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Abstract
Resource-efficient techniques for accurate soil property estimation are necessary to

satisfy the increasing demand for soil data to support environmental monitoring,

precision agriculture, and spatial modeling. Over the last 30 yr, infrared soil spec-

troscopy has developed into a rapid, robust, and cost-effective technique for soil

carbon analysis. Ongoing global efforts to make soil spectroscopy operational require

the development of soil spectral libraries, which are the main source of data for the

construction of calibration models. Understanding calibration optimization is impor-

tant to ensure the efficient use of soil spectral libraries for the accurate estimation of

soil carbon. Moreover, spectral library transfer can benefit new data collection, soil

monitoring, and modeling efforts. This review presents techniques for optimization

of calibration models and library transfer. Selection of calibration set size and subset-

ting are presented as current calibration optimization techniques. Moreover, spiking

is discussed as an effective technique for spectral library transfer. Overall, studies

have suggested that an increase in calibration size improves model performance and

this continues until an optimal size is reached. Additionally, subsetting can improve

model performance if the resulting subsets reduce the variability of spectrally active

components. Studies have also suggested that spiking is effective when used in con-

junction with subsetting techniques. These findings denote the current applicability

and potential of optimization and library transfer techniques for the accurate esti-

mation of soil carbon with soil spectroscopy. Future efforts should focus on refining
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exponential decreasing function; GA-PLSR, genetic algorithm partial least squares regression; GPR, Gaussian process regression; HEM, heteroscedastic
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optimization techniques to further expand the operability of soil spectroscopy for soil

carbon estimation.

1 INTRODUCTION

Measuring and monitoring soil carbon is fundamental to
the management of food security, environmental health, and
plant and animal welfare. There is increasing demand for
soil carbon data to support carbon market monitoring, report-
ing, and verification, environmental monitoring, precision
agriculture, and spatial modeling (Brown et al., 2006; San-
derman et al., 2021; Wijewardane et al., 2018). To satisfy
this demand, resource-efficient techniques for accurate soil
carbon estimation are necessary. The accurate estimation of
soil carbon for the aforementioned efforts can be difficult to
achieve due to costly, intrusive, and time-consuming tradi-
tional laboratory methods (Dotto et al., 2018; Smith et al.,
2020). Regardless of the exact method of laboratory analysis,
the monetary and environmental cost associated with quan-
tifying soil carbon is a barrier to wide-scale monitoring and
informed decision-making.

Over the past few decades, infrared soil spectroscopy has
become prevalent as an alternative to traditional soil carbon
analysis because it is fast, cost-effective, nondestructive, envi-
ronmentally friendly, robust, and adaptable for use in the lab
or in situ (Barra et al., 2021; Gholizadeh et al., 2013; Nocita
et al., 2015; Viscarra Rossel et al., 2006, 2016). Soil spec-
troscopy is less destructive than traditional laboratory analysis
as only a relatively small sample and minimal sample prepa-
ration are required. Samples may only need to be dried and
ground prior to scanning and scanning may only take seconds
leading to cost and time savings. Moreover, soil spectroscopy
does not require the use of hazardous chemical extractants;
therefore, it is less harmful to the environment (O’Rourke &
Holden, 2011; Viscarra Rossel et al., 2006). Lastly, a single
spectrum can be used to assess several soil properties, making
it a robust analysis method (Comstock et al., 2019; McBrat-
ney et al., 2006; Viscarra Rossel et al., 2006, Viscarra Rossel
et al., 2008).

The practical use of soil spectral data depends on the con-
struction of a soil spectral library (SSL). A SSL is a database
containing spectra and their corresponding soil property mea-
surements determined by traditional methods, defined here
as those other than spectral based. For a SSL to be use-
ful, the soil property measurements (i.e., analyte data) and
associated spectral data must be from a reliable laboratory
procedure (Viscarra Rossel et al., 2008). Moreover, the SSL
should contain sufficient soil samples to capture the expected
soil variability in the area where it will be applied (Minasny
et al., 2009; Reeves, 2010).

In soil spectroscopy, a calibration model relates the spec-
tral data to the analyte data of soil samples to predict soil
chemical or physical properties. An important process in the
construction of calibration models is optimization. Optimiza-
tion of calibration models focuses on reducing the statistical
error of model estimates and helps ensure the efficient use
of a SSL for the prediction of soil properties. Furthermore,
optimized calibration models built from an existing SSL can
be used to estimate soil properties at a new site through
library transfer techniques. The review presented here is an
effort to provide an overview of previous work and cur-
rent trends in calibration optimization and library transfer
techniques for soil spectroscopy. This work does not discuss
spectral pre-processing techniques, nor does it intend to com-
pare model performance across different spectral ranges (e.g.,
mid-infrared, near-infrared, etc.), both of which can influence
soil property estimates. For more information on those topics,
the reader is referred to Vasques et al. (2008) and Bellon-
Maurel and McBratney (2011), respectively. Studies cited in
this work are those pertinent to the estimation of soil carbon.
This property was selected as the focus of this work given its
importance to soil quality and soil health as well as the grow-
ing demand for soil carbon data for climate change monitoring
(Lal, 2014; Smith et al., 2020).

2 CALIBRATION MODELS AND
OPTIMIZATION

The estimation of soil properties using soil spectroscopy
is conducted through calibration models constructed from
observations that relate analyte data (e.g., organic carbon
concentration) to spectral data (e.g., absorbances across a
spectral range). The spectral data and corresponding ana-
lyte data used to construct these models is often termed the
“training set.” Construction of a calibration model from a
training set requires the application of statistical learning tech-
niques that consist of computational-statistical procedures to
construct estimation/prediction models with improved accu-
racy through iterative “learning” and fitting (Tibshirani et al.,
2017). The accuracy of a calibration model is a measure of its
systematic error, which is defined as the difference between
the model estimates/predictions and the accepted true value
of the soil property. In general, the assessment of calibration
model accuracy should be conducted using an independent
“validation set” (Bellon-Maurel & McBratney, 2011; Brown
et al., 2005; Gemperline, 2006).
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Calibration model optimization is a fundamental process
in soil spectroscopy that focuses on improving overall model
performance (e.g., reducing statistical error or bias). Calibra-
tion model optimization routines can determine the number
of observations required to achieve an acceptable model accu-
racy, as well as improve the representativeness of the spectral
data and their relationship to the analyte data. Moreover, some
optimization routines consider the soil variability in the cal-
ibration set, which is important when observations are from
soils developing under different environmental conditions,
weathering stages, or soil depths. Calibration model opti-
mization techniques are discussed next and where available,
measurements of model error (e.g., RMSE) are presented.
Unless otherwise stated, these error values are based on an
independent validation set, as reported by the corresponding
authors.

2.1 Calibration set size

Calibration set size affects model performance. If infrared
spectroscopy is to be considered a cost-efficient method of
soil analysis, then it is important to determine the optimal
number of samples required not only in terms of its effect
on model performance, but also for its cost-savings potential.
The calibration model should contain sufficient observations
to capture the variability of the soils in the area where it will be
applied (Viscarra Rossel et al., 2008). Studies have reported
that model accuracy increases with calibration size until a
point is reached when no additional significant improvement
is achieved (see Figures 1 and 2) (Angelopoulou et al., 2020;
Clairotte et al., 2016; Debaene et al., 2014; Gogé et al., 2014;
Grinand et al., 2012; Lucà et al., 2017; Shepherd & Walsh,
2002). An optimal calibration size is one at which a good
tradeoff between model accuracy and resource efficiency is
found. However, determining the optimal calibration size is
not straightforward. Building a calibration model from many
soil samples is neither cost nor time efficient and it can lead
to increased noise in the model. Furthermore, conducting sta-
tistical analysis on a set with a large number of observations
can be computationally expensive (Debaene et al., 2014; Lucà
et al., 2017). On the contrary, building a calibration model
from a few soil samples may save time and money, but can
lead to inaccurate predictions (Lucà et al., 2017).

Several studies have examined the effect that varying
the calibration set size has on model performance. Shep-
herd and Walsh (2002) assessed the effect of decreasing the
size of a highly diverse calibration set on soil organic car-
bon (SOC) model performance. The authors observed that
the R2 of the independent validation was less variable and
thus more stable for models constructed using 20 and 30%
of randomly selected observations from the calibration set.
They noted that, when starting with a large set size, the
predictive performance decreased gradually with decreasing

Core Ideas
∙ Effective optimization routines increase represen-

tativeness of a calibration set to unknowns.
∙ Subsetting by spectral similarity and local calibra-

tions improve model accuracy.
∙ Spiking with subsetting for library transfer can

improve model accuracy.

sample size. Contrarily, when starting with a small set size
(approximately <20% of total observations), the predictive
performance decreased abruptly with decreasing sample size
(Shepherd & Walsh, 2002). This indicates that the magni-
tude of influence of each observation in the calibration set
is not constant, but rather is influenced by the initial cali-
bration set size. Using a French national mid-infrared (MIR)
database, Grinand et al. (2012) tested the effect of calibra-
tion set size by systematically increasing the proportion of
total observations used for the calibration with the remain-
ing observations used for validation. Similar to the study by
Shepherd and Walsh (2002), these authors achieved stable
validation results for SOC when calibration models were con-
structed with a random selection of 20% (R2 = .89, ratio of
performance to deviation, RPD = 3.00, standard error of pre-
diction, SEP = 0.67%) and 30% (R2 = .89, RPD = 3.10,
SEP = 0.65%) of the total observations. Additionally, the
authors noted that there was a significant increase in the RPD
and R2 when the calibration set size was increased from 10 to
20% (R2 = .84 vs. .89, RPD = 2.50 vs. 3.00). Similarly, the
SEP decreased from 0.80 to 0.67%, respectively. Contrarily,
there was only a minimal decrease in error when the calibra-
tion set size was increased from 20% (SEP = 0.67%) to 80%
(SEP = 0.59%), with reduced stability of validation metrics
at larger calibration sizes. The authors attributed these results
to the proportion of atypical observations in the calibration at
larger calibration set sizes. These studies suggest that model
accuracy increases with an increase in calibration set size, but
the influence of additional soil samples for the calibration set
is dependent on the initial calibration size and the proportion
of atypical observations added to the calibration set.

Clairotte et al. (2016) tested the separate and combined use
of visible and near-infrared (VNIR), near-infrared (NIR), and
mid-infrared (MIR) spectra from a French national spectral
database to determine the minimum calibration set intensity
(i.e., optimal percentage of calibration observations) required
to obtain an accurate prediction for an SOC dataset with a
range of 0.2–6.3%. The authors tested 10 different calibration
set intensities ranging from 10 to 100%, in 10% increments.
Results of the randomly selected calibration models demon-
strated that the RPD and ratio of performance to interquartile
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range (RPIQ) increased gradually and the SEP decreased
gradually with increasing calibration intensity but observed
very little improvement above 60% intensity. Furthermore,
they determined that the optimal calibration intensity was
greater for the calibration set that only used MIR spectra (50%
intensity, SEP = 0.63%), as compared to those sets that used
VNIR (30% intensity, SEP = 0.92) and NIR spectra (30%
intensity, SEP= 0.85%). Nevertheless, better predictions were
achieved using only MIR spectra (lowest SEP = 0.60%)
than using VNIR (lowest SEP = 0.87%) or NIR (lowest
SEP = 0.82%). The authors suggested that VNIR and NIR
contain less useful information than MIR for predicting SOC
and thus, require less calibration observations to extract the
useful information and achieve their best model performance
(Clairotte et al., 2016).

