same permittivity ratio between cancer or fibrous tissue and the fatty tissue 

background. This method provided sufficient contrast to show the promise of THz imaging. The 

same concept was later expanded to similar inverse scattering algorithms such as the Linear 

Sampling Method [5]. 
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Appendix B: MATLAB Codes 

Liquid Sample Holder Transmission Spectroscopy 

clear all 

 

tic 

 

mag=csvread('ExampleTxnh.csv'); %Datafile for Transmittance, header removed 

pha=csvread('ExamplePhnh.csv'); %Datafile for Transmission Phase, header 

removed 

numpoints=1; %Number of Points (Measurements) for which to run the solution 

 

Glass=load('QuartzBHRefnNew.mat');  %Quartz Reference File 

Glassn=Glass.n; 

Glassalph=Glass.alph; 

 

nmin=0;             % Minimum for swept refractive index 

nmax=10;            % Maximum for swept refractive index 

nsteps=400;         % Number of refractive index steps 

alphamin=0;         % Minimum for swept absorption coefficient (1/cm) 

alphamax=800;       % Maximum for swept absorption coefficient (1/cm) 

alphasteps=1500;    % Number of absorption coefficient steps 

refinesteps=50;     % Number of refinements in second step 

freqsteps=700;      % Number of frequencies investigated 

unwraptol=pi;       % Unwrapping tolerance (default pi) 

 

dglass=3.065;      % Thickness of glass sublayer in mm 

dsample=[0.100 0.100 0.100];     % Thickness of tissue sample im mm 

 

nbg=1+j*0;          % Refractive index of background material (air) 

c=3e8; 

 

clear n alph 

 

for point=1:numpoints 

 

waven=mag(:,1); 

magfreq=mag(:,point+1); 

phasefreq=-1*pha(:,point+1); 

phasefrequn=unwrap(phasefreq,unwraptol); 

 

display(point); 

 

L=length(waven); 

 

clear Enorm internal1 internal2 internalref reflect23 reflect12 reflect232 

 

for ii=1:L 

    Enorm(ii)=sqrt(magfreq(ii))*exp(j*phasefreq(ii)); 

end 

 

for stat=1:freqsteps 

 

    if mod(stat,50)==0 

        display(stat) 
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    end 

     

nrange=nmin:(nmax-nmin)/(nsteps):nmax; 

alpharange=alphamin:(alphamax-alphamin)/(alphasteps):alphamax; 

 

clear tx1 phasediff transmitted zerobalance 

clear zerobalancereal zerobalanceimag2 zerobalancetotal 

 

nglass=Glassn(stat)-j*1/(2*2*pi*waven(stat))*Glassalph(stat); 

 

zeromin=1; 

refnindex=1; 

alphindex=1; 

 

clear phasediff phasenorm cn 

 

[a3 n3]=meshgrid(alpharange,nrange); 

 

clear tx1 phasediff transmitted zerobalance 

clear zerobalancereal zerobalanceimag2 zerobalancetotal 

 

zeromin=1; 

refnindex=1; 

alphindex=1; 

 

clear phasediff phasenorm cn num den num2 den2 w 

 

f=waven(stat)*3e-2; 

w=2*pi*f*1e12; 

 

    nbg=w/c; 

    nglass=w/c*Glassn(stat)-j*Glassalph(stat)*100/2; 

    cn=w/c*n3-j*a3*100/2; 

 

    gamma1=j*nbg; 

    gamma2=j*nglass; 

    gamma3=j*cn; 

%     exglass=exp(-2*gamma2*dglass*1e-3); 

    exglass=0; 

    exsample=exp(-2*gamma3*dsample(point)*1e-3); 

     

    num=4*nglass*cn*((nbg+nglass)^2-(nbg-nglass)^2*exglass); 

             

    den=(nglass+nbg).^2*(nglass+cn).^2+... 

        2*(cn.^2-nglass^2).*(nglass^2-nbg^2).*exglass.*(1-exsample)+... 

        (cn-nglass).^2*(nglass-nbg)^2*exglass*exglass-... 

