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A COMPARISON OF NONDESTRUCTIVE TESTING TECHNIQUES FOR RIGID 

AND FLEXIBLE PAVEMENTS 

 

Trenton B. Ellis 

 

ABSTRACT 

In designing new pavements, engineers rely on many different measures to characterize 
the average traffic, climate and soil conditions of the region.  Of those, soil conditions are 
the most elusive, but are also the most crucial for designing a pavement of proper 
thickness and stiffness.  This problem is compounded when the design is for an overlay 
instead of a new pavement.  For overlay designs, engineers require a quantitative 
characterization of the strength of the existing pavement as well as the underlying soil.  
Especially for new Mechanistic-Empirical design procedures, direct measures and/or 
estimates of pavement stiffness are essential inputs.  A variety of methods exist for 
measuring the appropriate strength properties for soil, concrete and asphalt.  The most 
traditional method – regardless of the material – is to retrieve a sample of the material 
from the field and use laboratory tests to determine the strength of the material, which is 
then considered representative for other materials near the location from which the 
sample was taken.  The problem with this approach is that, in the field, construction 
materials experience a confining pressure from the other materials that surround them; 
even when carefully removed, the strength properties measured in the laboratory are not 
truly representative of the strength of the materials in the field.  Nondestructive testing 
(NDT) refers to a collection of methods that are used to estimate material properties 
without removing or otherwise damaging the material.  Generally, NDT is faster, cheaper 
and less intrusive to the traveling public.  Two NDT methods, the falling weight 
deflectometer (FWD) and the spectral analysis of surface waves (SASW), have both 
become popular for their ability to estimate in-situ (in-place) stiffness properties of 
pavement materials.  Each method measures a different local response (i.e. deflection or 
wave propagation) caused by a specific load.  The measurement of the local response is 
then used to “backcalculate” the strength property that is desired.  The appropriate 
backcalculation technique is different for each test, and for each test the appropriate 
technique varies according to the type of material on which the test is being performed 
and for which stiffness is sought.  This study proposes to assess the validity of several 
backcalculation procedures associated with these two NDT methods and to compare their 
relative appropriateness in backcalculating pavement stiffness.
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1. INTRODUCTION 

 

1.1. Background 

Maintaining structurally and functionally sound roads is an expensive endeavor in the 

United States and around the world.  Much of the current transportation infrastructure in 

the United States was built in the 1960s and 1970s, and is reaching the end of its design 

life.  There is a need for roadway rehabilitation on a large scale, and maintenance 

measures are most effective when pavement distresses are detected early on and treated 

properly before more costly damage occurs. 

 Laboratory tests can be used for detecting structural deficiencies in subgrade soil 

and pavement layers.  For these tests, a sample of the material in question is excavated 

from the roadway and taken to the laboratory for examination.  Care must be taken when 

collecting samples in the field because the stresses applied to the specimen during 

excavation can alter the material properties under investigation.  Indeed, removing the 

specimen from the field will inevitably result in measured material properties that stray 

from those that exist in the field. 

 A more favorable method is to conduct tests in the field without removing 

materials from the roadway.  Methods collectively known as nondestructive tests (NDT) 

have become increasingly popular in recent years because of their speed, low cost, and 

reliability (1).  By testing the materials in-situ (in-place), field conditions can be 

maintained and represented in the results.  The falling weight deflectometer (FWD) and 

the spectral analysis of surface waves (SASW) are two types of NDT commonly used for 

pavement analysis. 
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1.2. Problem Statement 

Nondestructive testing techniques such as FWD and SASW have gained popularity 

because of their ease of use as well as the potential accuracy of their results.  As these 

tools have increased in use, a number of different techniques for reducing their field data 

have been proposed.  The process of reducing field data from an NDT into more pertinent 

information about the roadway is commonly referred to as backcalculation. 

 A growing number of backcalculation methods exist to accommodate variables 

such as the type of test being used, the underlying theory used to model the pavement 

structure, and the amount of computing power that is available.  These accommodations, 

while appropriate, have resulted in a large collection of backcalculation methods that do 

not lend themselves to a simple comparison.  One straight-forward manner of comparison 

is to perform field tests on a single section of pavement and use several different 

techniques to reduce the common data set.  Then, the ability and/or accuracy of each 

method to backcalculate the engineering properties of the pavement can be gauged by 

comparing the backcalculation results to known parameters of the pavement structure on 

which the field tests were conducted. 

If the number and variety of backcalculation procedures that are compared is large 

enough, then the results of the comparison could be used to gauge the effect of factors 

such as type of test being used, underlying theory used to model the pavement structure, 

and/or available computing power upon the accuracy of the final results.  This study is 

limited to backcalculation procedures for FWD and SASW tests, but methods for 

reducing data from both rigid and flexible pavements will be considered for each type of 

test.  Backcalculation procedures to be considered include closed form solutions via 
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spreadsheet, database software, and iterative software.  The set of data reduction methods 

that is used for this study will be chosen so that it is large enough for a worthwhile 

comparison between the types of tests being used (FWD and SASW) and between the 

different types of backcalculation software inherent to each method. 

 

1.3. Objectives 

The objective of this research is to compare various backcalculation techniques for both 

FWD and SASW testing of rigid and flexible pavements.  This has been accomplished by 

completing the following related objectives: 

• Identify commonly used backcalculation procedures for data from FWD 

and SASW field tests. 

• Assess the ability and/or accuracy of several different procedures for 

evaluating structural properties of pavement layers (both individually and 

as a single effective layer) and underlying subgrade by using several 

different methods to reduce the data from a common set of field tests. 

• Compare the results from the backcalculations to known properties of the 

pavement on which the field tests were run.  Report the relative ease and 

accuracy of each of the techniques considered at reducing field test data. 

 

1.4. Experimental Plan 

The objectives of this study will be achieved by completing the following tasks: 

1.4.1. Task 1: Literature Review 
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A comprehensive literature review of FWD and SASW tests will be undertaken to gain 

an understanding of the backing theories, field procedures, and common backcalculation 

techniques for each test.  It is not the goal of this research to provide a detailed 

explanation for the backing theory of each test.  Instead, this report will describe the 

theories in sufficient detail so that the reader may gain a working knowledge of how 

and/or why the corresponding backcalculation procedures work. 

 Similarly, this report will describe the manner in which field tests are performed 

for FWD and SASW testing.  This section of the literature review is included so that 

readers who are unfamiliar with the equipment and/or procedures involved with each test 

may become sufficiently aware of each so that references to these things later on the 

report will not be a source of confusion. 

 Finally, for FWD and SASW, a number of backcalculation procedures will be 

described in detail.  The two goals of this portion of the literature review are to introduce 

the reader to the most common types of backcalculation procedures that are currently in 

use for FWD and SASW tests and to provide an explanation of how these procedures 

work.   

 

1.4.2. Task 2: Data Analysis 

1.4.2.1. Software Acquisition 

Based upon results from the literature review, a number of different types of software 

will be sought for use in the comparison of this study.  Software for the study will be 

limited by what is available for use at either no cost or a modest price.  In addition, some 

procedures employing database software may not lend themselves to this study for the 
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reason that the software is available, but the database that the software uses is not.  

Computer processing speed has been an issue to consider with some procedures in the 

past, but initial thoughts are that modern computers possess such high processing speeds 

that this will not be a limiting issue for the present study. 

 It is anticipated that some closed-form solution backcalculation techniques will be 

most efficiently utilized via spreadsheet applications such as Microsoft Excel.  For this 

reason, a number of spreadsheets will likely be programmed with applicable closed-form 

solutions for the comparison of this study.  These spreadsheets, along with the software 

that is obtained according to the preceding paragraph, will comprise the backcalculation 

techniques studied during the comparison. 

 

1.4.2.2. Collection of Field Data 

Field data from actual FWD and SASW tests will be obtained in order to compare the 

backcalculation methods of the study.  Raw data will be collected from past and ongoing 

research at the University of Arkansas as well as records from the Arkansas State 

Highway and Transportation Department (AHTD). 

