Date of Graduation


Document Type


Degree Name

Master of Science in Microelectronics-Photonics (MS)

Degree Level



Graduate School


Ken Vickers

Committee Member

Paul David

Second Committee Member

Rick Ulrich


Incomplete recovery during microdialysis sampling is hindering important research in neurology, proteomics, and immunology. Although the current generalized solution, decreasing volumetric flow rates (Q), has been and will remain to be a useful strategy it has reached it's a physical limitation due to evaporation at the collection site. Consequently, many important signaling molecules, such as signaling proteins, remain difficult to study. It is more fundamental to consider relative recovery as a function of the interaction time between the perfusate and the environment surrounding the probe.

In this work an increase in relative recovery was predicted by a mathematical model. Using recycled flow and flow reversal an increase in extraction efficiency was achieved at constant Q. It was observed that the recovery increase decrease as the number of passes increase.