        (cn-nglass).^2*(nglass+nbg)^2.*exsample-... 

        (nglass-nbg)^2*(cn+nglass).^2*exglass*exglass.*exsample; 

     

    transmitted=num./den; 

     

    phasenorm=(-1*(gamma3-gamma1)*dsample(point)*1e-3); 

   

        zerobalancereal=real(log(transmitted))+real(phasenorm)-

log(sqrt(magfreq(stat))); 

        zerobalanceimag=imag(log(transmitted))+imag(phasenorm)-

phasefrequn(stat); 
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        zerobalancetotal=zerobalancereal+i*zerobalanceimag; 

 

[minrange ntemp]=min(abs(zerobalancetotal)); 

[minval aval]=min(minrange); 

nval=ntemp(aval); 

refnindex=nval; 

alphindex=aval; 

 

if 

(refnindex~=1)&&(refnindex~=nsteps+1)&&(alphindex~=1)&&(alphindex~=alphas

teps+1) 

 

nrange2=nrange(refnindex-1):(nrange(refnindex+1)-nrange(refnindex-

1))/refinesteps:nrange(refnindex+1); 

alpharange2=alpharange(alphindex-1):(alpharange(alphindex+1)-

alpharange(alphindex-1))/refinesteps:alpharange(alphindex+1); 

refnindex2=26; 

alphindex2=26; 

 

clear phasediff phasenorm cn 

 

[a3b n3b]=meshgrid(alpharange2,nrange2); 

 

cnb=w/c*n3b-j*a3b*100/2; 

 

    gamma3b=j*cnb; 

    exsampleb=exp(-2*gamma3b*dsample(point)*1e-3); 

     

    num2=4*nglass*cnb*((nbg+nglass)^2-(nbg-nglass)^2*exglass); 

             

    den2=(nglass+nbg).^2*(nglass+cnb).^2+... 

        2*(cnb.^2-nglass^2)*(nglass^2-nbg^2)*exglass.*(1-exsampleb)+... 

        (cnb-nglass).^2*(nglass-nbg)^2*exglass*exglass-... 

        (cnb-nglass).^2*(nglass+nbg)^2.*exsampleb-... 

        (nglass-nbg)^2*(cnb+nglass).^2*exglass*exglass.*exsampleb; 

         

    transmitted2=num2./den2; 

     

    phasenormb=(-1*(gamma3b-gamma1)*dsample(point)*1e-3); 

   

        zerobalancereal2=real(log(transmitted2))+real(phasenormb)-

log(sqrt(magfreq(stat))); 

        zerobalanceimag2=imag(log(transmitted2))+imag(phasenormb)-

phasefrequn(stat); 

        zerobalancetotal2=zerobalancereal2+i*zerobalanceimag2; 

 

[minrange2 ntemp2]=min(abs(zerobalancetotal2)); 

[minval2 aval2]=min(minrange2); 

nval2=ntemp2(aval2); 

 

    n(stat,point)=nrange2(nval2); 

    alph(stat,point)=alpharange2(aval2); 

    waven(stat); 

 

else 

    n(stat,point)=nrange(nval); 

    alph(stat,point)=alpharange(aval); 
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    waven(stat); 

 

end 

end 

end 

 

wave=waven(1:stat); 

 

clearvars -except n alph wave mag pha 

 

toc 

 

Reflection Imaging Magnitude and Phase Calculation 

 
clear all 

 

tvldata=TVLread('Rx Scan 4 Fly.tvl','raw'); 

BuildImageFly1half; 

% reference(1:1024)=Imagespace(40,50,1:1024);   %Use a scan point reference 

reference=tvldata.Ref.'/2; 

% ref2(1:1024)=Imagespace(40,50,1:1024);    %Use a scan point reference 

ref2=reference; 

[peak1 pos1]=max(reference); 

[peak2 pos2]=max(ref2); 

[peakadj posadj]=min(reference(1:150)); 

[peakall posall]=min(Imagespace(:,:,1:150),[],3); 

fil=ones(5,5)/25; 