 

1.4.2.3. Perform Backcalculations 

After a sufficient number of spreadsheets and other software have been collected for 

backcalculation, the raw data from the FWD and SASW tests will be used to test the 

ability and/or accuracy of each applicable backcalculation method to determine various 

properties of the pavement structure.  This process will be repeated as many times as is 

necessary to ensure that the backcalculation techniques are being used correctly. 
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1.4.2.4. Document Results from Backcalculations 

Once the backcalculations have been performed using all of the techniques under 

investigation, the calculated pavement properties will be organized in a manner 

conducive to comparison.  The results obtained using each technique will be 

accompanied by notes that outline the general instructions for using the method as well as 

potential difficulties specific to that method.  The end result of this step will be a table of 

raw output data and user notes for each of the backcalculation techniques investigated in 

this study. 

 

1.4.3. Task 3: Report Findings 

The final phase involves the actual comparison of the results from the backcalculations.  

This comparison may range from broad observations such as user friendliness and 

outlying results to more advanced observations from statistical analysis.  After all 

comparisons have been drawn, a concise summary of the findings will be presented that 

identifies the most pertinent findings from this study as well as unanswered questions that 

may be relevant for future studies. 
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2. LITERATURE REVIEW 

 

2.1. Nondestructive Testing Background 

Nondestructive testing (NDT) refers to a collection of field testing methods that facilitate 

the in-situ (in-place) testing of materials instead of conventional laboratory testing.  NDT 

is attractive to highway engineers for several reasons.  Testing subgrade and pavement 

materials in-situ preserves the confining stresses that are present in the field, whereas 

laboratory testing requires the removal of a sample and consequently introduces a change 

in confining stress.  In addition, NDT requires significantly less time and money to 

estimate the same material properties that would otherwise be measured in the laboratory.  

Thus, NDT may provide a relatively fast, inexpensive and accurate alternative to 

laboratory testing. 

 A great deal of the current highway system in the United States was constructed 

in the 1960s and the 1970s, and much of that system is beginning to reach the end of its 

design life.  In order to maintain a functional transportation infrastructure, maintenance is 

and will be required on a large scale.  The cost of this maintenance effort can be 

minimized if highway engineers are able to obtain a more detailed knowledge of the 

structural condition of the aging highway system.  Laboratory tests are the conventional 

method for measuring the structural properties and stiffness of pavements, but the time 

and expense associated with laboratory testing allows only a minimal amount of locations 

to be assessed.  NDT, on the other hand, can estimate the same material properties as 

laboratory tests, but at a much larger number of locations and at a fraction of the cost.  

Integrating NDT into standard highway evaluation techniques has and will continue to 
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improve the extent to which the structural capacity of existing highways can be 

measured. 

 NDT has been practiced in several different forms for a number of decades, but 

two types of NDT have emerged as the front-runners in recent years: the falling weight 

deflectometer (FWD) and the spectral analysis of surface waves (SASW).  Currently, the 

FWD is the type of NDT that is preferred by most agencies.  The FWD involves dropping 

a weight on the ground and “backcalculating” the stiffness of the pavement and/or 

subgrade from the measured pavement surface deflections.  If the pavement system 

consists of multiple layers, a rough idea of the thickness of each layer must be known 

prior to backcalculation so that iterative bounds may be set. 

 SASW is also emerging as a valuable tool for highway engineers.  This method is 

also used to determine the stiffness of pavement and/or subgrade from an impulse load.  

The main differences are that SASW can also determine the thickness of multiple layers, 

and that SASW estimates these properties from measurements of wave propagation.  The 

techniques for measuring the necessary characteristics of wave propagation and for 

converting those measurements to a usable output (inversion) have been advanced greatly 

in the past two decades.  Advancements in technique and computing power have and will 

continue to make SASW a considerable alternative and/or compliment to the FWD. 

 Both FWD and SASW testing are promising candidates for providing estimates of 

pavement and subgrade stiffnesses, which are the most important input parameters used 

by engineers to plan maintenance of existing roadways.  These tests will become 

increasingly valuable with time as mechanistic-empirical (M-E) design becomes more 

popular in the United States.  M-E design software requires extensive inputs such as 
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subgrade stiffness that will need to be closely approximated for each location that uses 

the software.  NDT will facilitate the development of much less expensive and more 

representative catalogs of local subgrade properties for M-E design of new pavements. 

 

2.2. Falling Weight Deflectometer 

The falling weight deflectometer (FWD) is an “impulse load” variety of NDT, and it is 

currently the most popular type of NDT that is practiced by highway officials in the 

United States.  The FWD operates much in the way that its name implies.  Some amount 

of mass is dropped from a specific height in order to impart a particular magnitude of 

impulse load onto a strategic location on the pavement surface.  That stress causes a 

strain through the pavement and subgrade, and several sensors are positioned on the 

pavement surface at precise horizontal distances from the location of the impulse load to 

measure the vertical deflection at each point.  The vertical deflections measured by each 

sensor define a single deflection basin that is caused by the falling mass.  The stiffness of 

the pavement and/or subgrade is then backcalculated from the magnitude of the imparted 

load and the size of the measured deflection basin. 

 

2.2.1. Theoretical Background 

The type of backcalculation that is used to estimate pavement and/or subgrade stiffness 

depends upon the assumptions that are made and also upon the type of theoretical model 

that is used to idealize the pavement structure. 

 The most significant assumption that is commonly made for FWD 

backcalculation is that despite the dynamic nature of the load, the pavement materials 
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react as though the load is purely static.  That is, the loading rate is assumed to be low 

enough so that pavement materials experience no dynamic effects such as damping.  This 

assumption is often made in order to simplify the mechanics that are utilized for 

backcalculation.  If, however, a significant time lapse occurs between the peak stress and 

the peak deflection, the assumption of static loading is not appropriate.  Generally, static 

behavior is a more realistic assumption for pavements with stiff concrete or thick asphalt 

layers than for pavements comprised of a thin asphalt layer (2). 

 The mechanical behavior of soil is affected by a variety of factors, including (i) 

the shape, size and mechanical properties of the individual soil particles, (ii) the 

configuration of the soil structure, (iii) the intergranular stresses and stress history, and 

(iv) the presence of soil moisture, the degree of saturation and the soil permeability.  

Considering the myriad factors that influence the mechanical behavior of soil, it is no 

surprise that naturally occurring soils exhibit non-linear, irreversible and time-dependent 

stress-strain behavior.  Furthermore, naturally occurring soil masses almost always 

exhibit anisotropic and non-homogeneous material properties.  Any analysis that 

accounts for all of these factors - if possible - would be far too rigorous and time-

consuming to be practical.  Therefore, several simplifying assumptions other than static 

behavior are also commonplace for FWD backcalculation (3). 

 As the science of theoretical soil mechanics has advanced in recent decades, a 

number of prudent assumptions for idealizing in-situ soil behavior have emerged.  In 

general, a prudent assumption is one that simplifies analytical computations while 

introducing a minimal amount of error in the corresponding results.  While the models 

and assumptions used for different backcalculation methods may vary slightly, the most 
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common and important assumptions for any idealization of naturally occurring soils are 

as follows (4): 

1. The soil is assumed to be an elastic, homogeneous, isotropic medium. 

2. The soil is assumed to act as an ideal half-space, bound by a horizontal ground 

surface. 

3. The material obeys Hooke’s law of proportionality between stress and strain. 

4. The deformations of the soil medium are so small that they can be neglected in 

setting up equilibrium conditions. 

 The previous assumptions idealize the soil structure on a micro-level, but there is 

also a need to model the soil structure on a macro-level.  This can be accomplished by 

employing one of two common models.  The simpler of the two methods was introduced 

by Winkler, and it is commonly known as the dense liquid model.  For this model, the 

subgrade is assumed to act as a field of springs that do not interact with each other.  That 

is, each spring’s movement is only affected by the load directly above it, and springs do 

not share any of their load with neighboring springs.  The spring constant, k, is called the 

coefficient of subgrade reaction.  Winkler’s method is the most commonly used model 

because of its computational simplicity.  More information on the development of this 

model is provided elsewhere (5). 

 Most backcalculation procedures are derived not from Winkler’s original model, 

but instead from amendments to that model that were proposed by Westergaard (6).  