Several studies have investigated calibration set size in con-
junction with different sample selection schemes including
random sampling, stratified random sampling, Kennard–
Stone (Kennard & Stone, 1969), and analyte value range.
Brown et al. (2005) used VNIR models to assess the effect
of three sampling schemes and a varying percentage of total
calibration observations (10–70%) on the prediction of SOC
in north-central Montana. The sampling schemes were (a)
random sampling, (b) stratified random sampling of soil
profiles per site, and (c) spectrally stratified random sam-
pling using partitioning around medoids (PAM) (Kaufman &
Rousseeuw, 1990). They observed a decrease in RMSE with
an increase in observations more than 20% of the total dataset
(57 of 283) and predictions with RMSE <0.14% with at least
35% of the total dataset across all sampling schemes. How-
ever, model performance varied depending on the sampling
scheme. The models constructed from spectrally stratified
sampling outperformed those of the other sampling schemes
and consistently resulted in lower maximum RMSE values
when 20–35% of the total dataset was used, indicating that
sample selection influences the results. In their study on the
separate and combined use of VNIR, NIR, and MIR spectra
to predict SOC, Clairotte et al. (2016) also tested the effect
of Kennard–Stone sampling on optimal calibration intensity.
The authors noted that the optimal calibration intensity was
greater with Kennard–Stone selection of calibration samples
than with random sampling (MIR: 60 vs. 50%; VNIR: 50 vs.
30%; NIR: 70 vs. 30%). Nevertheless, much better predictions
were achieved by models constructed from Kennard–Stone
samples as compared to those from random sampling (low-
est SEP with Kennard–Stone vs. random sampling and MIR:
0.26 vs. 0.60%; VNIR: 0.48 vs. 0.87%; NIR: 0.44 vs. 0.82%).

Several studies have tested the effect of varying calibra-
tion set size for the prediction of soil carbon at local scales.
Debaene et al. (2014) investigated the effect of VNIR cali-
bration set size on model performance for the within-farm
prediction of SOC concentration. Four sampling schemes
were used to select the calibration set: (a) random sampling,

(b) selective sampling by analyte value, (c) spectrally strat-
ified random sampling using K-means clustering, and (d)
spectrally stratified random sampling using principal compo-
nents analysis (PCA) scores. The difference in lowest RMSE
as well as the calibration size required to achieve the lowest
error was small between the differently selected calibra-
tion models. Overall, random sampling achieved the smallest
RMSE with the fewest observations. The RMSEs of the ran-
dom sampling and analyte value models ranged from 0.12 to
0.18% and were achieved using approximately 60% of the cal-
ibration set observations. The K-means clustering models had
the widest range in RMSE (0.12–0.27%) as well as the small-
est proportion of the calibration set required to achieve this
RMSE (57%). The PCA score models had RMSEs between
0.12 and 0.22% with the minimum achieved using approx-
imately 67% of the calibration set. The authors determined
that a minimum of 79 of the total 199 calibration observa-
tions (approximately 40%) were suitable to adequately predict
SOC concentration with a RMSE of 0.13%. Using a French
national spectral database in the VNIR range, Gogé et al.
(2014) compared various strategies to predict SOC concen-
tration for a local site. The authors observed the effect of
calibration size on model accuracy and noted that model
RMSE and bias decreased and R2 increased as the number
of observations, selected using the Kennard-Stone algorithm,
increased.

The effect of calibration set size on total soil carbon pre-
diction at a local scale using VNIR was tested by Lucà
et al. (2017). Three calibration models, selected through strat-
ified sampling by analyte value, were assessed and they each
achieved different levels of performance depending on the
calibration set size. In general, the RMSE decreased as the cal-
ibration set size increased. The best predictive performances
were obtained using between 50 and 90% (72 and 130 of
144 observations) of the total calibration set. In addition
to these studies, Ramirez-Lopez et al. (2014) investigated
the combined effect of calibration set size and three cal-
ibration sampling algorithms: Kennard–Stone, conditioned
Latin hypercube (McKay et al., 1979; Minasny & McBrat-
ney, 2006), and fuzzy c-means (de Gruijter et al., 2010). These
authors found that the improvement in model performance
by spectrally stratified random sampling depends on the cali-
bration size. When models are small, the sampling algorithm
significantly improves model accuracy; however, when the
models are large, the sampling algorithm has little influence
on model accuracy. Although random sampling is a statis-
tically sound sample selection method, it is prone to select
samples with little representativeness to the whole set, par-
ticularly when working with a large SSL composed of highly,
pedologically diverse soil samples. In these cases, a spectrally
stratified sampling approach such as Kennard–Stone, fuzzy
c-means, or conditioned Latin hypercube sampling may be
preferred.
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Overall, these studies confirm previous findings that model
accuracy increases with an increase in the calibration set size.
Additionally, these studies demonstrate that the optimal cal-
ibration size depends on various factors, including the initial
calibration set size, the sampling scheme used to select the cal-
ibration observations, and the spectral range of the calibration
model. In addition to the aforementioned factors, the optimal
calibration set size can vary depending on the mineralogical
diversity and the geographical extent covered by the observa-
tions in the calibration (Clingensmith et al., 2019; Lucà et al.,
2017; Ludwig et al., 2019).

2.2 Sample representativeness

The representativeness of the calibration set is another opti-
mization factor that influences model performance. The
empirical nature of spectroscopic calibrations limits their pre-
diction accuracy to how well the calibration observations
represent the unknowns (Nocita et al., 2015). To construct
a robust calibration model, the observations in the calibra-
tion set must be representative of the soils to which the
model will be applied (Angelopoulou et al., 2020). Lucà et al.
(2017) indicates that a representative sample set should be
selected on the basis of spectral features or analytical prop-
erties. It is important to consider both the expected variability
in soil chemical and physical properties that are spectrally
active, as well as the expected distribution of the soil property
values of the unknown observations. Additionally, limiting
the range of variability in spectrally active properties and
analyte concentrations of the calibration model can improve
model performance. For example, NIRS studies on forages
and grains obtained better results with calibration models
developed for a limited, well-defined population (e.g., a spe-
cific varietal), as opposed to a universal calibration for all
varieties (Murray et al., 1987; Roberts et al., 2004). Simi-
larly, soil calibrations can perform better if constructed for a
reduced spectral, pedologic, geographic, or analyte concen-
tration range (Brown et al., 2005; Madari et al., 2005; Reeves
& Smith, 2009).

Calibration models can be constructed to estimate a spe-
cific group of the prediction set, such as specific analyte
value ranges or soil types. This is achieved by subsetting
the SSL using calibration selection approaches (Soriano-Disla
et al., 2014). One approach is to construct local calibration
models using the nearest spectral neighbors of the predic-
tion set (i.e., the local approach). Another approach is the
stratification of the SSL to select subsets based on ancillary
information or classification criteria to build targeted cali-
brations. Examples of selection criteria include soil types or
factors known to influence soil properties and presumably
also the spectral response. It is important to note that using
this ancillary information is a cost-effective approach when

soil information systems (e.g., a soil survey with taxonomic
attributes that can be related to the collected soil samples) are
readily available. This approach may not be feasible in sce-
narios where soil information systems are not available or in
the appropriate scale for accurate representation of soil spa-
tial variability. Once the targeted calibrations are constructed,
they can be used to predict the target subset or group of
unknowns (McDowell, Bruland, Deenik, & Grunwald, 2012;
Soriano-Disla et al., 2014). The local model approach and the
stratification approach, each hereafter referred to as subset-
ting, can be used either independently or simultaneously, as
well as in conjunction with other optimization techniques to
improve model performance (Lucà et al., 2017).

Table 1 summarizes some studies of spectroscopy for soil
carbon estimation that have applied subsetting techniques.
The example studies presented in Table 1 are not an exhaustive
representation of the literature on calibration set subsetting.
However, they are representative of subsetting criteria dis-
cussed in this paper and of the various techniques used in
recent soil spectroscopy studies.

2.2.1 Subsetting by analyte value

Several studies have explored the effect of subsetting by ana-
lyte value. Janik and Skjemstad (1995) split the total dataset
into three subsets by range in SOC concentration (0–2.5%,
2.5–10%, 9–25%) to improve model accuracy of a partial least
squares regression (PLSR) based on cross-validation. While
the calibration models constructed from the lowest and nar-
rower ranges (0–2.5% and 2.5–10%) resulted in a larger R2

(.979), the highest and wider range model (9–25%) performed
worse than the full set calibration model (R2 of .892 vs. .975).
This discrepancy may be due to the small calibration size
of the highest range model. McDowell, Bruland, Deenik, &
Grunwald et al. (2012) investigated the effect of subsetting a
VNIR and MIR calibration set by various soil sample charac-
teristics, among them total carbon concentration. The authors
determined through preliminary analysis, that subsetting the
calibration observations into low (0–10%) and high (10–55%)
total carbon concentrations produced the best results for both
spectral ranges. Consequently, they used 10% as the thresh-
old value for subsetting the calibration set. The low carbon
models, which also had a narrower range of analyte values,
decreased in RPD (VNIR: 3.46 to 1.63; MIR: 4.07 to 2.34),
RPIQ (VNIR: 3.19 to 2.12; MIR: 3.74 to 3.05) and R2 (VNIR:
0.91 to 0.61; MIR: 0.94 to 0.82) as compared to the total set
model. No improvement was observed with the high carbon
model in comparison to the full set model.

In a study that used VNIR for SOC prediction, Vasques
et al. (2010) developed different calibration models based on
a general soil type, which inadvertently split the observa-
tions by lower and higher carbon concentration (0.01–14.7%
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884 DORANTES ET AL.