% posall2=round(imfilter(posall,fil));            %Apply shift 

posall2=posadj+0*round(imfilter(posall,fil));   %Apply no shift 

 

xmin=1; 

xmax=length(xrange); 

ymin=1; 

ymax=length(yrange); 

 

sampledelay=0.0; 

 

timerange=tvldata.tt; 

points=length(timerange); 

points2=2000; 

timestepmm=(timerange(points)-timerange(1))/(points-1)*2*1e-3; 

freqmax=1/(timestepmm/3e8)/2; 

freqstep=freqmax/4096; 

freqrange=(1:8192).*freqstep; 

freq=freqrange(1:points2); 

waven=freq/3e8/100; 

 

[refpeak refpos]=min(reference); 

% temp=blackmanharris(2*refpos);    %Applying Weighting to Signal 

% reframpup=temp(1:refpos); 

% temp=blackmanharris(2*(1024-refpos)); 

% reframpdown=temp((length(temp)/2+1):length(temp)); 

% refadop=[reframpup; reframpdown]; 

% refweight=reference.*refadop.'; 

 

refbigstep=reference(1024)-reference(1); 
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refsmallstep=refbigstep/(8192-1024+1); 

reframp=reference(1024)-(1:(8192-1024))*refsmallstep; 

refnew1=([reference reframp]); 

refnew=circshift(refnew1,[0 (pos2-pos1)]); 

 

reftemp=fft(refnew,8192); 

 

for ypt=1:(ymax-ymin+1) 

    yrow=yrange(ypt-1+ymin); 

    for xpt=1:(xmax-xmin+1) 

        xcol=xrange(xpt-1+xmin); 

     

    sample(1:1024)=Imagespace(ypt-1+ymin,xpt-1+xmin,1:1024); 

    [sampeak sampos]=max(sample); 

%     temp=blackmanharris(2*sampos);    %Applying Weighting to Signal 

%     samrampup=temp(1:sampos); 

%     temp=blackmanharris(2*(1024-sampos)); 

%     samrampdown=temp((length(temp)/2+1):length(temp)); 

% %     samadop=[samrampup; samrampdown]; 

%     samadop=circshift(refadop,[posall2(ypt-1+ymin,xpt-1+xmin)-posadj 0]); 

%     samweight=sample.*samadop.'; 

 

    sampbigstep=sample(1024)-sample(1); 

    sampsmallstep=sampbigstep/(8192-1024+1); 

    sampramp=sample(1024)-(1:(8192-1024))*sampsmallstep; 

    sampnew1=([sample sampramp]); 

%     sampnew=circshift(sampnew1,[0 round(sampledelay/((timerange(points)-

timerange(1))/(points-1)))]); 

    sampnew=circshift(sampnew1,[0 posadj-posall2(ypt-1+ymin,xpt-1+xmin)]); 

     

    temp1=fft(sampnew,8192); 

     

    for jj=1:(points2) 

        diff(jj)=temp1(jj)/reftemp(jj); 

    end 

     

    mag(ypt,xpt,:)=abs(diff).^2; 

    temppha=-1*angle(diff); 

    temppha(1)=0; 

    pha(ypt,xpt,:)=unwrap(temppha); 

 

    magmat(ypt,xpt,:)=abs(temp1).^2; 

    phamat(ypt,xpt,:)=-1*unwrap(angle(temp1)); 

     

    phanorm(ypt,xpt,:)=-1*angle(temp1); 

     

    end 

end 

 

save('MagPhaTestNoFilter1half.mat','magmat','phamat','xmin','xmax','ymin','ym

ax','xrange','yrange','freqrange','waven','-mat'); 

save('MagPhaLoadNoFilter1half.mat','mag','pha','xmin','xmax','ymin','ymax','x

range','yrange','freqrange','waven','-mat'); 

 

clear diff freq freqmax freqstep indexstart jj n offset points 

clear points2 refadop refbigstep reference refnew refpeak refpos reframp 

clear reframpdown reframpup refsmallstep reftemp refweight rowindex samadop 
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clear sampeak sample sampledelay sampnew 

 

Reflection Imaging Spectroscopy 

 
clear all 

 

tic 

 