Westergaard accepted the soil behavior that was proposed by Winkler, but advanced the 

model by including a rigid plate at the top of the half-space to represent a rigid pavement.  

Westergaard’s studies provide a simplified means to find the maximum tensile stress in a 
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concrete slab (plate) under point loads at mid-slab, slab edge, and slab corner.  The 

methods used by Westergaard are not well documented, but a detailed review of his 

results and their applicability is available (7). 

 The dense liquid idealization proposed by Winkler does have its shortcomings.  

For instance, soils with any degree of cohesion do not obey the assumptions of a Winkler 

foundation.  That is, the soil directly underneath a point load is not the only soil that 

experiences a vertical deflection.  Instead, a somewhat continuous deflection basin forms 

around the point load.  This type of deflection basin was originally described by 

Boussinesq (8), and it leads to the second type of model for macro-level behavior of soils: 

the elastic continuum model.  This model, in contrast to the Winkler model, assumes 

continuous behavior throughout the soil half-space.  Both two- and three-dimensional 

analyses may be performed using the Boussinesq distribution and plate theory to model 

pavement-soil systems.  The elastic continuum (also called elastic solid or ES) model 

provides a more accurate representation of in-situ behavior, but the accompanying 

analysis involves mathematics that are often too complex to be practical (3).  

Backcalculation procedures that do employ the ES model are mostly based off the works 

of Panc (9) and Losberg (10), which model an infinitely long slab on an elastic 

foundation. 

 

2.2.2. Field Procedures 

FWD apparatus are usually trailer-mounted and carried by a vehicle with onboard 

computer processors.  Two commonly used commercial FWDs, the Dynatest and KUAB 

FWDs, are shown in Figures 1 and 2, respectively (11).  During field testing, the FWD is 
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driven to the testing location and positioned so that the load plate is above the location to 

be tested.  For the purposes of determining pavement layer moduli, rigid (or asphalt-

overlaid rigid) pavements are tested at slab interiors and flexible pavements are tested in 

the outer wheel path of the outer lane.  When flexible (or asphalt-overlaid) pavements are 

tested, it is important to record the temperature of the asphalt pavement at least 3 times 

during a full day of testing.  The temperature measurements can be used to calibrate the 

measurements for a more accurate backcalculation.  In every case, tests are conducted 

every 100 to 500 ft.  In general, longer intervals are more appropriate for newer 

pavements and vice versa (11). 

 

 

FIGURE 1 Dynatest FWD (11) 
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FIGURE 2 KUAB FWD (11) 

  

 Once the FWD is in place, the loading begins.  After the load plate and deflection 

sensors are hydraulically lowered to the pavement, a seating load is applied to ensure 

proper placement of the load plate.  The magnitude of the pre-load varies for different 

equipment, but is usually between 8 to 18% of the maximum impulse load.  Once the pre-

load is performed, a series of impulse loads are performed that mimic the design load of 

the roadway being tested.  In other words, a larger peak load is applied for roads with 

predominantly truck traffic than for roads with relatively light traffic loads.  The 

magnitude of the load that is delivered by the FWD is altered by changing the amount of 

mass that is dropped and by changing the height from which it is dropped.  A load cell at 

the load plate reports the delivered load.  Peak loads and deflections are stored in the 
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onboard computer for backcalculation, the equipment is hydraulically lifted back to the 

trailer, and the entire apparatus is moved to the next testing location (12). 

 At least three different loadings are usually performed at each testing location.  

This manner of testing allows highway officials to identify any non-linear response of the 

foundation, and it also helps to ensure that at least one of the deflection basins is 

satisfactory for backcalculation.  Typical target loads for FWD testing on highway 

pavements are 6000, 9000, and 12000 pounds (11). 

 At least two drops should be performed at each target load to check for any 

permanent deformation under the loading plate.  If the difference in the deflections 

caused by two loads of the same magnitude at the same location is greater than 3% for 

any sensor, the apparatus should be moved and the applied force should be reduced (1). 

 It is worth noting that existing pavement distresses can and do affect the 

deflections that are measured during FWD testing.  Figure 3 shows an example in which 

alligator cracking causes higher deflection readings.  An effort should be made to avoid 

FWD testing in the vicinity of existing distresses insofar as possible. 

 It is well known that deflections measured closer to the point load are more 

indicative of pavement stiffness, whereas deflections measured further horizontally 

outward from the point load are more indicative of subgrade stiffness.  Consider Figure 4 

(13).  The dotted line represents the boundary of the zone of stress, and beyond a radial 

distance from the load of a3e all deflections at the surface are due to stress that occurs 

only in the subgrade layer.  This simplistic explanation assumes Winkler behavior, but it 

is sufficient to explain why the outer sensors are indicative of subgrade behavior.   
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FIGURE 3 Effect of Existing Distresses On FWD Testing (12) 

    

 

 

FIGURE 4 Sensor Location Effect On Sampling Depth (13) 
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 It is desirable to place at least one sensor far enough away from the load plate so 

that its measured deflection can be used to estimate subgrade stiffness.  Seven deflection 

sensors are commonly used, including one sensor at the middle of the load plate.  The 

most common configuring for the seven-sensor system on highway pavements is 0, 8, 12, 

18, 24, 36, and 60 inches from the center of the load plate.  Whatever configuration is 

used, it is important to place one sensor further than 36 inches from the center of the load 

plate to account for subgrade stiffness (11). 

 

2.2.3. Backcalculation Methods 

Backcalculation methods vary according to a number of factors such as the theory that 

was used to develop the method and the type of pavement system that is under 

investigation.  Rigid pavements are typically the simplest types of pavement structures to 

analyze with NDT.  Portland cement concrete (PCC) layer(s) are typically assumed to act 

as rigid plates, which can allow for a closed-form solution. 

 A more common pavement structure is a 3-layered system consisting of a PCC 

and a base layer that are underlain by subgrade soil.  The addition of the base layer adds 

complexity to the backcalculation procedure, but closed-form solutions are still possible.  

In fact, two classes of closed-form solutions are available for 3-layer rigid pavement 

systems, depending on the type of interface that exists between the PCC and base layers 

(14).  If the two layers are completely bonded, the parallel axis theorem is used to 

combine layer thicknesses and stiffnesses for backcalculation.  Otherwise, if the two 

layers are not bonded together, the composite layer of PCC and base is simply defined by 

the PCC thickness and the sum of the layer stiffnesses. 
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 Most backcalculation procedures are too sensitive to adhere to general rules or 

procedures, but research has shown a general trend for 3-layer rigid pavement systems 

(15).  First, neglecting the presence of a base layer tends to overestimate the stiffness of 

the overlying PCC layer.  Second, assuming a full bond between the PCC and base layers 

usually underestimates the stiffness of the base material.  Slab curling and moisture 

warping can cause a rigid slab to maintain a full bond at mid-slab, where deflection 

testing occurs, while exhibiting no bond at the edges.  From these observations, a 

decision could be made to model the PCC-base interface as unbonded unless field 

conditions clearly indicate a full bond. 

 Flexible pavements involve a higher degree of complexity for backcalculations 

than rigid pavements.  This is because flexible pavements are viscoelastic materials, 

meaning that they act both as an elastic solid and as a viscous liquid.  The viscous 

behavior causes a variation in HMA stiffness with changes in temperature.  Thus, the 

effects of temperature gradients cause more computational complications with flexible 

pavements (13).  In addition, flexible pavement deflections occur not only because of 

movement of the underlying subgrade, but also because of deflections within the hot-mix 

asphalt (HMA) layer(s). 

 Typical backcalculation procedures for flexible pavements are not closed-form 

and require some form of computer software to carry out the iterative, finite element, 

and/or database-search type of computations.  Some of the more common types of 

software will be discussed in terms of their computational approach, appropriateness for 

various pavement types, and general availability. 
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 The ultimate goal of deflection testing is to provide material characterizations that 

can be used as inputs for the design of new pavements or for overlays of existing 

pavements.  The primary material characterization parameters have not changed 

drastically from 1993 AASHTO Pavement Design Guide to the Mechanistic-Empirical 

Pavement Design Guide (MEPDG).  Subgrade soils for flexible pavements are 

characterized by Resilient Modulus (Mr), and those for rigid pavements by the 

Coefficient of Subgrade Reaction (k).  Both of these quantities can be estimated from 

FWD testing (16). 