T A B L E 1 Summary of soil spectroscopy studies that use subsetting for calibration set optimization and whether subsetting improved soil
carbon prediction

Subsetting criteria Technique

Total
improvement
over full set
calibrationa Spectral range Reference

Analyte value SOC range Yes MIR Janik & Skjemstad (1995)

Analyte value Total carbon range No NIR and MIR Madari et al. (2005)

Analyte value SOC range Yes VNIR Vasques et al. (2010)

Analyte value Total carbon range No VNIR and MIR McDowell, Bruland, Deenik, and
Grunwald (2012)

Pedodiversity Geographic extent Yes NIR Sudduth & Hummel (1996)

Pedodiversity Taxonomic soil class No NIR and MIR Madari et al. (2005)

Pedodiversity Textural group Yes NIR and MIR Madari et al. (2005)

Pedodiversity Textural group Yes NIR Brunet et al. (2007)

Pedodiversity Taxonomic soil order Yes VNIR Vasques et al. (2010)

Pedodiversity Taxonomic soil order,
mineralogy, SOM

Yes VNIR and MIR McDowell, Bruland, Deenik, and
Grunwald (2012)

Pedodiversity Geographic extent Yes MIR Baldock et al. (2013)

Pedodiversity Geographic extent Yes VNIR Peng et al. (2013)

Pedodiversity Taxonomic soil order No MIR Wijewardane et al. (2018)

Pedodiversity Master horizon Yes MIR Wijewardane et al. (2018)

Pedodiversity Taxonomic soil order + land
use

Yes VNIR-SWIR Moura-Bueno et al. (2019)

Pedodiversity Physiographic region, land
use, textural class

Yes VNIR Moura-Bueno et al. (2020)

Spectral similarity Local model: LW-PLSR Yes NIR Christy & Dyer (2006)

Spectral similarity Local model: LOCAL Yes NIR Fernández Pierna & Dardenne
(2008)

Spectral similarity Local model: LW-PLSR No NIR and MIR Igne et al. (2010)

Spectral similarity Local model: LOCAL Yes NIR Genot et al. (2011)

Spectral similarity Local model: LW-PLSR,
LOCAL

No VNIR Ramirez-Lopez, Behrens, Schmidt,
Stevens, et al. (2013)

Spectral similarity Local model: LW-PLSR Yes VNIR Nocita et al. (2014)

Spectral similarity Local model: LW-PLSR Yes VNIR Gupta et al. (2018)

Spectral similarity Local model: SBL Yes VNIR Ramirez-Lopez, Behrens, Schmidt,
Stevens, et al. (2013)

Spectral similarity Local model: SBL Yes MIR Dangal et al. (2019)

Wavelength selection GA-PLSR Yes VNIR Vohland et al. (2011)

Wavelength selection CARS-PLSR Yes VNIR and MIR Vohland et al. (2014)

Wavelength selection OPS-PLSR Yes VNIR Sarathjith et al. (2016)

Wavelength selection SPLSR, HEM, Yes VNIR Clingensmith et al. (2019)

Wavelength selection Automatic selection of
wavenumber regions
(Ludwig et al., 2019)

Yes MIR and NIR Ludwig et al. (2021)

Note. CARS-PLSR, competitive adaptive reweighted sampling partial least squares regression; GA-PLSR, genetic algorithm partial least squares regression; HEM, het-
eroscedastic effects model; LW-PLSR, locally weighted partial least squares regression; MIR, mid-infrared; NIR, near-infrared; OPS-PLSR: ordered prediction selection
partial least squares regression; PCR, principal component regression; SBL, spectrum-based learner; SOC, soil organic carbon; SOM, soil organic matter; SPLSR, sparse
partial least squares regression; VNIR, visible and near-infrared; VNIR-SWIR, visible and near-infrared and short-wave infrared.
aTotal improvement measured as decrease in error of prediction between that of the full calibration set and at least one calibration subset.
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DORANTES ET AL. 885

and 13.52–57.54%, respectively). Contrary to the results from
McDowell, Bruland, Deenik, & Grunwald (2012), both sub-
set models achieved higher RPD (lower C model: 1.26, higher
C model: 1.20) and R2 (lower C: .41, higher C: .38) as com-
pared to the full set model (RPD: 1.12 and R2: .29). Madari
et al. (2005) subset observations into three groups of varying
range in SOC concentration (0.02–40.19%, 0.02–6.60%, and
0.02–3.00%) to construct calibration models. Through cross-
validation, the full set models (i.e., 0.02–40.19%) resulted
in a greater R2 (MIR: 0.934, NIR: 0.809) than the subset
models (MIR: 0.840 and 0.810; NIR: 0.726 and 0.712 for
the lower and higher SOC subsets, respectively). In general,
the MIR models outperformed the NIR models based on
cross-validation results.

The results of these studies demonstrate that the effect of
subsetting by analyte value varies and may be influenced by
other factors. In general, subsetting a calibration set by analyte
value alone is most useful for improving prediction accuracy
when the overall variability in spectra is low. Accordingly,
the greatest variability in the calibration model will result
from the variability in the analyte values (Clingensmith et al.,
2019). When both spectral and analyte value variability are
high, subsetting to account for both sources of variability can
lead to better model performance. This is an important con-
sideration for deciding when and how to subset the calibration
set. Additionally, an adequate statistical comparison of model
performance across different ranges of analyte values should
not only be based on RMSE, given that this will decrease as
the analyte range decreases (Stenberg et al., 2010), but also
requires a comparison of R2, RPD, and RPIQ in the context of
the respective interquartile range (IQR), if possible (Ludwig
et al., 2021).

2.2.2 Subsetting by pedodiversity

Several spectroscopic studies have used the variation in
soil types and properties (i.e., pedodiversity) to subset
the calibration set for SOC modeling. Subsetting criteria
based on pedodiversity include taxonomic classification, soil-
landscape/geographic region, and soil-forming factors. A soil
taxonomic classification indicates a range of properties that
are limited by the soil parent material, mineralogy, and
climate (Seybold et al., 2019). Knowledge about the relation-
ships between taxonomic units and soil properties has been
used to relate SOC to soil-forming factors at the landscape
scale (Wills et al., 2013).

Soil mineralogy and texture are spectrally active because
their components interact with electromagnetic radiation and
thus, cause variation in reflectance features (Moura-Bueno
et al., 2019). Stenberg et al. (2010) argue that models are more
robust and perform better when constructed from a large,
heterogeneous calibration set from soils with diverse par-

ent materials (Vašát et al., 2017). Parent materials contribute
different minerals and particle sizes that can better repre-
sent the potential characteristics of the prediction set (Nawar
& Mouazen, 2017; Stenberg et al., 2010). However, prob-
lems with a diverse calibration set can arise if the unknowns
are very different from the calibration set in terms of prop-
erty values and spectrally active properties (Bellon-Maurel
& McBratney, 2011; Brown et al., 2005, 2006; Sankey et al.,
2008; Wijewardane et al., 2018).

The high spatial variation of SOC is another important con-
sideration when subsetting by pedodiversity (Schmidt et al.,
2010). Identifying these patterns of variability is important as
soils belonging to distinct patterns should be modeled sepa-
rately (McBratney et al., 1991). One approach is to stratify
the data by spatial units of similar landscape and soil-forming
factors (i.e., soil-landscape units). Presumably, soil properties
within a soil landscape will be less variable as compared to
the soil population across the landscape due to interactions
between soil-forming factors (McCarty & Reeves, 2006).
In general, soil spectroscopy studies have demonstrated that
models constructed through subsetting by spectral or pedo-
logic criteria perform better than those that do not subset the
calibration set (Ramirez-Lopez, Behrens, Schmidt, Stevens,
et al., 2013).

Madari et al. (2005) used NIR and MIR spectral data from
diverse Brazilian soils to model SOC. These authors subset
their calibration sets by taxonomic soil class. Two subset mod-
els resulted, one for soils classified as Ferralsols and the other
for Acrisols according to the World Reference Base (FAO,
1998). These subset models achieved lower R2 values as well
as lower RMSEs (MIR: R2 = .862 and .905, RMSE = 0.545
and 0.449%; NIR: R2 = .725 and .784, RMSE = 0.770 and
0.675% for Ferralsols and Acrisols models, respectively) as
compared to the full set calibration models (MIR: R2 = .934,
RMSE: 1.088%; NIR: R2 = .809, RMSE = 1.855%). The
authors concluded that overall, the models fitted by taxonomic
class did not outperform the full set model for MIR and NIR.

In a study to estimate SOC concentration of soils in
Florida by VNIR spectroscopy, Vasques et al. (2010) tested
the effect of subsetting the observations in the calibration
set by soil order (Alfisols, Entisols, Histosols, Inceptisols,
Mollisols, Spodosols, and Ultisols) on PLSR model perfor-
mance. Additionally, the authors tested the performance of
a committee trees (CT) model that included soil order as a
categorical variable, and which was fitted with the full set
and another fitted through subsetting by mineral vs. organic
horizon. For the PLSR model, subsetting the observations
by soil order improved the R2, RPD, and RMSE for six
of the seven soil orders, as compared to the full set PLSR
model (Alfisols: 0.58/1.54/0.51%, Entisols: 0.50/1.36/0.93%,
Inceptisols: 0.42/1.24/1.19%, Mollisols: 0.68/1.54/0.90%,
Spodosols: 0.56/1.41/0.70%, Ultisols: 0.75/1.91/0.33%,
and full set: 0.29/1.12/4.60% for R2/RPD/RMSE). An
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886 DORANTES ET AL.

important consideration is that the values presented are
the result of back-transformation of logSOC estimates to
the original units, which the authors noted significantly
reduced the quality of the PLSR models resulting in unre-
liable estimates. On the other hand, the R2 and RPD of
the CT model did not improve by including a categorical
variable of soil orders (0.65/1.69/0.69% for R2/RPD/RMSE)
nor by subsetting by mineral/organic horizon type (Min-
eral: 0.66/1.70/0.70% and Organic: 0.35/1.23/10.23% for
R2/RPD/RMSE), as compared to the full set CT model
(0.79/2.14/2.52% for R2/RPD/RMSE). Moreover, the full set
CT model outperformed the PLSR models that were subset
by soil order. These findings pose an important consideration
that the type of statistical learning model used can lessen the
benefit of subsetting by pedodiversity.

Wijewardane et al. (2018) investigated whether subset-
ting an MIR calibration set by land use/cover, soil order,
and soil master horizons improved the prediction accuracy
of SOC. The authors developed calibration models for each
subset using the PLSR and artificial neural network (ANN)
models. On average, subsetting by all three criteria reduced
the RMSE of the PLSR models as compared to that fit-
ted with the full set. Moreover, subsetting by soil order
and master horizon resulted in lower statistical error than
subsetting by land use/cover. Most of the ANN models,
including the full set model, outperformed the PLSR models
(R2/bias/RPD/RPIQ/RMSE of 0.95/0.00%/4.55/0.82/1.89%
and 0.99/−0.01%/11.46/2.05/0.75% for the full-set PLSR and
ANN models, respectively). These results can be attributed
to the superior capacity of ANNs in modeling complex and
nonlinear relationships between analyte value and spectra.
Moreover, although the subset ANN models outperformed
all the PLSR models, they did not outperform the full set
ANN model. These results corroborate those of Vasques et al.
(2010), who also found that the effectiveness of subsetting
for reducing the error of calibration models depends on the
statistical learning model. Models such as CTs and ANNs
may not benefit from subsetting because they can handle
complex relationships in high-dimensional feature space. Sta-
tistical models based on machine and deep learning handle
relationships in a similar way to manual subsetting and thus,
the improvement in model performance by subsetting is little
to none (Viscarra Rossel & Behrens, 2010).

In a study of total carbon in Hawaiian soils, McDowell,
Bruland, Deenik, & Grunwald (2012) fit MIR calibration
models for broad soil groups. The soil groups were defined
as sets of soil orders with similar clay mineralogy and soil
organic matter concentration (Group 1: Andisols; Group
2: Aridisols, Entisols, Inceptisols, Mollisols, and Vertisols;
Group 3: Oxisols and Ultisols; and Group 4: Histosols and
Spodosols). The calibration model constructed for Group 2
(high-activity clay soil orders) resulted in greater accuracy
(R2: .96 and RPD: 5.57) than that of the full set calibra-

tion model (R2: .94 and RPD: 4.07). An interesting result
of this study was that the within-subset spectral variability
was equally as high as that between subsets. The authors
explained that soil taxonomic classification is based on prop-
erties that are often not spectrally active and that spectrally
active properties, such as mineralogical properties, may not
be exclusive to a taxonomic classification level (McDowell,
Bruland, Deenik, Grunwald, & Knox, 2012). Consequently,
subsets based on soil orders can contain spectral features that
are not mutually exclusive, which negatively affects model
performance. As presented in the study by McDowell, Bru-
land, Deenik, Grunwald, & Knox (2012), a limitation exists in
using single-criterion taxonomic subsets such as soil orders or
horizonation, given the high within-order variability present
in pedologic conditions, such as highly dissimilar A and B
horizons of a soil profile. In scenarios where high within-
group variability is expected, multi-criteria subsetting, such
as soil order coupled with horizonation, can be more useful.