Outfile='TETM_PhantomScan.mat'; % Output file 

 

tvldata=TVLread('Meat 14 Scan 2 Fly.tvl','raw');                                % 

Load TVL file 

display(['TVL file loaded: ' num2str(round(toc*100)./100) 's']);                % 

Time Stamp 

load('MagPhaLoadShiftZ.mat');                                                   % 

Load Magnitude and Phase File 

display(['Magnitude/Phase file loaded: ' num2str(round(toc*100)./100) 's']);    

% Time Stamp 

Glass=load('PSPlate.mat');                                                      % 

Load slide material file 

display(['Background file loaded: ' num2str(round(toc*100)./100) 's']);         % 

Time Stamp 

 

xmin=1;                 % Set range of x-axis data from Magnitude and Phase 

File 

xmax=length(xrange); 

ymin=1;                 % Set range of y-axis data from Magnitude and Phase 

File 

ymax=length(yrange); 

 

nmin=1;             % Minimum for swept refractive index 

nmax=5;             % Maximum for swept refractive index 

nsteps=600;         % Number of refractive index steps 

alphamin=0;         % Minimum for swept absorption coefficient (1/cm) 

alphamax=1000;      % Maximum for swept absorption coefficient (1/cm) 

alphasteps=1000;    % Number of absorption coefficient steps 

refinesteps=50;     % Number of refinements in second step 

freqsteps=540;      % Number of frequencies 

fstar=540;          % Start frequency 

fstop=540;          % Stop frequency 

 

dglass=3.000;       % Thickness of glass sublayer in mm 

dsample=10.000;     % Thickness of tissue sample im mm 

sampledelay=0.0;    % Delay line adjustment in measurements 

relativeerror=1e-6; % Relative error of refinement 

polarpsi=60;        % Polarization rotation of incident (from TE) 

 

% Universal constants 

c=3e8;                      % Speed of light in vacuum 

relperm=8.854187817e-12;    % Vacuum permittivity 

 

% Clear solution variables 

n=zeros(ymax-ymin+1,xmax-xmin+1,freqsteps);   % Refractive index 

alph=n;                                 % Absorption Coefficient 

epsr=n;                                 % Relative permittivity (real) 

epsi=n;                                 % Relative permittivity (imag) 
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errcheck=n;                             % Error handling 

 

% Find frequency domain units 

timerange=tvldata.tt; 

points=length(timerange); 

points2=2000; 

timestepmm=(timerange(points)-timerange(1))/(points-1)*2*1e-3; 

freqmax=1/(timestepmm/3e8)/2; 

freqstep=freqmax/4096; 

freqrange=(1:8192).*freqstep; 

freq=freqrange(1:points2); 

waven=freq/3e8/100; 

 

% Adjust slide properties to frequency range in scan 

Glassn=interp1(Glass.wave,Glass.n,waven); 

Glassalph=interp1(Glass.wave,Glass.alph,waven); 

 

% Initialize f-independent calculation space variables 

nrange=nmin:(nmax-nmin)/(nsteps):nmax; 

alpharange=alphamin:(alphamax-alphamin)/(alphasteps):alphamax; 

[a3 n3]=meshgrid(alpharange,nrange); 

     

% Build initial calculated solution space 

for stat=1:freqsteps 

% for stat=fstar:fstop 

    % Define frequency 

    f=waven(stat)*3e-2; 

    w=2*pi*f*1e12; 

 

    % Complex refractive index 

    na0=Glassn(stat)-j*c/w*Glassalph(stat)*100/2; 

    na2=1; 

    na1=n3          -j*c/w*a3*100/2; 

    na3=1; 

 

    % Propagation angles 

    ctheta0=cos(asin(sin(pi/6)./na0)); 

    ctheta1=cos(asin(sin(pi/6)./na1)); 

    ctheta2=cos(asin(sin(pi/6)./na2)); 

    ctheta3=cos(asin(sin(pi/6)./na3)); 

     

    % Propagation coefficients (gamma) 

    gam2=j*w/c*na2; 

    gam1=j*w/c*na1; 

    gam0=j*w/c*na0; 