 The characterization of pavement stiffness has changed in the new mechanistic-

empirical procedures. The structural number (SN) was used to indicate material stiffness 

in the 1993 guide, but it has been eliminated in the MEPDG software.  If pavement 

designers choose to use the 1993 guidelines to obtain baseline designs, FWD results can 

be used to estimate the effective structural number (SNeff) or effective depth (Deff).  SNeff 

is used to characterize the structural capacity of a flexible pavement as a whole, and Deff 

does the same for rigid pavements.   MEPDG software, on the other hand, uses the 

material thicknesses and stiffnesses that are obtained from FWD backcalculation directly. 

 

2.2.3.1. 1993 AASHTO Method for Estimating Mr from Deflection Tests 

The 1993 AASHTO specifications for pavement design offers the most straight-forward 

method for estimating the resilient modulus (Mr) of subgrade soils (16).  To use this 

method, however, it is necessary to iterate the subgrade resilient modulus and total 

pavement thickness.  The benefit is that Mr can be estimated using a single deflection 

measurement. 
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 To begin, it is necessary to identify the radial distance from the load plate at 

which deflections will be outside the influence of the pavement layers.  Equation 1 is 

used to estimate this value, which is termed a3e in Figure 4.  Note that Equation 1 requires 

an estimate of the subgrade resilient modulus (Mr) as well as the effective modulus of all 

pavement layers (EP) above the subgrade.  Table 1 provides a list of reasonable guesses 

and ranges that can be used in this equation or any other application that requires an 

estimate of material moduli (13).  Equation 2 is used to find a value for EP to be used in 

Equation 1.  Finally, after ae has been calculated, Mr is found via Equation 3.  If the 

pavement is comprised of a single PCC layer that rests directly on the subgrade, Equation 

4 can also be used to calculate a k-value from the previously estimated MR value.  Note, 

however, that Equation 4 has been shown to consistently underestimate k values (17, 18).   

 The obtained value for Mr must also be multiplied by a reduction factor not less 

than 0.33 for fine-grained, stress-dependent soils.  While FWD loads do emulate the 

loads that are considered for AASHTO design standards, the amount of soil that exists 

between the load impact and the deflection sensor tends to absorb some of the stress 

before it reaches the deflection sensor.  For fine-grained, stress-dependent soils, Mr 

decreases as the magnitude of strain increases.  Thus, the reduction factor is in place to 

correct the falsely inflated estimate of Mr that occurs because of some amount of stress 

that is absorbed by soil that lies between the load plate and the deflection sensor (16). 
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Where:   ae = Radius of stress bulb at the subgrade-pavement interface (in.) 

   a = FWD load plate radius (in.) 

   D = Total thickness of pavement layers above the subgrade (in.) 

   EP = Effective modulus of all pavement layers (psi) 

   d0 = Deflection measured at the center of the load plate (in.) 

   p = FWD load plate pressure (psi) 

   a = FWD load plate radius (in.) 

   MR = Subgrade resilient modulus (psi) 

   P = Applied load (lb) 

   dX = Deflection at a distance X from the center of the load (in.) 

   r = Distance from center of load (in.) 

   k = Composite modulus of subgrade reaction (psi/in.) 
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Table 1 Reasonable Estimates and Ranges for Material Moduli (13) 

Material Type 
Estimate of Moduli

(ksi) 
Range of Moduli

(ksi) 

Crushed Stone, Gravel or Slag 
     Bases 
     Subbases 

 
50.0 
30.0 

 
10.0 to 150.0 
10.0 to 100.0 

Gravel or Soil-Agg. Mix, Coarse
     Bases 
     Subbases 

 
30.0 
20.0 

 
10.0 to 100.0 
5.0 to 80.0 

Sand 
     Bases 
     Subbases 

 
20.0 
15.0 

 
5.0 to 80.0 
5.0 to 60.0 

Gravel or Soil-Agg. Mix, Fine 
     Bases 
     Subbases 

 
20.0 
15.0 

 
5.0 to 80.0 
5.0 to 60.0 

Lime-Treated Base/Subbase 
     fc’ < 250 psi 
             250 - 500 psi 
          > 500 psi 

 
30.0 
50.0 
70.0 

 
5.0 to 100.0 
10.0 to 150.0 
15.0 to 200.0 

Asphalt-Treated Base/Subbase 
     fc’ < 300 psi 
             300 - 800 psi 
          > 800 psi 

 
100.0 
150.0 
200.0 

 
10.0 to 300.0 
25.0 to 800.0 
50.0 to 1500.0 

Cement-Treated Base/Subbase 
     fc’ < 750 psi 
             750 - 1250 psi 
          > 1250 psi 

 
400.0 
1000.0 
1500.0 

 
50.0 to 1500.0 
100.0 to 3000.0 
150.0 to 4000.0 

Fractured PCC 500.0 100.0 to 3000.0 

PCC 3500 3000.0 to 8000.0 

HMA 400 250 to 500 
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2.2.3.2. ILLI-BACK 

ILLI-BACK was the first closed-form backcalculation method to be developed for rigid 

pavements (19).  Very similar to the AREA method (see Section 2.2.3.3), ILLI-BACK 

relies on the unique relationship between radius of relative stiffness to a ratio of 

deflection measurements.  To better explain this relationship, consider Westergaard’s 

equations for normalized deflections both under a load (d0) and at some distance from the 

load (di), presented below as Equations 5 and 6, respectively.  If the radius of the load 

plate (a) is known and the deflection (w) is measured, then an important observation can 

be drawn.  The normalized deflection, whether it be directly underneath the load or at 

some distance from the load, is a function of only one unknown: the radius of relative 

stiffness (ℓ).  
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 ILLI-BACK works by the relationship that is found by taking the ratio of the two 

above equations.  The result, given below as Equation 7, indicates that the ratio of any 

two measured deflections may be defined as a function of ℓ.  This means that a 

theoretically sound relationship can be developed to calculate ℓ that is representative of 

how much one location deflects relative to another from the same load.  Thus, for an 

FWD setup, the relative deflections between the different sensors are representative of a 

unique value of ℓ for the pavement system.  Furthermore, instead of limiting the 

relationship to the ratio of two deflections, the AREA parameter can be used to provide 

an even more reliable development of ℓ. 
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 Though this derivation was presented in terms of a dense liquid foundation, the 

relationship between relative deflections and radius of relative stiffness also exists for 

elastic solid foundation models.  ILLI-BACK can use either of the two models to analyze 

a pavement structure.  After ℓ is determined, and depending on the subgrade model that is 

specified, the k value or Es is calculated using Equation 8 or 9, respectively.  Finally, the 

stiffness of the PCC layer is calculated using Equation 10 or 11. 
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 Where:  k = Coefficient of subgrade reaction 

   P = Impact load 

   d0, di = Normalized loading under the center of loading and at   

                                                some distance from the load, respectively 

   ℓ = Radius of relative stiffness 

   w0, wi = Measured vertical deflections under the center of loading  

                                                  and at some distance from the load, respectively 

   Es = Young’s modulus of the subgrade 
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   νs = Poisson’s ratio of the subgrade 

   νPCC = Poisson’s ratio of the PCC 

 

 ILLI-BACK is available as a DOS based computer program, and it has been 

developed for both 4-sensor arrangements (AREA36) and 7-sensor arrangements (both 

AREA72 and AREAS60) (20).  If necessary, Table 2 can be used to find reasonable 

estimates of Poisson’s Ratio to use during manual backcalculation (13). 