Moura-Bueno et al. (2019) stratified a visible-near-infrared
and short-wave infrared (VNIR-SWIR) spectral library of
810 observations using various combinations of two distinct
soil classes and three land use types to construct calibration
models for SOC% prediction. The full set was stratified into
subsets based on the mean spectrum for each criterion and
a quantitative analysis of the distribution of variance of the
projected spectral data. Overall, in models with a sufficient
calibration size (n > 77), subsetting by soil and land use type
improved model performance. The subset models resulted in
an R2 of .42–.82, RMSE of 0.29–0.70%, and an RPIQ of 1.99–
2.60. The best model performance was achieved by a single
soil type-single land use subset (R2 = .82, RMSE = 0.29%,
and RPIQ = 2.60), which used 45% less observations than the
full-set model (R2 = .74, RMSE = 0.55%, and RPIQ = 2.16).
The authors attributed the better performance of this subset
model to a reduction in the spectral variance, soil textural
variance and SOC concentration of the calibration subsets.
Additionally, results of the best-performing subset models
demonstrated that soil spectral and compositional character-
istics had a greater effect on model performance than the
calibration set size. The authors concluded that, while the
spectral library was local, spectral variability was high and
subsetting the library to reduce spectral and soil property
variability was effective in improving model performance.
Furthermore, they proposed that future studies should con-
sider a weighted sampling approach for the construction of
calibration models that assigns weights according to the spec-
tral and compositional variation captured by each observation
(Moura-Bueno et al., 2019).

Demattê and da Silva Terra (2014) examined the relation-
ship between VNIR spectra and soil pedogenic properties
along a toposequence (i.e., a soil catena). The authors
observed that variations in reflectance intensity, specific
wavelengths, and spectral shape enabled the detection of
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DORANTES ET AL. 887

distinct mineralogy and textures. The spectral variations
observed across soil depth helped distinguish between soil
classes. The authors concluded that soil spectroscopy was
able to discriminate between weathering levels and the pre-
sumed pedogenic processes (Demattê & da Silva Terra, 2014).
Although these authors did not perform subsetting for calibra-
tion models, their study suggests that subsetting spectral data
by criteria associated with pedogenic processes can be useful
for taxonomic purposes, especially at the soil catena scale.

Various studies have used soil texture as subsetting crite-
ria. Typically, as clay increases, so does SOC; however, this
relationship can be confounded in spectroscopy by the spec-
tral response of sand (Soriano-Disla et al., 2014; Stenberg
et al., 2010; Vasques et al., 2010). Sand particles in a sample
can influence the spectral response of SOC features (Sten-
berg et al., 2010). Consequently, soil samples with high sand
and low SOC concentration can be very similar to samples
with low sand and high SOC concentration (Nocita et al.,
2015). Therefore, including particle size or textural classes in
soil spectroscopic models for SOC of soil samples presumed
to have high sand, can result in better prediction accuracy
(Vasques et al., 2010).

Madari et al. (2005) performed subsetting by soil textural
groups for the prediction of SOC with NIR and MIR spectra.
The textural groups were defined based on the following parti-
cle fractions: very clayey (>60% clay), clayey (35–60% clay),
and medium textured (<35% clay and >15% sand). The NIR
calibration models for the very clayey subset, resulted in better
cross-validation model performance than their MIR counter-
parts (R2 = .975 and .967, respectively). On the contrary, the
MIR calibration model for the clayey and medium-textured
subsets (R2 = .962 and .917, respectively) outperformed its
NIR counterpart (0.938 and 0.871). Overall, subsetting by
textural class resulted in improved model performance over
the full-set calibration (R2 = .809 NIR and .934 MIR). The
authors concluded that models based on NIR are better-suited
for sets of observations with homogeneous textures, while
MIR models are best for heterogeneous textures (Madari et al.,
2005). Accordingly, a subsetting scheme based on soil texture
should be complemented by the selection of the appropriate
spectral range (NIR or MIR), if possible. A study by Brunet
et al. (2007) assessed how the heterogeneity of the soil parti-
cle size affects the prediction of total carbon by NIR. These
authors constructed calibration models for coarse-textured
and clayey subsets. Subsetting the data resulted in improved
prediction accuracy as compared to the full-set model (coarse-
textured: R2 = .96, SEP = 0.044%; clayey: 0.89 and 0.150%;
full-set: 0.84 and 0.354%). Furthermore, the more heteroge-
neous, coarse-textured subset model outperformed the more
homogeneous clayey subset model.

In a study that explored subsetting a subtropical, Brazil-
ian VNIR spectral library using several criteria independently
(i.e., three physiographic regions, three land use and land

cover types, and four textural classes), Moura-Bueno et al.
(2020) found that subsets that reduced the variance in SOC%,
clay%, and spectral variance had an increase in accuracy
of SOC predictions as compared to the full-set model. The
authors noted that although the full-set model performed well
(RMSE = 1.02%, R2 = .76, bias = −0.22%, RPIQ = 1.51)
considering the high variance in SOC% (standard devia-
tion = 1.81%) and diversity in clay mineralogy, subsetting
by all criteria, reduced the bias in model predictions (lowest
bias = 0.01%). The greatest reduction in RMSE (34% reduc-
tion as compared to full-set model) was observed for the land
use/cover models (RMSE range = 0.50–1.67%, R2 = .70–
.86, bias = −0.55–0.01%, RPIQ = 1.31–2.71), followed by
a 32% reduction in RMSE achieved by the physiographic
region models (RMSE range = 0.54–0.97%, R2 = .53–.93,
bias = −0.28–0.04%, RPIQ = 1.63–2.28), and a 5% reduc-
tion by the textural class models (RMSE range = 0.56–1.10%,
R2 = .22–.82, bias = −0.25–0.04%, RPIQ = 0.89–2.25).

An interesting finding by Moura-Bueno et al. (2020), was
that the diversity of clay mineralogy had a greater effect
on spectral variance of the subsets than the clay concentra-
tion. Moreover, the authors presented a decision-making flow
chart with their strategy on when and how to subset spectral
libraries to predict SOC concentration, which they based on
their study findings. In general, any decision on whether to
subset should begin with an assessment of the analyte and
ancillary information available in the spectral database. Next,
if significant environmental (i.e., physiographic) and pedo-
logic diversity exists, the observations should first be stratified
by physiographic region, then by land use/cover, spectral sim-
ilarity, and finally by textural class. The final decision on
the best subsetting criteria should be based on a reduction of
the variance of SOC, clay mineralogy, and spectral variance
as compared to the full set calibration model (Moura-Bueno
et al., 2020).

The geographic extent of the observations that comprise a
calibration model can affect its statistical performance. Some
studies suggest that it is better to develop models for smaller
areas than for larger areas (Gholizadeh et al., 2013). The
assumption being that calibration observations from soils col-
lected across smaller areas will exhibit less variation in soil
properties due to soils having similar pedologic conditions,
which results in reduced variation and thus more accurate
predictions (Kuang & Mouazen, 2011; Shi et al., 2015). It
is important to note, however, that a reduction in the geo-
graphic extent of a calibration model may or may not reduce
the spectral feature space (Ramirez-Lopez, Behrens, Schmidt,
Stevens, et al., 2013; Shi et al., 2015). Moreover, building sev-
eral isolated, small SSLs may not be practical for large-scale
modeling or operational purposes.

Several studies have explored the effect of geographic
extent on calibration model performance. Sudduth and Hum-
mel (1996) studied the effective geographic range of an NIR
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888 DORANTES ET AL.

F I G U R E 1 Plot of percentage of total number of calibration set observations used for modeling vs. ratio of performance to deviation (RPD) for
the prediction of soil organic carbon using soil spectroscopy. The shading indicates distinct model reliability thresholds based on Chang et al. (2001).
Dark gray shading represents the range in RPD considered to be an unreliable model, medium gray is for a fair model, and light gray is for a reliable
model. The legend provides the study citation, the spectral range (visible and near-infrared [VNIR] or mid-infrared [MIR]) of the dataset, and the
total number of calibration set observations in the dataset, in that order. In general, the RPD increases/improves as the percentage of total
observations increases until a plateau is reached. The studies cited here are described in detail in this section and used an independent validation set

soil sensor for SOC prediction in the United States. These
authors constructed a calibration model using data from soil
samples collected in and around the state of Illinois and sam-
ples collected across the United States. The calibration model
constructed using observations from Illinois and surround-
ing states was slightly less predictive than that constructed
using only observations from Illinois. Furthermore, calibra-
tion models that used observations from a more extensive
geographic range resulted in unacceptable predictions. The
authors concluded that SOC predictions become increasingly
less accurate as the geographic range represented by the obser-
vations increases (Sudduth & Hummel, 1996). Similarly,
Vasques et al. (2008) demonstrated that a VNIR calibration
model for SOC prediction in Florida performed better with
data from soil samples confined to a watershed, as compared
to statewide samples. Like Sudduth and Hummel (1996),
the authors concluded that increasing the geographic extent
of SOC spectroscopic models can reduce their quality, par-
ticularly if geographic-related soil variation is added to the
calibration model (Vasques et al., 2010).

In a study to predict carbon and its fractions using MIR
spectra, Baldock et al. (2013) found that regional models
produced more accurate predictions with lower uncertainty
for all analytes than a national calibration model. The RPDs
and RMSEs calculated for soils in each regional model
were higher and lower, respectively, as compared to the
full set model (full set: RPD range = 1.3–4.6 and RMSE
range = 0.684–0.240%; regional models: 2.8–4.7 and 0.573–
0.185%). These authors observed that the major spectral
differences between the observations in the regional and
national calibrations were due to differences in mineral com-
ponents (Baldock et al., 2013). Peng et al. (2013) developed
VNIR calibration models for the prediction of SOC at the
field scale. These authors subset the calibration set accord-
ing to the geographic distance between each observation in
a national spectral library and the field where the calibra-
tion models would be applied. Three calibrations models were
developed using observations within 20, 30, and 40 km from
the field site. Internal validation of the models revealed that
the 30 km calibration subset outperformed the other two
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DORANTES ET AL. 889

F I G U R E 2 Plot of percent of total number of calibration set observations used for modeling vs. R2 for the prediction of soil organic carbon
using soil spectroscopy. The shading indicates distinct model reliability thresholds based on Chang et al. (2001). Dark gray shading indicates the
range in R2 considered to be an unreliable model, medium gray indicates a fair model, and light gray indicates a reliable model. The legend provides
the study citation, the modeling approach used (partial least squares regression [PLSR], support vector machine regression [SVMR], multiplicative
adaptive regression splines [MARS]), and the total number of calibration set observations in the dataset, in that order. In general, the R2

increases/improves as the percentage of total observations increases. The studies cited here are described in detail in this section and used an
independent validation set

subsets, as well as the full set calibration. The authors con-
cluded that the 30 km calibration subset performed the best
because soils within this distance had a similar landscape and
parent material, particularly in terms of carbonate concentra-
tion, to soils in the field site and were therefore more spectrally
similar.