     

    % Propagation shift 

    psi2=dglass *1e-3.*gam2.*ctheta2; 

    psi1=dsample*1e-3.*gam1.*ctheta1; 

    psi0=0; 

     

    % Exponential propagation 

%     exglass =exp(-2*psi2); 

    exglass =0;     % No internal Glass reflections 

%     exsample=exp(-2*psi1); 

    exsample=0;     % No internal sample reflections 
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    % Fresnel Reflection Coefficients (TE Mode) 

    rho01TE=(na0.*ctheta0-na1.*ctheta1)./(na0.*ctheta0+na1.*ctheta1); 

    rho10TE=-1*rho01TE; 

    rho12TE=(na1.*ctheta1-na2.*ctheta2)./(na1.*ctheta1+na2.*ctheta2); 

    rho21TE=-1*rho12TE; 

    rho23TE=(na2.*ctheta2-na3.*ctheta3)./(na2.*ctheta2+na3.*ctheta3); 

    rho32TE=-1*rho23TE; 

     

    % Fresnel Reflection Coefficients (TM Mode) 

    rho01TM=(na0./ctheta0-na1./ctheta1)./(na0./ctheta0+na1./ctheta1); 

    rho10TM=-1*rho01TM; 

    rho12TM=(na1./ctheta1-na2./ctheta2)./(na1./ctheta1+na2./ctheta2); 

    rho21TM=-1*rho12TM; 

    rho23TM=(na2./ctheta2-na3./ctheta3)./(na2./ctheta2+na3./ctheta3); 

    rho32TM=-1*rho23TM; 

 

    Reflect23TE=rho23TE; 

    Reflect12TE=(rho12TE+Reflect23TE.*exglass 

)./(1+rho12TE.*Reflect23TE.*exglass ); 

    

Reflect01TE=(rho01TE+Reflect12TE.*exsample)./(1+rho01TE.*Reflect12TE.*exs

ample); 

     

    Reflect23TM=rho23TM; 

    Reflect12TM=(rho12TM+Reflect23TM.*exglass 

)./(1+rho12TM.*Reflect23TM.*exglass ); 

    

Reflect01TM=(rho01TM+Reflect12TM.*exsample)./(1+rho01TM.*Reflect12TM.*exs

ample); 

     

    % Sample Reflection 

    LambSamPerpTE=Reflect01TE; 

    LambSamPerpTM=Reflect01TM; 

     

    % Propagation shift difference in Reference/Sample 

    psiG1=dsample*1e-3.*gam0.*ctheta0; 

    psiG1array(stat)=psiG1; 

     

    % Glass Reflections 

    rho12GTE=(na0.*ctheta0-na2.*ctheta2)./(na0.*ctheta0+na2.*ctheta2);    % TE 

Mode 

    rho12GTM=(na0./ctheta0-na2./ctheta2)./(na0./ctheta0+na2./ctheta2);    % TM 

Mode 

    

Reflect12GTE=(rho12GTE+Reflect23TE.*exglass)./(1+rho12GTE.*Reflect23TE.*e

xglass); 

    

Reflect12GTM=(rho12GTM+Reflect23TM.*exglass)./(1+rho12GTM.*Reflect23TM.*e

xglass); 

%     Reflect01GTE=Reflect12GTE*exp(-2*psiG1); 

%     Reflect01GTM=Reflect12GTM*exp(-2*psiG1); 

 

    % Reference reflection 

    LambRefPerpTE=Reflect12GTE; 

    LambRefPerpTM=Reflect12GTM; 
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%     if 

(real(cos(polarpsi*pi/180)*LambRefPerpTE)>real(sin(polarpsi*pi/180)*LambR

efPerpTM)) 

%         RefSign=real(LambRefPerpTE)/abs(real(LambRefPerpTE)); 

%     else 

%         RefSign=real(LambRefPerpTM)/abs(real(LambRefPerpTM)); 

%     end 

 

    

combomagR=sqrt(abs(LambRefPerpTE*cos(polarpsi*pi/180)).^2+abs(LambRefPerp

TM*sin(polarpsi*pi/180)).^2); 

