Date of Graduation

5-2017

Document Type

Thesis

Degree Name

Master of Science in Chemistry (MS)

Degree Level

Graduate

Department

Chemistry & Biochemistry

Advisor/Mentor

Stefan M. Kilyanek

Committee Member

Bill Durham

Second Committee Member

David Paul

Third Committee Member

Z. Ryan Tian

Keywords

Pure sciences, Catalysis, Chemistry, Deoxydehydration, Electrochemistry, Metal-oxo, Vanadium

Abstract

Alternative methods for the conversion of polyols into olefins, be it for carbon storage or hydrocarbon fuel production, have become prevalent in today’s chemical industry. One process in particular, deoxydehydration (DODH) has been proven effective in taking sustainable biomass derivatives and converting them through the utilization of various homogenous metal catalysts. While this process may show productive yields and material conversion, it is hindered by the need of a sacrificial reductant. This makes a novel process economically unviable and relatively unused outside of scientific research. That fact begs the question: Can the process be improved? It is proposed here that DODH catalysis and similar processes can be made more practical through the elimination of a sacrificial reductant and the utilization of a vanadium-centered proton coupled electron transfer (PCET). For this to be realized a known DODH catalyst, [tetrabutylammonium][dioxovanadium(V)2,6-pyridinedicarboxylate] (TBADVP), must first be characterized electrochemically.

Share

COinS