 

Table 2 Typical Poisson’s Ratio Values for Pavement Materials (13) 

Material Type Poisson’s Ratio 
HMA 
     E > 500 ksi 
     E < 500 ksi 

 
0.30 
0.35 

PCC 0.15 
Stabilized Base/Subbase 
     Lime 
     Cement 
     Asphalt 
     Other (stabilized subgrade)
     Other (fractured PCC) 

 
0.20 
0.20 
0.35 
0.35 
0.30 

Granular Base/Subbase 0.35 
Cohesive Subgrade 0.45 
Cohesionless Subgrade 0.35 

 

2.2.3.3. NUS-BACK for Rigid Pavements 

The simplest type of pavement system for backcalculation is a PCC layer resting on a 

homogeneous subgrade.  In this case, a closed-form solution may be developed using 

either the dense liquid or elastic solid subgrade models (21).  This simple method 

requires only two measured deflections to estimate the stiffness of the rigid pavement and 
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the subgrade.  Since FWD tests provide more than two deflections, NUS-BACK can be 

used for certain types of quality control in addition to just stiffness estimation.  Since the 

deflections from any two sensors may be used as input data, faulty sensors can be easily 

spotted and their data discarded.  The variance in estimated stiffnesses from different 

sensor combinations can also be used to test the robustness of the backcalculation theory.  

At least one study has shown that using the fourth and seventh sensors is most accurate 

for estimating subgrade stiffness, and using the first and third sensors is most accurate for 

estimating pavement stiffness (22). 

 Simplifying assumptions for NUS-BACK include the ignoring of effects from 

load transfer across joints and dynamic loading as well as slab curling.  These 

assumptions allow deflections in the two-layer system (PCC and subgrade) to be defined 

solely in terms of the elastic modulus of the slab (EPCC) and a measure of stiffness for the 

subgrade.  For the dense liquid model this would be the coefficient of subgrade reaction 

(k) and for the elastic solid model this would be the elastic modulus of the subgrade (ES).   

 The situation is described in terms of two equations that may be simultaneously 

solved to provide unique values for radius of relative stiffness (ℓ) and either k or ES for 

two measured values of deflection (Dm1 and Dm2).  Equations 12 and 13 describe this 

setup for a dense liquid model, and Equations 15 and 16 do the same for an elastic solid 

model. 

 After unique solutions have been found for radius of relative stiffness and 

subgrade stiffness, the stiffness of the PCC pavement is solved directly from the 

definition of the radius of relative stiffness.  Equation 14 or 17 is used to calculate EPCC 

for the dense liquid or elastic solid model, respectively. 
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For dense liquid-modeled subgrades: 
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For elastic solid-modeled subgrades: 
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Where:  Dm1,2 = Measured deflections 

   P = Applied load 

   K = Modulus of subgrade reaction 

   a = Radius of loaded area 

   ES = Subgrade elastic modulus 

   μS = Poisson’s ratio of the subgrade 

   EPCC = Elastic modulus of the pavement slab 

   hPCC = Slab thickness 

   r1,2 = Horizontal distances of points 1 and 2 from the center of  

            loaded area 

   ℓ1,2 = Radii of relative stiffness 
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 NUS-BACK exists in the form of a computer program, but it is also possible to go 

through the same process graphically.  For the graphical procedure the two deflections 

are labeled Dmi and Dmj so that Dmi is greater than or equal to Dmj.  The first step is to 

compute the ratio of the two deflections, Dmj/Dmi.  Depending on the preferred analysis 

(dense liquid or elastic solid) the appropriate radius of relative stiffness (ℓk or ℓE) is taken 

from the chart in Figure 5 or 6.  Then, instead of solving for Fk or FE analytically, it is 

taken from a chart (Figure 7) using the previously determined value of ℓk or ℓE.  This is 

done for ri and rj, and the rest of the procedure is performed in the previously described 

manner using Equations 12 – 17.  Regardless of whether the software- or graphical-based 

method is used, stiffness values can be estimated using many different combinations 

deflection readings to check the accuracy of the sensors and the model itself. 

 It is common practice to include a granular base layer between PCC slabs and the 

subgrade to facilitate drainage.  Accordingly, there are also two NUS-BACK procedures 

for analyzing a two-layer rigid pavement.  A computer program called NUS-BACK3 may 

be used, or the two upper pavement layers may be combined into a single equivalent 

layer so that the three-layer pavement can be analyzed as a two-layer pavement.  If the 

interface between PCC and base material is considered bonded, Equations 18 and 19 are 

used to define an equivalent pavement layer; otherwise, if the interface is completely 

unbonded, Equation 20 is used.  For these analyses, there are three unknowns: modulus 

of the concrete slab (EPCC), modulus of the base layer (Eb), and stiffness of the subgrade 

(ES or k).  In order to find unique solutions for all three parameters, an initial input must 

be provided.  The most convenient additional parameter is the modular ratio (β) of EB to 

EPCC.  Typical values are provided in Table 3 (13). 
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 Where:   

   Eeq, EPCC, Eb = Young’s modulus of equivalent pavement layer, top 

                  PCC layer, and base layer, respectively 

   heq, hPCC, hb = Thickness of equivalent pavement layer, top PCC  

                 layer, and base layer, respectively 

   h-0 = Depth to neutral axis of equivalent pavement layer 

 

 The method of solution for NUS-BACK3 is similar to the two-layer solution that 

was previously discussed, except that it only uses the elastic solid subgrade model and it 

utilizes the work of Burmister (23) as well as Panc (9).  The three-layer system is 

analyzed by simultaneously solving Equations 21, 22, and 23 for unique values of ℓ, c 

and Eb.  It is noted that the 3-layer system requires three deflection measurements instead 

of just two in order to find a unique solution. 
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Table 3 Typical Modular Ratios (β) for EBase / EPCC (13) 

Base Type β Base Type β 

Hot-mixed, hot-laid asphalt concrete (AC), dense 
graded 10 Sand asphalt 50 

Hot-mixed, hot-laid AC, open graded 15 PCC, prestressed 1 

Jointed plain concrete pavement  1 PCC, fiber reinforced 1 

Jointed reinforced concrete pavement  1 Recycled JPCP 100

Continuously reinforced concrete pavement  1 Recycled JRCP 100

Plant mix (emulsified asphalt) material, cold-laid 20 Recycled CRCP 100

Plant mix (cutback asphalt) material, cold-laid 20 Crushed Rock 150

Recycled AC, hot-laid, central plant mix 10 Gravel, uncrushed 200

Recycled AC, cold-laid, central plant mix 15 Crushed stone 150

Recycled AC, cold-laid, mixed-in-place 15 Crushed gravel 175

Recycled AC, heater scarification/recompaction 15 Crushed slag 175

Fine-grained soils: lime-treated soil 100 Sand 250

Fine-grained soils: cement-treated soil 50 Hot-mixed AC 15 

Bituminous treated subgrade soil 100 Asphalt-treated mix 50 

Soil-aggregate mixture (predominantly fine-
grained) 400 Econocrete 4 

Soil-aggregate mixture (predominantly coarse-
grained) 250 Cement-treated soil 50 

Dense-graded, hot-laid, central plant mix AC 10 Lean concrete 2 

Dense-graded, cold-laid, central plant mix AC 15 Cracked/seated PCC 25 

Dense-graded, cold-laid, mixed-in-place AC 15 Treatment: lime 100

Open-graded, hot-laid, central plant mix AC 15 Treatment: lime, fly ash 150

Open-graded, cold-laid, central plant mix AC 15 Treatment: bitumen 100

Open-graded, cold-laid, mixed-in-place AC 15 Pozzolanic-aggregate 
mixture 100
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FIGURE 5 Graphical NUS-BACK Dense Liquid Solution for ℓ 

 

 

FIGURE 6 Graphical NUS-BACK Elastic Solid Solution for ℓ 
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FIGURE 7 Graphical NUS-BACK Solutions for Fk and FE 
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 In the above equations, μb is the Poisson ratio of the base; c and ℓ are given by 

Equations 24 and 25, respectively.  The definition of all other variables is consistent with 

the definitions given for two-layer NUS-BACK equations.  Unfortunately, a graphical 

solution for NUS-BACK3 is not available. 