    PhaShiftR(1)=angle(LambRefPerpTE); 

    PhaShiftR(2)=angle(LambRefPerpTM); 

    PhatempR=unwrap(PhaShiftR); 

    

combophaR=angle(LambRefPerpTE)*cos(polarpsi*pi/180)^2+PhatempR(2)*sin(pol

arpsi*pi/180).^2; 

 

    % Reference reflection for refinement 

    LambRefGrid(stat)=combomagR*exp(i*combophaR); 

%     

LambRefSign(stat)=RefSign*sqrt((LambRefPerpTE*cos(polarpsi*pi/180)).^2+(L

ambRefPerpTM*sin(polarpsi*pi/180)).^2); 

     

    % Sample/Reference reflection 

%     

reflected=sqrt((LambSamPerpTE*cos(polarpsi*pi/180)).^2+(LambSamPerpTM*sin

(polarpsi*pi/180)).^2)./... 

%               

sqrt((LambRefPerpTE*cos(polarpsi*pi/180)).^2+(LambRefPerpTM*sin(polarpsi*

pi/180)).^2); 

%     

refltsign=SamSign.*sqrt((LambSamPerpTE*cos(polarpsi*pi/180)).^2+(LambSamP

erpTM*sin(polarpsi*pi/180)).^2)./... 

%                

(RefSign*sqrt((LambRefPerpTE*cos(polarpsi*pi/180)).^2+(LambRefPerpTM*sin(

polarpsi*pi/180)).^2)); 

 

    clear PhaShiftS 

 

    

combomagS=sqrt(abs(LambSamPerpTE*cos(polarpsi*pi/180)).^2+abs(LambSamPerp

TM*sin(polarpsi*pi/180)).^2); 

    PhaShiftS(:,:,1)=angle(LambSamPerpTE); 

    PhaShiftS(:,:,2)=angle(LambSamPerpTM); 

    PhatempS=unwrap(PhaShiftS,[],3); 

    

combophaS=angle(LambSamPerpTE)*cos(polarpsi*pi/180)^2+PhatempS(:,:,2)*sin

(polarpsi*pi/180).^2; 

     

    reflected=combomagS.*exp(i*combophaS)./... 

             (combomagR.*exp(i*combophaR)); 

     

    ReflectTE=LambSamPerpTE./LambRefPerpTE; 

    ReflectTM=LambSamPerpTM./LambRefPerpTM; 

           

    % Sample/Reference reflection for comparison/refinement 
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    ReflectGrid(:,:,stat)=reflected; 

%     ReflectSign(:,:,stat)=refltsign; 

     

    % A2/B2 values for refinement 

    R23TEarray(stat)=Reflect23TE; 

    R23TMarray(stat)=Reflect23TM; 

%     toc 

end 

display(['Constructed calculated solution matrix: ' 

num2str(round(toc*100)./100) 's']); 

 

% Unwrap reflection phase in solutions 

UnwrapGrid=unwrap(imag(log(ReflectGrid)),[],3); 

display(['Unwrapped phase from calculated solutions: ' 

num2str(round(toc*100)./100) 's']); 

 

% Compare and refine 

for stat=fstar:fstop 

    % Define frequency 

    f=waven(stat)*3e-2; 

    w=2*pi*f*1e12; 

     

    % Load passed f-dependent values 

    reflected=ReflectGrid(:,:,stat); 

    na0=Glassn(stat)-j*c/w*Glassalph(stat)*100/2; 

    ctheta0=cos(asin(sin(pi/6)./na0)); 

    gam0=j*w/c*na0; 

     

    psiG1=psiG1array(stat); 

    Reflect23TE=R23TEarray(stat); 

    Reflect23TM=R23TMarray(stat); 

     

for ypt=ymin:ymax 

% for ypt=60:60 

%     yrow=yrange(ypt-1+ymin); 

    for xpt=xmin:xmax 

%     for xpt=60:60 

%         xcol=xrange(xpt-1+xmin); 

   