2.2.3 Subsetting by spectral similarity

In addition to subsetting by soil-related criteria, construction
of calibration models can involve subsetting based on spectral
similarity/dissimilarity metrics (Reeves & Smith, 2009). This
approach aims to construct calibration models from observa-
tions that are representative of the spectral features and soil
properties in the prediction set. Spectral similarity is defined
as observations that are close to each other in the spectral
feature space. The distance between the observations can be
computed with any distance metric. The most applied dis-
tance metrics in soil spectroscopy are the Euclidean distance

(ED) and the Mahalanobis distance (MD). The ED and MD
can be measured in the spectral space or in a projected space,
such as the principal component space. Different variations
of the MD in the principal component space have been widely
applied in soil spectroscopy. These variations include the prin-
cipal components Mahalanobis distance (PC-MD) and the
optimized principal components Mahalanobis distance (oPC-
MD). For more information about these and other distance
metrics, the reader is referred to Ramirez-Lopez, Behrens,
Schmidt, Rossel, et al. (2013).

2.3 Local calibrations

A commonly used technique based on spectral similarity is
to construct calibration models using only spectral neighbors,
which are the spectra most similar to those in the prediction
set. Calibration models constructed from spectral neighbors
are termed local calibration models. The prediction from a
local model is conducted on a case-by-case basis, meaning
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that spectral neighbors are found for each observation in the
prediction set. This approach assumes that the relationship
between spectral features and soil properties is locally stable
(Nocita et al., 2014). In this context, a global calibration model
refers to a model fitted using all the calibration observations,
not only the spectral neighbors of the prediction set (Barthès
et al., 2020; Gomez et al., 2020).

Local calibration models can be constructed using
memory-based learning (MBL). The MBL approach is a
data-driven statistical learning approach that offers instance-
oriented models. This means that MBL derives a calibration
for each new target spectrum requiring a soil property pre-
diction. The MBL approach selects a relatively small subset
of spectral neighbors to predict each unknown observation
(Dangal et al., 2019; Lobsey et al., 2017). Four charac-
teristics must be defined for any MBL algorithm: (a) the
similarity/dissimilarity metric (i.e., spectral distance metric)
used to find the spectral neighbors, (b) how the similar-
ity/dissimilarity information will be used (e.g., used to assign
weights, used as predictors, etc.), (c) how many spectral
neighbors to consider, and (d) how to fit the local points (i.e.,
the target function) (Dangal et al., 2019; Ramirez-Lopez,
Behrens, Schmidt, Rossel, et al., 2013).

Commonly used MBL models in soil spectroscopy are
locally weighted regression (LWR; Naes et al., 1990) and the
LOCAL algorithm of Shenk et al. (1997). Locally weighted
partial least squares regression (LW-PLSR) is a local version
of PLSR that first defines spectral neighbors through the MD
in the principal component space (Nocita et al., 2014). These
neighbors are then weighted using a function and according to
their spectral similarity to the target spectrum. Next, a PLSR
is performed for the response value of the target spectrum and
its corresponding neighbors to obtain the model coefficients
(Gupta et al., 2018; Lobsey et al., 2017; Nocita et al., 2014).
As with global PLSR, the regression coefficients are used
to predict response values associated with the target spectra.
Like LW-PLSR, the LOCAL algorithm calibrates local PLSR
models based on spectral similarity; however, there are impor-
tant differences between the algorithms. First, the LOCAL
algorithm uses correlation coefficients as similarity metrics
to select spectral neighbors of a target spectrum (Nocita et al.,
2014; Shenk et al., 1997). Secondly, the LOCAL algorithm
does not apply weights to the spectral neighbors of a target
spectrum. Lastly, the predicted response value for each target
spectrum results from a weighted sum of the predicted values
across all local PLSR models (Fernández Pierna & Dard-
enne, 2008; Nocita et al., 2014). Both the LW-PLSR and the
LOCAL algorithm are better suited for nonlinear predictor-
response relationships (Genot et al., 2011; Peng et al., 2013).
Nevertheless, as with global PLSR, the principal component
space must represent the target spectrum and its correspond-
ing neighbors well to achieve accurate predictions (Naes et al.,
1990).

A study by Christy and Dyer (2006) compared the effec-
tiveness of LW-PLSR to predict total carbon using NIR data
from seven agricultural fields in Iowa and Kansas. They com-
pared LW-PLSR to three commonly used global regression
models, namely multiple linear regression (MLR), using prin-
cipal components as predictors, and PLSR. The LW-PLSR
approach produced the lowest error predictions for total car-
bon. Genot et al. (2011) used a large NIR spectral library from
Belgium to predict total carbon concentration. The authors
tested PLSR and the LOCAL algorithm. Additionally, they
investigated the effect of increasing the fixed correlation coef-
ficient between the spectra to find the spectral neighbors for
each LOCAL model. The LOCAL algorithm outperformed
the PLSR and a correlation coefficient value fixed at 0.99
(i.e., the highest value tested), produced the most accurate
predictions for the LOCAL algorithm.

Igne et al. (2010) used NIR and MIR spectra to compare
the performance of the LW-PLSR against PLSR and support
vector machine regression (SVMR) in the prediction of total
carbon in Ultisols from a field in Maryland. The LW-PLSR
resulted in smaller error than the SVMR but had a similar error
to PLSR. The authors concluded that LW-PLSR is a good
alternative to global PLSR; however, they stressed the impor-
tance of having a balanced number of observations across the
value range of the soil property to be predicted. Ramirez-
Lopez, Behrens, Schmidt, Stevens, et al. (2013) developed a
novel type of MBL termed the spectrum-based learner (SBL).
These authors stated that one advantage of the SBL algo-
rithm over other MBL models is that it determines the optimal
number of principal components and the number of spec-
tral neighbors for each target spectrum. Moreover, the SBL
algorithm, as offered by the R package resemble (Ramirez-
Lopez et al., 2016), allows the construction of local models
with PLSR, weighted-PLSR, and Gaussian process regression
(GPR). The GPR uses a kernel-based function to predict the
response value based on the spectral neighbors.

Ramirez-Lopez, Behrens, Schmidt, Stevens, et al. (2013)
tested the predictive performance of the SBL approach against
PLSR, SVMR, LW-PLSR, and LOCAL for the estimation of
SOC concentration using two VNIR SSLs. The SBL algo-
rithm outperformed all other models in terms of RMSE and
R2. The SBL also had much faster processing time than the
LW-PLSR and LOCAL. The authors attributed the better
performance of the SBL algorithm to its superior ability in
selecting spectral neighbors and to the use of the resulting
distance matrix as a predictor variable in each local model.
The authors also noted that LW-PLSR and LOCAL did not
outperform PLSR and SVMR. According to the authors, LW-
PLSR and LOCAL performed an inadequate selection of
spectral neighbors. The authors stated that like other MBLs,
SBL should be used for modeling complex datasets where
non-linear relationships exist and they should be avoided in
datasets with low variability due to the selective nature of
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the spectral neighbors approach (Ramirez-Lopez, Behrens,
Schmidt, Stevens, et al., 2013).

Dangal et al. (2019) tested the SBL of Ramirez-Lopez,
Behrens, Schmidt, Stevens, et al. (2013) for the prediction
of SOC concentration using a continental MIR SSL. The
results of the SBL were compared with those from Cubist (see
Quinlan, 1993), PLSR, and random forests (Breiman, 2001)
models. The SBL model outperformed all the others in terms
of RPD and RMSE. Moreover, the SBL model resulted in a
slightly greater mean error than the Cubist model, but smaller
mean error than PLSR and RF models. The authors concluded
that the SBL model is a superior model for large and complex
datasets due to its narrower prediction interval and its ability
to provide an estimate of prediction uncertainty. Gupta et al.
(2018) evaluated the performance of different local model-
ing approaches and several distance metrics for the prediction
of SOC using a small VNIR SSL from India. Among the
modeling approaches, there was a LW-PLSR that used a cor-
relation coefficient-based distance metric to weigh spectral
neighbors. This model outperformed all the other approaches.
The authors determined that the higher prediction accuracy of
the LW-PLSR was due to the model assigning higher weights
to spectral neighbors with the same mineralogy as the test
observations.

Several authors have explored the combined utility of sub-
setting through local models and pedodiversity. Nocita et al.
(2014) applied a modified LW-PLSR for the prediction of
SOC from a large, international VNIR SSL. In addition to
spectral similarity metrics, these authors also used sand con-
centration and the geographic coordinates of the calibration
observations to find similar observations to those in the tar-
get area. These authors noted an inverse relationship between
the standard deviation of sand and SOC concentrations. They
attributed this relationship to higher texture variations at lower
SOC concentrations. The results of their study demonstrated
that using sand concentration to find the spectral neighbors
produced the most accurate models. Accordingly, the authors
suggested the use of sand concentration as subsetting criteria
given that spectral differences due to variations in sand are
more prominent in low SOC concentrations. Shi et al. (2015)
tested the utility of a geographically constrained LW-PLSR
for the prediction of soil organic matter concentration using a
national, VNIR SSL from China. The resulting model outper-
formed the unconstrained LW-PLSR. The authors explained
that the use of geographical information to select the cali-
bration observations removed uninformative spectra from the
calibration model and thus, improved its accuracy.

2.4 Wavelength selection

Wavelength selection aims at finding and using only the most
“informative” wavelengths from the calibration set, rather
than using the full spectra. Wavelength selection can result

in parsimonious calibration models with greater statistical
performance and interpretability (Ng et al., 2019; Vohland
et al., 2014). The selected wavelengths should have a good
signal/noise ratio, they should be linear, and their spec-
tral variation should be proportional to changes in the soil
property of interest (Gemperline, 2006). Overall, wavelength
selection is meant to remove uninformative wavelengths,
improve model interpretability, and decrease time complexity
for analyzing the spectral data (Ng et al., 2019).