 

2.2.3.4. AREA Method for Rigid Pavements 

Another graphical backcalculation process has been developed to account for preferential 

FWD sensor spacings in which the radius of the load plate is 5.9 inches (12).   The first 

step for this graphical procedure is to calculate the AREA of the deflection basin.  The 

AREA parameter is the area of the deflection basin normalized to some height to negate 

the effect of load magnitude.  Figures 8, 9, and 10 illustrate three common layouts for 

arranging sensors during FWD testing, AREA36, AREAS60, and AREA72.  Equations 26, 

27, and 28 are used to calculate the AREA parameter for the AREA36, AREAS60, and 

AREA72 layouts, respectively.  In each of the figures below, the term “dx” refers to the 

vertical deflection that is measured at a horizontal distance “x” from the center of the 

load plate. 

 The AREAS60 layout is generally considered to provide the best measure of 

curvature in the basin, but the following graphical procedure may be used for AREA36, 

AREAS60, or AREA72.  After the AREAX parameter is calculated using the appropriate 

equation, the next step is to calculate the radius of relative stiffness.  This may be done 

empirically using Equation 29 and the coefficients from Table 4. 
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FIGURE 8 AREA36 Deflection Sensor Layout 

 

0

60

0

48

0

24

0

18

0

12

0

8
60 121896564

d
d

d
d

d
d

d
d

d
d

d
dAREAS ⋅+⋅+⋅+⋅+⋅+⋅+= ……...Eq. 27 

 

FIGURE 9 AREAS60 Deflection Sensor Layout 
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FIGURE 10 AREA72 Deflection Sensor Layout 
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Table 4 Empirical Coefficients for Calculating Radius of Relative Stiffness (12) 

 k1 k2 k3 1/k4 

AREA36 36 1812.597 2.559 4.387

AREAS60 60 289.708 0.698 2.566

AREA72 72 242.385 0.442 2.205

 

  

The radius of relative stiffness is then used to match the AREAX parameter with 

the general AREA parameter using an appropriate curve from Figure 11 that corresponds 

to the appropriate sensor layout. 

12 in. 12 in. 

d0 
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d72 



 36   

 One last empirical quantity, a nondimensional deflection coefficient (dr*), has to 

be calculated before the pavement and subgrade stiffness can be estimated.  The 

deflection coefficient is calculated using Equation 30 and the empirical coefficients from 

Table 5.  After dr* is found, the stiffness of the subgrade and pavement are estimated for 

each individual deflection measurement using Equations 31 and 32, respectively.  The 

arithmetic average of those values is taken to be representative of the entire basin.   

 

 

FIGURE 11 Curves Relating AREAX to General AREA Parameter (12) 

 

……………………………….Eq. 30 

 Where:  dr* = Nondimensional deflection coefficient for the deflection at a  

            radial distance r from the load plate 

   a, b, c = Coefficients from Table 2 

   ℓ = Radius of relative stiffness 
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Table 5 Empirical Coefficients for Calculating Deflection Coefficient (12) 

dX* a b c 

d0* 0.12450 0.14707 0.07565

d8* 0.12323 0.46911 0.07209

d12* 0.12188 0.79432 0.07074

d18* 0.11933 1.38363 0.06909

d24* 0.11634 2.06115 0.06775

d36* 0.10960 3.62187 0.06568

d48* 0.10241 5.41549 0.06402

d60* 0.09521 7.41241 0.06255

d72* 0.08822 9.59399 0.06118

 

 The k value obtained from the AREA method is representative of dynamic 

loading conditions (kd), but the 1993 AASHTO Pavement Design Guide uses the static k 

value (ks).  Therefore, the obtained value must be converted to a static k value.  Robust 

methods for converting between the two measurements are available, but AASHTO 

recommends that Equation 33 be used for a simplified conversion (16, 24). 

 

2

*

l⋅
⋅

=
X

X

d
dPk ……………………………….Eq. 31 

( )
3

24 112
h

kEPCC
⋅−⋅⋅

=
μl …….…………………Eq. 32 

ks = kd ÷ 2     ……………….……………..Eq. 33 

 Where:  k = Modulus of subgrade reaction (psi/in.) 

   P = Applied load (lb) 
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   dX* = Nondimensional deflection coefficient for deflection at  

             radial distance r from load 

   dX = Measured deflection at radial distance r from the load (in.) 

   ℓ = Radius of relative stiffness (in.) 

   EPCC = PCC elastic modulus (psi) 

   μ = Poisson’s ratio of PCC 

   h = Slab thickness (in.) 

 

2.2.3.5. Best-Fit Procedure 

 The preceding graphical AREA approach is one of two common AREA 

backcalculation methods that utilize Westergaard’s solution for the interior loading of a 

horizontally infinite plate on a dense liquid foundation.  The other main method is called 

the Best Fit procedure (15).  The graphical AREA method matched a theoretical 

deflection basin to the measured deflection basin.  That is, layer properties were found 

that provided the best match between the deflection basins, as a whole.  The Best-Fit 

Procedure, however, matches deflections point-by-point.  The point-by-point criteria is 

less stringent than fitting an entire deflection basin, and the Best-Fit Method actually 

provides a better match between measured and calculated deflection basins. 

 Consider Equation 34, which describes the distribution of deflections (w) at a 

distance (r) from the center of a vertical load evenly distributed across a circular area 

with radius a.  The Best Fit method finds the combination of k and ℓk that causes 

Equation 34 to predict a deflection basin closest to the actual measured basin.  Then, an 

algorithm uses those two values to find the combination of k and EPCC that again causes 
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the best match between calculated and measured deflection basins.  The mechanics of the 

algorithm involve minimizing an error function, the mathematics of which are described 

elsewhere (15). 

( ) ( )krf
k
prw l,⋅= ………………………………Eq. 34 

 Where:  w = Vertical deflection 

   r = Radial distance from center of load 

   p = Applied pressure 

   k = Coefficient of subgrade reaction 

   ℓk = radius of relative stiffness 

 

 The Best-Fit Method can also be used to analyze two-layered rigid pavements 

such as a PCC slab that is underlain by a granular base (21, 25).  The analyzing of such a 

pavement is facilitated by the same method that was described for NUS-BACK in 

Section 2.2.3.3. 

 The main advantage to using the Best Fit method is that the theoretically derived 

deflection basin is made to be as close as possible to the measured deflection basin.  The 

biggest problem with this approach is that there exist too many combinations of 

parameters (ℓk, k, and EPCC) that will make the Best Fit procedure appear to work even if 

the results are incorrect and/or unreasonable.  Best Fit procedures are performed by 

software, and most of the time the computer program will request “seed” values and 

acceptable ranges of necessary parameters to ensure that the values chosen for the “best 

fit” are at least reasonable.  There is no guarantee, however, that the values will be 

correct. 
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2.2.3.6. LTPP Forward Calculation 

The Long-Term Pavement Performance (LTPP) program has documented a closed-form 

procedure termed “forward calculation” for estimating the stiffness of subgrade soils as 

well as rigid and flexible pavements on a closed-form basis (14).  Forward calculation 

spreadsheets are available in both English and Metric format, free of charge, from LTPP.  

Note, however, that forward calculation is only intended to be used for generating 

approximate estimations of pavement and subgrade stiffnesses.  Those estimates can then 

be used to check the reasonableness of other estimates from more complex 

backcalculations. 

 Forward Calculation uses two deflection values to approximate the upper 

subgrade stiffness.  The deflection under the center of the FWD load plate (d0) and the 

deflection at an offset where the deflection is approximately one-half of d0 are used as 

inputs into a model based on the Hogg model, which idealizes the pavement structure as a 

thin plate on an elastic foundation (26, 27).  The model used for Forward Calculation can 

be altered to reflect 3 distinct cases: (1) infinite elastic foundation and μ = 0.5; (2) and (3) 

finite elastic foundation with thickness assumed equal to 10 times the characteristic 

length of the deflection basin and μ = 0.4 and 0.5, respectively.   Case 2 is strongly 

recommended. 