        % Define measurement mag/pha for comparison 

        magfreq=mag(ypt,xpt,stat); 

        phasefreq(1:length(pha))=-1*pha(ypt,xpt,1:length(pha)); 

        phasefrequn=unwrap(phasefreq); 

         

        % Evaluate error function 

        zerobalancereal=real(log(reflected))-log(sqrt(magfreq)); 

%         zerobalanceimag=UnwrapGrid(:,:,stat)-phasefrequn(stat); 

        zerobalanceimag=imag(log(reflected))-angle(exp(j*phasefreq(stat))); 

        zerobalancetotal=zerobalancereal+i*zerobalanceimag; 

 

% Find minimum error location 

[minrange ntemp]=min(abs(zerobalancetotal)); 

[minval aval]=min(minrange); 

nval=ntemp(aval); 

refnindex=nval; 

alphindex=aval; 

errprev=minval; 
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% Prep refinement space 

nrangespec=nrange; 

alpharangespec=alpharange; 

 

% Set refinement parameters and enter loop 

errorspec=1; 

loopct=0; 

loopmax=10; 

flag1=true; 

flag2=true; 

flag3=true; 

while (flag3) 

    clear nrange2 alpharange2 

    % Set refractive index refinement 

if (refnindex==1) 

    nrange2=nrangespec(refnindex):(nrangespec(refnindex+1)-

nrangespec(refnindex))/(refinesteps/2):nrangespec(refnindex+1); 

else if (refnindex==length(nrangespec)) 

        nrange2=nrangespec(refnindex-1):(nrangespec(refnindex)-

nrangespec(refnindex-1))/(refinesteps/2):nrangespec(refnindex); 

    else 

        nrange2=nrangespec(refnindex-1):(nrangespec(refnindex+1)-

nrangespec(refnindex-1))/refinesteps:nrangespec(refnindex+1); 

    end 

end 

    % Set absorption coefficient refinement 

if (alphindex==1) 

    alpharange2=alpharangespec(1):(alpharangespec(2)-

alpharangespec(1))/(refinesteps/2):alpharangespec(2); 

else if (alphindex==length(alpharangespec)) 

        alpharange2=alpharangespec(alphindex-1):(alpharangespec(alphindex)-

alpharangespec(alphindex-1))/(refinesteps/2):alpharangespec(alphindex); 

    else 

        alpharange2=alpharangespec(alphindex-1):(alpharangespec(alphindex+1)-

alpharangespec(alphindex-1))/refinesteps:alpharangespec(alphindex+1); 

    end 

end 

 

    % Set refinement solution variables 

    [a3b n3b]=meshgrid(alpharange2,nrange2); 

 

    na1b=n3b-j*c/w*a3b*100/2; 

    ctheta1b=cos(asin(sin(pi/6)./na1b)); 

    gam1b=j*w/c*na1b; 

    psi1b=dsample*1e-3.*gam1b.*ctheta1b; 

     

    % Exponential propagation 

%     exglass =exp(-2*psi2 ); 

    exglass =0;     % No internal Glass reflections 

%     exsample=exp(-2*psi1b); 

    exsample=0;     % No internal Sample reflections 

     

    rho01TEb=(na0 .*ctheta0 -na1b.*ctheta1b)./(na0 .*ctheta0 +na1b.*ctheta1b); 

    rho12TEb=(na1b.*ctheta1b-na2 .*ctheta2 )./(na1b.*ctheta1b+na2 .*ctheta2 ); 

     

    rho01TMb=(na0 ./ctheta0 -na1b./ctheta1b)./(na0 ./ctheta0 +na1b./ctheta1b); 
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    rho12TMb=(na1b./ctheta1b-na2 ./ctheta2 )./(na1b./ctheta1b+na2 ./ctheta2 ); 

 

    Reflect12TEb=(rho12TEb+Reflect23TE .*exglass )./(1+rho12TEb.*Reflect23TE 

.*exglass ); 

    

Reflect01TEb=(rho01TEb+Reflect12TEb.*exsample)./(1+rho01TEb.*Reflect12TEb

.*exsample); 

