Date of Graduation

12-2011

Document Type

Thesis

Degree Name

Master of Science in Electrical Engineering (MSEE)

Degree Level

Graduate

Department

Electrical Engineering

Advisor

Hameed A. Naseem

Committee Member

Shui-Qing Yu

Second Committee Member

Taeksoo Ji

Keywords

Applied sciences, Aluminum, Catalyst, Horizontal, Nanowires, Silicon

Abstract

Silicon nanowires have been the topic of research in recent years for their significant attention from the electronics industry to grow even smaller electronic devices. The semiconductor industry is built on silicon. Silicon nanowires can be the building blocks for future nanoelectronic devices. Various techniques have also been reported in fabricating the silicon nanowires. But most of the techniques reported, grow vertical silicon nanowires. In the semiconductor industry, integrated circuits are designed and fabricated in a horizontal architecture i.e. the device layout is flat compared to the substrate. When vertical silicon nanowires are introduced in the semiconductor industry, a whole new architecture is needed to fabricate an electronic device. If the silicon nanowires can be grown horizontally, it will be much easier to incorporate these nanowires in the current architecture.

In this thesis, horizontal silicon nanowires were grown on top of a silicon substrate in a bottom up approach. A thin layer of pure aluminum was used as a catalyst to grow the silicon nanowires. In this process, silicon from the substrate itself acts as a source to grow the nanowires. A device cannot be fabricated if the silicon nanowires are in full contact with the underlying silicon substrate. Therefore, in the later part, these silicon nanowires were grown on top of an oxide layer using the same conditions. Several windows were etched in the oxide layer with variable oxide widths to observe the growth of these nanowires.

Share

COinS