 The upper subgrade stiffness (E0) is approximated from the sequence of Equations 

35 - 38 in conjunction with Table 6. 
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 Where:  E0 = Upper subgrade modulus 

   μ0 = Poisson’s ratio for subgrade 

   S0 = Theoretical point load stiffness 

   S = Pavement stiffness = p/Δ0 (area loading) 

   p = Applied load 

   Δ0 = Deflection at center of load plate 

   Δr = Deflection at offset distance r 

   r = Distance from center of load plate 

   r50 = Offset distance where Δr/Δ0 = 0.5 

   l = Characteristic length 

   h = Thickness of subgrade 

   I = Influence factor 

   α, β, B = Curve fitting coefficients 

   y0, m = Characteristic length coefficients 

   m(bar) = Stiffness ratio coefficient 
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Table 6 Forward Calculation Subgrade Stiffness Coefficients (14) 

Case 1 2 3 

I 0.1925 0.1689 0.1614 

Range Δr/Δ0 All Values > 0.43 > 0.70 

R50 = ƒ(Δr/Δ0) 

A 0.3210 0.3804 0.4065 

β 1.7117 1.8246 1.6890 

B 0 0 0 

Range Δr/Δ0 

 

< 0.43 < 0.70 

R50 = ƒ(Δr/Δ0) 
A 4.3795E-4 2.6947E-3 

β 4.9903 4.5663 

B 3 2 

l= ƒ(r50,a) 
y0 0.527 0.603 0.642 

m 0.098 0.108 0.125 

(S/S0) = ƒ(a/l) m(bar) 0.185 0.208 0.219 

 

 The LTTP Forward Calculation procedure applies the previously described 4-

sensor AREA36 method for rigid pavements as well as a revised AREA12 method for 

flexible pavements to estimate the stiffness of bound surface course.  AREA12 is defined 

by Equation 39 and the setup shown in Figure 12. 
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FIGURE 12 AREA12 Deflection Sensor Layout 

 

 The Forward Calculation procedure is based on the AREA of a given pavement 

system relative to that of an idealized system whose layers all have identical values for 

stiffness and Poisson’s ratio.  If continuity is assumed between layers of the ideal 

pavement system, AREA36 and AREA12 will reach minimum values of 11.04 and 6.85, 

respectively.  This holds for any value of stiffness and/or Poisson’s ratio so long as it is 

held constant through the different layers.  A more realistic pavement structure consists 

of a surface course that is stiffer than the underlying pavement and/or subgrade layers.  

The larger the difference between the stiffness of the wearing course and underlying 

layers, the larger the AREA will be.  Equations 40 and 41 are used to calculate the AREA 

factors for rigid and flexible pavements, respectively.  These area factors essentially give 

a measure of how much a given pavement increases the AREA from its theoretical 

minimum value.  Finally, Equations 42 and 43 are used to estimate the stiffness of the 

upper PCC or HMA layers, respectively. 
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 Where:  AFPCC = AREA factor for PCC 

   k1 = 11.04 (theoretical minimum AREA36) 

   k2 = 3.262 (theoretical maximum AREA36 = 36/11.04) 
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 Where:  AFHMA = AREA factor for HMA 

   k1 = 6.85 (theoretical minimum AREA12) 

   k2 = 1.752 (theoretical maximum AREA36 = 12/6.85) 
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 Where:  EPCC = Elastic modulus of upper PCC layer(s) 

   EHMA = Elastic modulus of upper HMA layer(s) 

   AFPCC, AFHMA = AREA factors 

   k3 = Thickness ratio of upper layer thickness to load plate diameter 

   a = Load plate radius 

   E0 = Composite modulus of the entire pavement system beneath  

           the load plate 
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  And,  
0

0
0

5.1
d

a
E

σ⋅
=  

    σ0 = Peak pressure of FWD impact load under the load  

            plate 

 

2.2.3.7. MODULUS 

MODULUS is a program that utilizes the database-search technique to backcalculate the 

moduli of pavement layers (19).  Such a program is developed by using a linear elastic 

computer program to simulate the deflection basins that would result from an FWD-type 

load on thousands of combinations of hypothetical layer thicknesses and stiffnesses.  All 

of the fictitious deflection basins are then stored in a permanent database.  The program 

works by searching and interpolating between these previously calculated deflection 

basins to find the combination of layer thicknesses and stiffnesses that would 

theoretically exhibit a deflection basin closest to what was measured in the field. Until 

recently,  MODULUS has been a DOS based program.  The newest version, MODULUS 

6.0, has been built on a Windows platform and appears to be much more user friendly 

than previous versions of the program. 

The manner in which MODULUS calculates a deflection is depicted by Equation 

44.  Ultimately, an error function in the form of Equation 45 is minimized to find the best 

solution from the database.  In order for this process to work, the user must input known 

layer thicknesses, plus seed values and acceptable ranges for the moduli of those layers.  

Equation 44 shows that MODULUS works in terms of modular ratios instead of 

independent moduli.  For this reason, an estimate of the subgrade modulus (En) must be 

provided so that the program can report actual moduli instead of ratios. 
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 Where:  wc = Computed deflection 

   wm = Measured deflection 

   i = sensor number from 1 to S 

   Ex = Elastic modulus for layer number x 

   q = Contact pressure 

   a = Contact radius 

   ε2 = Squared error 

   fi = Value from layer system program and used as a data base 

 

 The Strategic Highway Research Program (SHRP) found in 1993 that 

MODULUS showed superior performance to other programs (MODCOMP3 and 

WESDEF) for analyzing the roughly 800 test sections that comprised the SHRP 

deflections database at the time (13).  SHRP published a set of recommendations for 

performing backcalculations with MODULUS that focused on three major areas: 

definition of layer moduli ranges, modeling of the pavement structure, and evaluation of 

the analysis results.  A summary of those recommendations is now presented. 

 When deciding a seed value for HMA layers, Equation 46 should be used 

whenever the necessary inputs are available.  Equation 47 should be used in lieu of 

Equation 46 for cases in which little is known about the HMA mixture.  Table 7 can be 

used to supply some of the variables for Equation 47 if they are unknown. 
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log10[E*] = 2.2250053 – 0.091756Vbe – 0.027949Va – 0.096881P200 +   ……….Eq. 46 

  0.250094Pabs – 0.006447tp + 0.060612f – 0.00007404tp
2 + 

  0.00191539Vbe
2 + 0.0082813P200

2 – 0.0010225P3/4
2 + 

  0.0001909P3/8
2 – 0.0801155Pabs

2 + 0.0148592η70,10^6
2 – 0.0024159f2 

  + 0.00094015P3/8Vbe + 0.00084534P3/4Vbe + 0.0004965P3/4P4 – 

  0.00034328P3/8Pabs 

 

    log10[E*] = 0.553833 + 0.028829P200f-0.17033 – 0.03476Va + 0.070377η70,10^6 +  ..Eq. 47 

  0.000005[tp
(1.3 + 0.49825log(f))PHMA

0.5] – 0.00189[tp
(1.3 + 0.49825log(f))PHMA

0.5f-1.1] 

 

 Where:  E* = HMA modulus, in 105 psi 

   Vbe = Effective binder content, by volume percentage 

    ( )( )[ ] bmbabsacabsacbe GGPPPPV ÷×−−= 100  

   Gmb = Maximum specific gravity of the mix 

   Gb = Specific gravity of bitumen (assume 1.010 if unknown) 

   Va = Percent air voids in mix 

   P200 = Percentage aggregate weight passing the No. 200 sieve 

   Pabs = Percent asphalt absorption, by weight of aggregate 

    %100⋅×
−
−

= b
sesb

sbse
abs G

GG
GG

P  

   PHMA = Percent asphalt content by weight of mix 

   f = Test frequency of load wave, assume 16 Hz in all cases 

   tp = Mid-depth HMA temperature, degrees Fahrenheit 

   P4, P3/8, P3/4 = Percent aggregate weight retained in No. 4, 3/8”,  

     and 3/4” sieves, respectively 

   η70,10^6 = Asphalt viscosity at 70 ◌۫F, in 106 Poises 
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Table 7 Default Values for Determining HMA stiffness (19) 

 Va PHMA P200

Surface Courses 4% 6% 6%
Binder Courses 5% 5% 5%

Base Courses 7% 4% 4%

Sand Asphalt Mixtures - 8% 6%

 

 All HMA layers that have the same construction age are combined into a single 

composite asphalt layer with thickness hcomp and stiffness Ecomp as defined by Equations 

48 and 49, respectively.  The range of moduli that is reported to MODULUS should be 

determined according to Equation 50. 
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Range = 0.25*E(initial or composite) to [3.00*E(initial or composite) < 3,000,000 psi]……Eq. 50 

 

 MODULUS also requires seed and range values for PCC layers in the pavement 

structure.  A seed value for EPCC is determined according to the methods in Table 8, 

which are listed in order of highest to lowest accuracy.  The most accurate method for 

which input parameters are known should be used.  The range of moduli that is reported 

to MODULUS is determined using Equation 51. 