     

    Reflect12TMb=(rho12TMb+Reflect23TM .*exglass )./(1+rho12TMb.*Reflect23TM 

.*exglass ); 

    

Reflect01TMb=(rho01TMb+Reflect12TMb.*exsample)./(1+rho01TMb.*Reflect12TMb

.*exsample); 

     

    % Sample Reflection 

    LambSamPerpTEb=Reflect01TEb; 

    LambSamPerpTMb=Reflect01TMb;     

     

    clear PhaShiftSb 

     

    

combomagSb=sqrt(abs(LambSamPerpTEb*cos(polarpsi*pi/180)).^2+abs(LambSamPe

rpTMb*sin(polarpsi*pi/180)).^2); 

    PhaShiftSb(:,:,1)=angle(LambSamPerpTEb); 

    PhaShiftSb(:,:,2)=angle(LambSamPerpTMb); 

    PhatempSb=unwrap(PhaShiftSb,[],3); 

    

combophaSb=angle(LambSamPerpTEb)*cos(polarpsi*pi/180)^2+PhatempSb(:,:,2)*

sin(polarpsi*pi/180).^2; 

     

%     

reflectedb=sqrt((LambSamPerpTEb*cos(polarpsi*pi/180)).^2+(LambSamPerpTMb*

sin(polarpsi*pi/180)).^2)./... 

%                      LambRefGrid(stat); 

    reflectedb=combomagSb.*exp(i*combophaSb)./LambRefGrid(stat); 

     

    clear PhaseGrid shifted shifted2 

     

    % Adjust refinement solutions to agree with phase shift 

    PhaseGrid=UnwrapGrid(nval,aval,stat)+(imag(log(reflectedb))-

imag(log(reflected(nval,aval)))); 

     

    % Refinement error calculations 

    zerobalancereal2=real(log(reflectedb))-log(sqrt(magfreq)); 

%     zerobalanceimag2=PhaseGrid-phasefrequn(stat); 

    zerobalanceimag2=angle(exp(j*PhaseGrid))-angle(exp(j*phasefrequn(stat)));     

    zerobalancetotal2=zerobalancereal2+i*zerobalanceimag2; 

 

    % Find minimum error 

    [minrange2 ntemp2]=min(abs(zerobalancetotal2)); 

    [minval2 aval2]=min(minrange2); 

    nval2=ntemp2(aval2); 

    errorspec=minval2; 

    refnindex=nval2; 

    alphindex=aval2; 

     

    % Set range for next refinement loop 



 
 

210 
 

    nrangespec=nrange2; 

    alpharangespec=alpharange2; 

    loopct=loopct+1; 

 

    % Check loop parameters 

    flag1=errorspec>relativeerror; 

    flag2=loopct<loopmax; 

    flag3=flag1&flag2; 

     

    % Loop outputs 

    if stat==14 

    if loopct==10 

        loopct; 

    end 

    end 

end 

 

    n(ypt,xpt,stat)=nrangespec(refnindex); 

    alph(ypt,xpt,stat)=alpharangespec(alphindex); 

    compn=nrangespec(refnindex)-

j*alpharangespec(alphindex)/(4*pi*waven(stat)); 

    epsr(ypt,xpt,stat)=real(compn^2); 

    epsi(ypt,xpt,stat)=-1*imag(compn^2); 

    waven(stat); 

    

errcheck(ypt,xpt,stat)=abs(zerobalancereal2(nval2,aval2)/log(sqrt(magfreq

))+i*zerobalanceimag2(nval2,aval2)/phasefrequn(stat)); 

 

    end 

end 

display(['Solved frequency #' num2str(stat) ' (' num2str(round(waven(stat)*3e-

2*1000)/1000) ' THz): ' num2str(round(toc*100)./100) 's']); 

end 

wave=waven(1:stat); 

save(Outfile,'n','alph','epsr','epsi','wave','errcheck','-mat'); 

display(['Results saved: ' num2str(round(toc*100)./100) 's']); 

 

clearvars -except n alph epsr epsi wave errcheck mag pha xrange yrange 

  