Several wavelength selection approaches have been applied
in soil spectroscopy. Viscarra Rossel et al. (2008) used the
variable importance for projection (VIP) of Wold et al. (2001)
coupled with PLSR coefficients to select MIR wavelengths
for the prediction of SOC. These authors found that impor-
tant wavelengths for SOC include those related to O-H and
N-H bond stretching vibrations (∼3,400 cm−1); alkyl–CH2
asymmetric and symmetric stretches (∼2,930–2,850 cm−1);
carboxylic acid and ketones (∼1,725 cm−1); amides, aro-
matics, aliphatic acids, and alkyl groups of soil organic
material (1,600–1,400 cm−1); and those related to carbo-
hydrates and sugars (∼1,100 cm−1). Vohland et al. (2011)
coupled PLSR with feature selection based on a genetic
algorithm (GA-PLSR) for the estimation of various carbon
fractions and total SOC using VNIR. Genetic algorithms are
metaheuristic solutions to optimization problems that have
been widely applied in chemometrics (see Jouan-Rimbaud
et al., 1995; Leardi & Lupiáñez González, 1998). The genetic
algorithm used by Vohland et al. (2011) identified two peaks
related to water absorption (1,400 nm) and the hydroxyl
band (2,200 nm) as prominent features for the estimation of
SOC, which was in accordance with other soil spectroscopy
studies (e.g., Ben-Dor & Banin, 1995). The SOC was pre-
dicted with a PLSR, GA-PLSR, and SVMR model and all
approaches resulted in an R2 of .89 and RPDs of 2.68, 2.82,
and 2.77, respectively. Although the GA-PLSR and SVMR
predictions had a similar accuracy (RMSE = 0.27%), the
authors considered the GA-PLSR model to be more reli-
able given its slightly better overall performance. In a study
to predict SOC in smallholder farms in India using VNIR,
Clingensmith et al. (2019) tested the utility of two mul-
tivariate variable reduction methods commonly applied in
genomics, the sparse partial least squares regression (SPLSR,
Chun & Keles, 2010) and the heteroscedastic effects model
(HEM, Shen et al., 2014). Overall, the SPLSR (R2 = .65,
bias = −0.02%, RMSE = 0.42%, RPD = 1.69, RPIQ = 2.21)
and HEM (R2 = .63, bias = −0.04%, RMSE = 0.43%,
RPD = 1.64, RPIQ = 2.14) models improved predictions over
those of PLSR (R2 = .53, bias = −0.03%, RMSE = 0.48%,
RPD = 1.47, RPIQ = 1.92) models and were helpful for
model interpretation. Additionally, the authors noted that the
HEM and SPLSR algorithms could improve SOC predic-
tions compared with PLSR with calibrations constructed from
significantly fewer spectral predictors.
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Other wavelength selection approaches include the com-
petitive adaptive reweighted sampling (CARS) technique of
Li et al. (2009). The CARS technique builds multiple PLSR
models on observations selected randomly (∼80–90% of the
calibration set) using a Monte Carlo strategy. Wavelengths
of relatively small PLSR coefficients are then removed by
applying an exponential decreasing function (EDF). Subse-
quently, weights are calculated for each remaining wavelength
according to the PLSR coefficients and adaptive reweighted
sampling is conducted to further eliminate wavelengths in a
competitive manner. Vohland et al. (2014) applied the CARS
technique to build calibration models for the estimation of
SOC using VNIR and MIR data and compared the results of
cross-validation. The CARS-PLSR model was significantly
more accurate than the full-spectrum PLSR model for both
spectral ranges (CARS-PLSR: R2 = .74 and .91; RPD = 1.98
and 3.37, RMSE = 0.16 and 0.1%; Full-spectrum: 0.60 and
0.78, 1.58 and 2.12, and 0.21 and 0.15% for VNIR and MIR,
respectively). These authors suggested that CARS selects
wavelengths that are physically reasonable in a parsimonious
and statistically accurate way.

In accordance with Teófilo et al. (2009), Sarathjith et al.
(2016) conducted an ordered prediction selection (OPS) cou-
pled with an EDF and variable indicators (e.g., VIP) to
estimate SOC using VNIR spectra. The variable indicator-
based OPS approach followed by these authors successfully
found those meaningful wavelength regions for the estima-
tion of SOC. The regions identified include those related to
the first overtone of O-H stretches (∼1,400–1,900 nm), and
combination of the metal–OH bend associated with clay min-
erals (Clark, 1999; Viscarra Rossel et al., 2006; Vohland et al.,
2014). According to the authors, the OPS-PLSR improved the
prediction accuracy of SOC as compared to the full spectrum
approach but only slightly (Full-spectrum model for Alfisols:
R2 = .56, RPD = 1.53 and RMSE = 0.08%; OPS-PLSR
for Alfisols: 0.57, 1.54, and 0.08%). Ludwig et al. (2021)
investigated the effects of SOC% range, sample size, and
wavenumber region selection on the RMSE and RPIQ. They
used an automatic method to select optimal models from more
than 17,800 combinations of nine spectral regions between
7,000 and 1,030 cm−1 (MIR and long-range NIR) and spec-
tral preprocessing treatments. The regions included peaks
between 6,250 and 5,888 cm−1, 5,556 cm−1, 5,000 cm−1, and
between 4,167 and 4,545 cm−1, which are associated with
organic matter. Other regions considered were those between
3,500 and 3,000 cm−1 (related to OH in water and O-H, N-H,
and C-H bond stretching), 3,021 to 2,359 cm−1 (aliphatic CH
stretching), 2,359 to 1,694 (vibrations of carboxylic groups),
and 1,694 to 1,030 cm−1 (amides, associated water, carboxy-
late, and aromatic groups). All nine regions were used in at
least one optimal model for SOC% indicating the wide range
of useful information for the estimation of SOC% within the
MIR to long-range NIR spectral region. The authors found

that spectral pretreatment and wavenumber selection greatly
improved the accuracy of SOC% estimates of PLSR models
fitted with fewer observations (n = 71: RPIQ from 3.6 ± 0.3
to 5.4 ± 1.0 and n = 119: RPIQ from 3.9 ± 0.7 to 5.9 ± 0.8),
but there was no overall benefit of these techniques for PLSR
models fitted with more observations (n = 144 and n = 263).
The authors determined that model performance was related
to the calibration set variability, which had opposite effects
on the RMSE and RPIQ. Lower RMSEs were associated with
more homogeneous calibration models and higher RMSEs
with more heterogeneous models; however, as Clingensmith
et al. (2019) found, more heterogeneous models also had a
wider IQR resulting in higher RPIQs. The authors cautioned
that RPIQ and RMSE values should not be interpreted inde-
pendently in infrared studies, but rather in the context of their
associated IQR values (Ludwig et al., 2021).

3 LIBRARY TRANSFER

There are several efforts around the world for the collec-
tion of soil spectral data and the application of this data
for the assessment of soil carbon (see global: Brown et al.,
2006; Viscarra Rossel et al., 2016; national: Dangal et al.,
2019; Nocita et al., 2014; Wijewardane et al., 2018; regional:
Demattê et al., 2016; Terra et al., 2015; Vasques et al., 2010;
local: Dotto et al., 2018; Guerrero et al., 2016; Lucà et al.,
2017; Moura-Bueno et al., 2019; Sanderman et al., 2021). A
major reason for the construction and maintenance of a SSL
is its utility for building calibration models. Currently, there
is widespread interest in the development of SSLs; however,
there is debate as to what scale is most useful for developing
accurate calibrations. In this context, a global SSL refers to
a dataset containing observations (i.e., soil analyte data and
associated spectra) from around the world, including multi-
ple continents. A local SSL is a field-scale dataset. A regional
SSL has a greater geographic extent than a local library and
its observations are typically limited to a physiographic or
similar region (Brown et al., 2006; Sankey et al., 2008). A
regional or global SSL will typically contain a large number
of observations that represent heterogeneous soil types and
properties, allowing for the construction of large calibration
models. The large number of observations may improve a cal-
ibration model’s ability to accurately predict soil properties
across several geographic extents as compared to a calibration
model developed from a local SSL; however, the large size of
a calibration model does not guarantee good model perfor-
mance at a local site because soil variability is not constant
across sites. Moreover, a regional or global SSL may fail to
adequately capture the site-specific variability (Brown et al.,
2006; Guerrero et al., 2014; Lobsey et al., 2017; Shepherd
& Walsh, 2002). An important consideration when compar-
ing the performance of spectroscopic models developed from
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T A B L E 2 Summary of library transfer studies and whether library transfer resulted in an accurate prediction of the target soil carbon
concentration

General SSL Target area Accurate prediction of target area soil Ca Spectral Range Reference
Farm Farm Yes MIR Reeves et al. (2001)

Regional State Yes MIR McCarty et al. (2002)

Global Global No VNIR Brown et al. (2006)

Regional State No MIR Minasny et al. (2009)

Regional Farm Yes VNIR Kuang & Mouazen (2011)

National Farm Yes VNIR Peng et al. (2013)

National Regional No VNIR Gogé et al. (2014)

National National Yes VNIR Gomez et al. (2020)

National National Yes MIR Briedis et al. (2020)

National Continental Yes MIR Dangal & Sanderman (2020)

National Farm Yes MIR Sanderman et al. (2021)

Note. MIR, mid-infrared; SSL, soil spectral library; VNIR, visible and near-infrared.
aAccurate prediction determined based on a correlation coefficient ≥0.8 or a ratio of performance to deviation ≥2.0.

regional and global spectral libraries to site-specific models,
is that the former typically contain observations with a wide
range of analyte values, resulting in models that can lead to
high prediction errors (Stenberg et al., 2010). Therefore, in
addition to the prediction error, an objective evaluation and
comparison of model performance also requires metrics like
R2, RPD, and RPIQ.

Several studies have investigated the success of using a SSL
developed for one area to construct calibration models for a
different area. Table 2 summarizes some of these studies. The
application of an existing (i.e., general) SSL to a new area
(i.e., target area) is often referred to as library transfer. Trans-
ferring a general SSL to a target area can result in accurate
predictions if the observations in the SSL represent similar
pedodiversity to that of the target area (Gogé et al., 2014; Janik
et al., 2007; Wetterlind & Stenberg, 2010). Similar pedodi-
versity leads to greater mineralogical and chemical similarity
between the calibration observations from the existing SSL
and the unknowns from the new area, which results in greater
model performance (Guerrero et al., 2014; Stenberg et al.,
2010).

Reeves et al. (2001) performed library transfer of a local
MIR SSL containing 180 observations from two fields in
Maryland. The authors used a PLSR model constructed using
observations from one field to predict total organic carbon
for the other field. In both fields, the constructed calibration
model resulted in accurate predictions (Reeves et al., 2001).
Shepherd and Walsh (2002) used a VNIR SSL with more
than 1,000 observations from one region of Africa to predict
SOC across a different region, also in Africa. They obtained
accurate calibrations using multiplicative adaptive regression
splines (MARS) (Shepherd & Walsh, 2002). McCarty et al.
(2002) compared the prediction of two PLSR models con-
structed using a MIR SSL with observations from eight states

in the United States. One PLSR model was constructed using
257 observations from the general SSL to predict SOC for
16 unknowns from a new state. The other PLSR model was
constructed using 177 observations from the general SSL
to predict 60 randomly selected observations from the same
SSL. The authors obtained slightly higher R2 values (.98 vs.
.94), but also a higher prediction error (0.60 vs. 0.32%) with
the first model than with the second model (McCarty et al.,
2002).

Minasny et al. (2009) tested the applicability of three state-
wide calibration models developed from a regional Australian
MIR SSL to predict soil carbon. Each state-wide model was
used for prediction in the other two states. They determined
that their calibration models were state-specific and nontrans-
ferable, as evidenced by the high prediction errors (mean
of absolute error: 0.85 to 0.35%). These authors also cre-
ated a single model by combining observations from all three
states and used it to predict a subset of observations. They
found that the state models (R2: .79–.92, mean of abso-
lute error: 0.29–0.24%) outperformed the combined model
(R2 = .74, mean of absolute error: 0.36%) (Minasny et al.,
2009). Kuang and Mouazen (2011) constructed VNIR cal-
ibration models for three farms in Europe. They used a
farm-specific SSL to construct calibration models for the
prediction of SOC% across each farm. Additionally, they
compiled observations from the three farm-specific SSLs
to construct a single calibration model to predict SOC at
each farm. The model developed from the combined SSL
resulted in predictions with larger R2 and RPD values, but
also larger RMSE values than two of the three farm-specific
calibration models (combined model: n = 408, R2 = .83,
RPD = 2.49, RMSE = 0.54%; farm-specific1: n = 205,
R2 = .12, RPD = 1.07, RMSE = 0.19%; farm-specific2:
n = 128, R2 = .75, RPD = 2.00, RMSE = 0.30%). The authors
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attributed these results to SOC ranges being wider in the com-
bined SSL than in the farm-specific SSLs. The farm-specific
model constructed with the smallest number of observations
(n= 70), resulted in the largest R2 and RPD and largest RMSE
(R2 = .96, RPD = 4.95, RMSE = 0.62%). Gogé et al. (2014)
constructed a calibration model from a national VNIR SSL
to predict SOC for a small region in France. The national
SSL contained observations from the small region; however,
the region was under-represented. The resulting model did
not accurately predict SOC of the small region (RPD < 1.4,
RMSE = 0.733%, bias > −5.0%) (Gogé et al., 2014).

Using the same French national SSL as Gogé et al.
(2014), Gomez et al. (2020) constructed a PLSR model
to predict SOC of observations from Tunisia. Addition-
ally, the authors constructed a PLSR model using only
the spectral neighbors (subsetting by spectral similarity)
of the French national SSL to the Tunisian observations.
These two PLSR models also included a variation con-
sisting of log-transformed SOC values, which resulted in
a total of four PLSR models. For the full-set models,
the log-transformed model (R2 = .90, RMSE = 0.66%,
bias = −0.01%, RPD = 2.9, RPIQ = 2.6) outperformed
the untransformed model (R2 = .88, RMSE = 0.72%,
bias = −0.04%, RPD = 2.7, RPIQ = 2.4). Similarly,
the authors found that for the spectral neighbors models,
the log-transformed model (R2 = .92, RMSE = 0.57%,
bias = −0.01%, RPD = 3.4, RPIQ = 3.0) outperformed
the untransformed model (R2 = .93, RMSE = 0.54%,
bias = −0.07%, RPD = 3.6, RPIQ = 3.2). Finally, the
log-transformed, spectral neighbors model outperformed the
log-transformed, full-set model (R2: .92 vs. .90, RMSE:
0.57 vs. 0.66%, bias: −0.01 vs. 0.01%, RPD: 3.4 vs. 2.9,
RPIQ: 3.0 vs. 2.6, respectively). The authors concluded that
regardless of the model (full-set or spectral neighbors) using
log-transformed SOC data improved the predictions. Briedis
et al. (2020) compared the performance of three calibra-
tion models constructed from a national Australian SSL
(n = 567) to a PLSR model constructed from a national
Brazilian library (n = 402) to predict SOC of Brazilian soil
samples. These authors tested PLSR, SBL, and Cubist calibra-
tion models. The PLSR model constructed from the Brazilian
SSL (RPIQ = 5.86) outperformed all the calibration models
constructed from the Australian SSL (average RPIQ = 2.96).

Dangal and Sanderman (2020) tested whether a PLSR,
MBL, and Cubist calibration model constructed from an
American SSL (n > 55,000) could predict, among other sets,
a European dataset of 596 observations. Using calibration
models of spectra preprocessed with a baseline offset trans-
formation, all three models achieved a good fit according
to the R2 (> .85), RPIQ (0.72 –0.81), and RMSE (2.8–
3.15%). Additionally, the best prediction was achieved by the
Cubist model (R2 = .95, RMSE = 2.80%, RPIQ = 0.81, and
bias = −0.72%). Sanderman et al. (2021) performed a study

to determine whether changes in SOC concentration due to
management could be detected through MIR spectroscopy.
They used an American SSL (n > 80,000) and MBL to pre-
dict values for seven long-term research field sites in the
United States (smallest n = 28, largest n = 390) and con-
sequently determine whether the changes in SOC detected
through conventional laboratory analysis were also detected
by spectroscopic analysis. The calibration model constructed
from the national SSL was able to predict SOC values for most
sites very well (R2: .70–.94, RPD: 1.82–3.55, RMSE: 0.10–
0.33%, and bias: 0.08–0.38%) with the lower performance of
some sites likely due to a narrower range in SOC%. On aver-
age, results of their ensemble machine learning with MBL
predictions were significantly lower than the observed SOC
values (1.14 vs. 1.37%). Nonetheless, the spectroscopic mod-
els were able to detect changes in SOC similar enough to
those measured through conventional analysis in five of the
seven sites and reach the same conclusions on the effect of
agricultural management on SOC concentration. The authors
concluded that existing large MIR SSLs can be used by other
laboratories for the purpose of carbon monitoring.

Different techniques have been proposed to optimize
library transfer of general SSLs and thus, improve the predic-
tion accuracy of calibration models constructed from them.
Optimization techniques, such as adjusting the number of
observations and subsetting, can be applied to calibration
models for the purpose of library transfer. Additionally, incor-
porating target area observations into the calibration model
can improve model performance and thus, benefit more from
general library transfer for site-specific modeling (Barthès
et al., 2020; Brown, 2007; Lobsey et al., 2017; Sankey et al.,
2008; Shepherd & Walsh, 2002; Sila et al., 2016; Wetterlind
& Stenberg, 2010; Wijewardane et al., 2018).

Adding observations from the target area to a calibration
model constructed from a general SSL to predict new obser-
vations from the target area is referred to as spiking. Spiking
involves three general steps: (a) soil samples from the target
area are analyzed, using the same laboratory methods as the
observations in the calibration set and their observations are
recorded; (b) these target area observations (i.e., spiking set)
are added to the initial calibration set; and (c) the calibration
model is “recalibrated” (Guerrero et al., 2014). A variation of
spiking involves the replication of observations in the spiking
set, which is referred to as spiking with extra weighting. This
technique involves adding multiple copies of the target area
observations to the initial calibration set in order to increase
the leverage of the target area observations in the calibration
(Guerrero et al., 2014). Spiking can be performed in com-
bination with any of the optimization techniques previously
discussed. For example, a spiking set can be selected based on
its analyte value, pedogenic, or spectral similarity to the target
area set of unknowns, thus performing a subsetting-spiking
routine. Likewise, the number or proportion of the spiking
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T A B L E 3 Summary of library transfer studies that use spiking, spiking with extra weighting, and spiking and subsetting for the construction of
calibrations to predict soil carbon and whether at least one of these techniques resulted in decreased prediction error

Criteria General SSL Target area

Decreased
prediction error
compared to
calibration from
general SSL

Spectral
range Reference

Spiking Global Watershed Yes VNIR Brown (2007)

Spiking Global U.S. state Yes VNIR Sankey et al. (2008)

Spiking National Farm Yes VNIR Peng et al. (2013)

Spiking National Watershed Yes VNIR Gogé et al. (2014)

Spiking National to farm Farm to small region Yes NIR Guerrero et al. (2016)

Spiking Farm Continental Yes VNIR Nawar & Mouazen
(2017)

Spiking + weighting Global U.S. state Yes VNIR Sankey et al. (2008)

Spiking + weighting National Farm to small region Yes NIR Guerrero et al. (2014)

Spiking + weighting National to farm Farm to small region Yes NIR Guerrero et al. (2016)

Spiking + weighting Global Farm Yes VNIR Lobsey et al. (2017)

Spiking + subsetting National Farm Yes NIR Wetterlind & Stenberg
(2010)

Spiking + subsetting National Farm to small region Yes NIR Guerrero et al. (2014)

Spiking + subsetting Global Farm Yes VNIR Lobsey et al. (2017)

Spiking + subsetting National and regional Small region Yes MIR Briedis et al. (2020)

Spiking + subsetting Large region Small region Yes VNIR Ng et al. (2022)

Spiking + subsetting + weighting National Small region Yes MIR Barthès et al. (2020)

Note. MIR, mid-infrared; NIR, near-infrared; SSL, soil spectral library; VNIR, visible and near-infrared.

set can be varied, thus resulting in a calibration size-spiking
approach.

In general, when performing spiking, only a relatively small
number of target area observations are included in the spiking
set for the calibration model. This ensures that the model con-
tains observations representative of those that it will predict
(Nocita et al., 2015). However, as with a typical calibration,
the number of target area observations included in the spiking
set can be adjusted to optimize model performance. Typically,
the larger the spiking set, the greater the prediction accuracy
of the spiked calibration model. However, a larger number of
spiking observations implies a greater cost of analysis, which
decreases the low-cost advantage of soil spectroscopy for soil
analysis (Guerrero et al., 2014).

Table 3 summarizes some soil spectroscopy studies that
have used spiking and a combination of spiking and sub-
setting techniques for library transfer. The example studies
presented in Table 3 are not to be considered an exhaustive
representation of the literature on library transfer optimization
techniques. However, they are representative of techniques
discussed in this paper and of the diversity of techniques used
in recent studies.

McCarty and Reeves (2000) were some of the first to sug-
gest that inclusion of only a few observations from the target

area in the calibration set might improve model performance.
Similarly, Brown et al. (2006) hypothesized that spiking could
improve the effectiveness of library transfer. Moreover, they
also hypothesized that spiking for library transfer could result
in more accurate predictions than using only observations
from the target area. These hypotheses were supported by
the work of Brown (2007), who predicted SOC concentration
for a Ugandan watershed through library transfer of a global
VNIR SSL (n = 3,794) spiked with local observations (n ≤

206). Brown (2007) found that spiking the calibration model
constructed from the global SSL with observations from the
watershed improved model performance and, in some cases,
outperformed a calibration model constructed only from the
watershed (i.e., target area) observations (RMSE = 0.53
and 0.59%, respectively, for model with n spiking and n
watershed = 206).

Sankey et al. (2008) used the same global SSL as Brown
(2007) to compare target area calibration models to global
SSL models and global SSL models spiked with up to 234
observations. Using these models, the authors predicted SOC
concentration for three sites in Montana. The best model
performance for each site (SEP = 0.380, 0.770, and 2.62%)
was obtained by the spiked global SSL calibration model.
These authors also tested the influence of weighting in the
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spiked calibration model by applying lower weight to the
global observations than to the target area observations. Over-
all, this approach slightly improved SOC prediction accuracy
as compared to the unweighted, spiked model. The authors
suggested that the optimum weight for highest prediction
accuracy depends on the variability of the target area and the
soil property (Sankey et al., 2008).

Wetterlind and Stenberg (2010) compared the performance
of several small, farm-level calibration models (n = 25)
with those constructed from a national Swedish NIR SSL
(n = 396) for the prediction of SOC. The national SSL mod-
els consisted of a full-set calibration and a spectral neighbors
model (n = 50). Additionally, both full-set and spectral neigh-
bors models were also tested in their spiked variant (spiked
with ≤25 farm observations). The spectral neighbors model
did not outperform the full-set model. The spiked variants
of the full-set and spectral neighbors models outperformed
their nonspiked counterparts. Moreover, both spiked variants
resulted in comparable prediction accuracy to that of the farm-
specific calibration models. Additionally, the spiked variant of
the spectral neighbors model outperformed the spiked vari-
ant of the full-set model. They attributed these findings to the
ability of the spectral neighbors model to integrate the tar-
get area observations more easily due to its smaller size, as
compared to the full-set model.

Peng et al. (2013) compared the performance of cali-
bration models constructed from a national Danish VNIR
SSL (n = 2,688) to predict SOC for a field in Denmark.
These authors constructed calibration models using sub-
sets of the national SSL based on observations that were
geographically closest (n = 84), pedologically most simi-
lar (n = 96), and spectrally most like those of the target
area (n = 100). Additionally, they spiked the national SSL
with a random set of 30 observations from the target area
(n = 2,718). The best predictions on the target area unknowns
were from the geographically closest subset as well as the
spiked national calibration models (each with RMSE = 0.19%
and RPD = 3.7). Additionally, the spiked calibration outper-
formed the full-set national SSL (RMSE = 0.19 and 0.22%,
respectively) (Peng et al., 2013). Gogé et al. (2014) con-
structed a calibration model using a French national VNIR
SSL (n = 2,126) to predict SOC for a watershed in France.
Moreover, the authors tested the spiked version of this model
with a spiking set ranging from 10 to 94 observations. Spik-
ing the calibration model decreased the RMSE and increased
the R2 for SOC concentration as compared to the nonspiked
calibration model (RMSE = 0.733%) with the lowest error
achieved by the spiked calibration model with the largest
spiking set (RMSE = 0.579%).

Guerrero et al. (2014) used a national SSL from Spain
to construct calibration models for the prediction of SOC
across sites in Spain, the United Kingdom, and Sweden. These
authors tested the effect of spiking the initial calibration mod-

els with extra weighting. These authors also evaluated 13
different subsetting strategies to select the spiking set, as well
as the effect of different numbers of observations used to con-
struct the calibration models from the national SSL. Results
of this study indicated that spiking improved the prediction
accuracy of all models. Moreover, differences in performance
of the spiked models were due to the subsetting approach used
to select the spiking set. The best predictions were achieved
when the spiking set was selected according to spectral neigh-
bors. The accuracy of the predictions was further improved by
extra weighting of the spiking set. Moreover, smaller spiked
calibration models outperformed larger spiked models.

Guerrero et al. (2016) constructed calibration models from
eight national, regional, and local SSLs from Spain and Swe-
den to predict SOC concentration for 10 sites in Spain and
one in the United Kingdom. These authors observed that the
fewer the observations used to construct the initial calibra-
tion models, the greater the effect of spiking. That is, there
is an inverse relationship between the calibration size and the
effect of spiking on model performance. These results are in
accordance with those of Guerrero et al. (2014). Furthermore,
the fewer the observations for the initial calibration model, the
smaller the effect of spiking with extra weighting. Overall, the
highest prediction accuracy resulted from calibration models
with extra weighting. These authors explained that small SSLs
can be just as effective in yielding high prediction accuracy
through spiking with extra weighting, and thus, large SSLs
are not needed for local assessment of SOC concentration
(Guerrero et al., 2016).

Lobsey et al. (2017) combined spectral subsetting with
spiking to improve the statistical performance of small cali-
bration models for SOC concentration of two sites in Australia
and New Zealand. These authors selected a subset of represen-
tative observations from the target area to spike a calibration
model developed from a global VNIR SSL (n = 17,928).
Results of this study showed that spiking the global SSL with
as few as 20 target area observations was sufficient to yield
an accurate prediction of SOC concentration at both sites
(RMSE = 0.48 and 1.16%). The spiked calibration models
performed as well or better than those containing only tar-
get area observations (n ≤ 300) (Lobsey et al., 2017). In a
study by Briedis et al. (2020), using a national Australian
SSL (n = 567) spiked with as few as 20 target area observa-
tions (8% of Brazilian regional SSL), improved the prediction
accuracy of total OC over using only the Australian SSL and
local-type models calibrated with spectrally similar observa-
tions. The highest prediction accuracy achieved was using
the full, target area calibration model (RMSE = 0.317% and
RPIQ = 5.86). Moreover, the spiked Australian SSL model
performed similarly to a model constructed using only the
spiking set of 20 target-area observations (RPIQ = 4.74 and
4.49, respectively). The authors concluded that a proper selec-
tion of a small, spectrally similar calibration set can result in
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F I G U R E 3 General decision chart for the selection of optimization techniques for spectroscopic modeling of soil organic carbon (SOC)
concentration. SSL, soil spectral library

accurate and cost-effective OC prediction using MIR (Briedis
et al., 2020).

Barthès et al. (2020) used a French national MIR SSL to
predict soil inorganic carbon (SIC) in a region of France. The
authors used the SBL algorithm to select spectral neighbors
and performed spiking with extra weighting to construct a
calibration model. Using only observations from the national
SSL yielded an accurate prediction (SEP = 0.5%). Nev-
ertheless, the prediction accuracy was improved through
spiking with 10 observations, extra-weighted 40 times
(SEP = 0.33%). The calibration model constructed using only
local target area observations yielded less accurate results than
the spiked calibration (SEP = 0.36%). In a more recent study,
Ng et al. (2022) compared the effectiveness of spiking and
subsetting (MBL and a localized PLSR) for the prediction of
SOC in small regions of Australia using a large regional VNIR
SSL (n = 1,867). The localized PLSR models, constructed
with ≥20 observations (n = 20; RPIQ: 0.23–0.71, RMSE:
0.38–1.07%, bias: −0.11 to −0.01%), outperformed the tar-
get area (n = 20; RPIQ: 0.23–0.67, RMSE: 0.36–1.31%, bias:
−0.17 to −0.00%) and spiked regional models (n = 20; RPIQ:
0.19–0.63, RMSE: 0.32–1.41%, bias: −0.77 to −0.02%). The
authors concluded that spiking is dependent on the spectral
similarity between the general SSL and the target area obser-
vations. These authors also concluded that calibration models
created through spiking were overall, not better than mod-
els constructed using only target area observations (Ng et al.,
2022).

The studies described demonstrate that various factors
influence the effectiveness of calibration optimization tech-

niques. The success of calibration optimization to improve
prediction accuracy depends on SOC concentration range, the
sample selection scheme used to build the calibration set,
the modeling approach, and the spectral variability related
to the pedodiversity of the calibration set. Additionally, the
effectiveness of optimization techniques is influenced by the
size of the SSL available for calibration. When constructing a
calibration model for library transfer, optimization can be per-
formed through subsetting, spiking, or a combination of both;
however, considerations for the proportion of representative
observations in the calibration set must be made. Figure 3
provides a generalized decision chart for the appropriate opti-
mization technique. The chart presents conditions and factors
required for successful optimization using the techniques dis-
cussed. The reader should note that the general guidance
provided here is based on studies presented in this work and
that it may be necessary to consider other conditions before
selecting a technique.

4 CONCLUSIONS

The analysis of soil carbon through soil spectroscopy bene-
fits from optimization procedures to improve the statistical
performance of calibration models. The approaches for model
optimization discussed in this work included the selection of
calibration set size, the creation of targeted calibration models
through subsetting, and spiking.

Calibration set size influences model performance and
has implications for the cost-savings potential of soil
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spectroscopy. Obtaining a large SSL is not always an option
as studies may have limited resources for data collection and
analysis, making it crucial to consider strategies that allow
for a reduced number of observations without a decrease in
model performance. In general, model performance improves
with increasing calibration size, until it stabilizes and there is
no significant improvement with additional observations. The
optimal calibration size depends on the initial calibration set
size and the sampling scheme used to select the calibration
set. The reduction in prediction error by the addition of obser-
vations diminishes as the initial calibration size increases.
That is, the added benefit of new observations is greater for
smaller calibrations than larger ones. If affordability and com-
putational efficiency are considered, starting with a smaller
calibration set of at least 30 observations can be much more
efficient than starting with a large set and may yield equally
good results.

In scenarios where soil spectral libraries already exist, it
can be useful to identify the best technique for selecting the
calibration set. If the spectral library is homogeneous in terms
of its spectral variability, then random sampling can perform
as well as stratified sampling. However, when the spectral
variability is large, spectrally stratified sampling generally
improves model performance. The spectrally stratified sam-
pling approach has a greater influence on model performance
when the models are small, so it is worthwhile to combine this
optimization technique with an approach to define an optimal
calibration size.

Reducing the range of variability in analyte concentrations
can improve model performance. Subsetting a calibration set
by analyte value is an effective optimization technique when
the spectral variability is low. Therefore, subsetting by analyte
value should be avoided in SSLs derived from soil samples
with highly diverse spectrally active physical and chemical
properties. Additionally, statistical dispersion is known to
influence model performance, with a smaller dispersion (i.e.,
narrower data range) resulting in a reduction in RMSE. There-
fore, it is critical that authors used and present suitable metrics
of statistical performance when comparing across models
with calibration data of varying range (e.g., R2, RPD, RPIQ).

If the spectral variability in the SSL is expected to be
large, due to diverse mineralogy, large spatial extent, or other
factors known to influence the analyte being assessed, then
subsetting to reduce this variability within calibration sets can
lead to better model performance. In these scenarios, utilizing
criteria based on soil-forming factors that influence miner-
alogical properties, may be the most effective technique to
improve model performance. The criteria used in these cases,
should reduce within-subset and increase across-subset spec-
tral and analyte variability. Subsets based on a single criterion,
such as taxonomic soil order or horizonation, can contain
spectral features that are not mutually exclusive; therefore, a
multi-criteria approach can be more useful.

Subsetting by spectral similarity to the prediction set (i.e.,
through local modeling) is another effective technique for
calibration optimization; however, as with soil-related cri-
teria, it should be avoided in datasets with low spectral
variability. Wavelength selection can result in parsimonious
calibration models with better model performance and inter-
pretability than the full-set models. Moreover, investigations
on wavelength selection methods can guide the development
of new spectroscopic instruments. The effectiveness of sub-
setting for improving model performance depends on the
modeling approach. Utilizing a machine or deep learning,
which can handle complex relationships in high-dimensional
space, is generally as or more effective in improving model
performance as compared to subsetting by analyte value,
pedodiversity, or spectral similarity.

The capacity of an existing SSL to perform well in a new
target area, depends on the spectral and analyte similarity to
the target area unknowns. In library transfer, similar pedodi-
versity leads to greater mineralogical and chemical similarity,
which in turn leads to greater spectral and analyte similar-
ity between the calibration observations from the existing
SSL and the target unknowns; thus, improving the statisti-
cal performance of the calibration models. Spiking can be
performed in addition to or in combination with any of the
other optimization techniques to improve model performance
for library transfer. Spiking with representative target area
observations improves model performance. Typically, the pre-
diction accuracy of the spiked calibration model increases as
the size or proportion of the spiking set increases, because
a larger proportion of spiking observations results in greater
representativeness of the target unknowns. Spiking is most
useful in scenarios where target area SSLs are too small
(n < 30) to produce accurate predictions. In these scenarios,
using a spiked general SSL calibration model, outperforms
the target area model. If target area observations are lim-
ited, spiking with extra weighting is a cost-effective method
to improve model performance. Spiking with extra weight-
ing reduces the need to add/collect new target observations
because it duplicates existing target-area observations. Spik-
ing with subsetting is most effective when using a criterion
that best separates spectrally active features related to the soil
property being predicted; thus, it is important to couple sub-
setting by spectral similarity with spiking, particularly when
the SSL to be transferred is spectrally different from the target
area.

Optimization techniques can further improve the efficiency
and reduce the cost of soil spectroscopy for soil carbon analy-
sis and should be studied further. These techniques are useful
for improving the model performance of calibrations con-
structed from both small and large SSLs. In cases where a
large SSL already exists, optimization techniques represent a
cost-effective solution to improve the effectiveness of library
transfer. In areas where SSLs are rare or absent, optimization
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techniques can support new data collection efforts as well as
the construction of more parsimonious calibration models.
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