 MODULUS is capable of modeling 4 layers, and if a given pavement system 

contains more than 4 layers, SHRP recommends 7 prioritized steps (available elsewhere) 



 49   

for combining the layers so that all composite layers will maintain an accurate 

representation of field conditions.   

 

Table 8 Methods for Estimating Seed Value for EPCC (19) 

Required Inputs Methodology 
Static modulus (E) test results Report E directly 

Compressive strength (fc’) in psi E = 57,000*(fc’)0.5 

Splitting tensile strength in psi fc’ = [12.53*Splitting tensile strength] – 1275
E = 57,000*(fc’)0.5 

No data Assume E = 4,000,000 psi 
 

Range = 0.25*Einitial to [3.00*Einitial < 9,000,000 psi]…………Eq. 51 

 

 Unbound granular base and subbase materials may be estimated using values 

Table 1 unless the reported lower modulus bounds are lower than the seed value for 

subgrade modulus.  In such a case, the seed value for subgrade modulus should be used 

as the lower bound for the unbound granular base or subbase material. 

 The seed value for subgrade modulus is calculated in two steps.  First, Equations 

52 and 53 are used to calculate the composite modulus of the pavement structure for each 

deflection that is measured at a radius beyond that of the load plate.  The seed value is 

then taken as the minimum of the calculated composite moduli values. 
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 Where:  Ecomp = Composite modulus of the pavement 

   Pc = Contact pressure applied by FWD 

   ac = Load plate radius, in. 

   μ = Poisson’s ratio (assume 0.4) 

   dr = Measured deflection at radial distance r 

   r = Radial distance from deflection 

   C = deflection constant 

 

 When all of the preceding recommendations are followed, the backcalculated 

moduli have a good chance of being reasonable, but there is no guarantee.  To ensure 

some degree of accuracy, SHRP also includes recommendations for evaluating the results 

of a MODULUS backcalculation.  First, a limit of 2% average error is set for the 

matching of individual deflections.  In addition, if the reported modulus for any layer is 

equal to either the upper or lower bound of acceptable moduli for that layer, the reported 

modulus is considered invalid.  Finally, SHRP recommends that all backcalculation 

results be closely reviewed by a qualified engineer to check for reasonableness.  If the 

results are considered unreasonable for any reason, the backcalculation process should be 

screened for obvious errors and/or the results should be discarded. 

 

2.2.3.8. ELMOD 5 

ELMOD is a Windows based backcalculation program that is marketed by Dynatest® and 

usually sold with the Dynatest® Falling Weight Deflectometer (28).  The name, ELMOD, 

is an acronym which stands for Evaluation of Layer Moduli and Overlay Design.  LTPP 
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has noted that ELMOD is well suited for processing large batches of FWD readings 

without constant attention from the user (14).   

 ELMOD uses an iteratation-based backcalculation procedure that can forward 

model the pavement response using a variety of techniques.  ELMOD is also known for 

its ability to model the temperature-dependent behavior of HMA and the nonlinear 

response of subgrade and aggregate materials (29).  Older versions of the software were 

limited to two different types of forward calculation.  The first option was a common 

deflection basin matching routine.  The other option was based on matching the radius of 

curvature of the deflection basin instead of trying to match the basin as a whole.  The 

literature suggests that the radius of curvature option is more accurate, but still 

acknowledges the merit of the more typical deflection basin matching technique (14).  

The most current version, ELMOD 5, is equipped with a finite element module (FEM) 

can treat every layer as non-linear elastic. 

 ELMOD is used by the Arkansas State Highway and Transportation Department 

(AHTD), and is generally a good candidate for governmental agencies for several 

reasons.  First of all, the software is available with the Dynatest® FWD, which is likely to 

be purchased by state DOTs even without the inclusion of software.  Second, as noted by 

LTPP, ELMOD is capable of running large batches of FWD field data.  This is a valuable 

feature when long stretches of highway or other roadways are being analyzed.  In 

addition, ELMOD contains optional automated tools for determining the remaining life of 

a pavement and also for overlay design (28).  The accuracy of these tools is beyond the 

scope of the current study, but their potential convenience is noted. 

 



 52   

2.2.3.9. BAKFAA 

BAKFAA, as the name implies, was developed by the Federal Aviation Administration 

(FAA) specifically for the backcalculation of FWD data on airfield pavements (30).  

BAKFAA used to be called FAABACKCAL, but the difference in names does not 

signify any significant difference in the software (31).  BAKFAA is similar to ELMOD 

in that it is an iteration-based backcalculation that utilizes layered elastic theory (32). 

 BAKFAA is unique because it can model up to 10 pavement layers, and also 

because its code is written with a special emphasis on computational efficiency.  It can be 

used for airfield or highway pavements for which a deflection basin (such as one created 

during FWD loading) is measured.  A special feature of BAKFAA is its ability to 

calculate strains due to aircraft gear loads, which is accommodated by the FAA’s linear 

elastic analyzing software, LEAF.  The program is Windows based, and has a graphical 

user interface that is simple to use. 

 For the purposes of analyzing highway pavements, BAKFAA works by 

minimizing the error between LEAF-generated deflections and field-measured 

deflections.  LEAF iteratively alters the moduli of user-defined layers and layer 

thicknesses until the generated and measured deflection measurements match within 

some tolerance. 

 

2.2.3.10. DIPLO-DEF 

DIPLODEF is the newest and most versatile backcalculation software that is currently 

available (33).  This program falls into the “iteration” class of backcalculation programs.  

The user must give DIPLO-DEF a seed and range moduli and thickness for each layer, 
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and then the program begins a process of forward-calculating theoretical deflections.  

DIPLO-DEF calculates theoretical deflections over and over again for different moduli 

until the theoretical, forward-calculated deflections match the measured deflections 

within some tolerance.   

 Even though DIPLO-DEF is theoretically superior to most existing 

backcalculation programs, it is relatively difficult to use.  DIPLO-DEF is DOS based 

software that requires various sets of strings of alphanumeric characters to describe the 

deflection basin and the preferred method for backcalculation. 

 To better illustrate the features that set DIPLO-DEF apart from other programs, it 

is necessary to analyze the program in terms of each of its two main components: (1) the 

iterative search subprogram and (2) the methods by which forward calculations are 

conducted.  DIPLO-DEF was created by combining two existing components.  The 

computer optimization routine from a program called WESDEF is used as the iterative 

search subprogram, and a separate program called DIPLOMAT is used to perform 

forward calculations. 

 WESDEF works in the same manner as a stiffness matrix, and therefore will only 

work if it can generate enough equations to solve for the number of unknowns that are 

present.  For backcalculation of pavement layer moduli, the number of layers for which 

moduli are to be determined represents the number of unknowns, and the number of 

deflection measurements represents the number of equations (19).  For every deflection 

that is measured (j), a relationship in the form of Equation 54 is developed for each 

pavement and subgrade layer for which modulus is sought (i).  Figure 13 illustrates the 

relationship that is developed between deflection and modulus.  The system of equations 
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is solved to provide slopes (Sji) and intercepts (Aji) that can be used to predict a modulus 

to match the measured deflection.  A reasonable solution is usually obtained within three 

iterations. 

log (deflectionj) = Aji + Sji (log Ei) ……….…………Eq. 54 

 

FIGURE 13 WESDEF Relationship Between Deflection and Modulus (19) 

 

 The second component of DIPLO-DEF, DIPLOMAT, is the part of the program 

that calculates new theoretical deflections after WESDEF performs an iteration. 

DIPLOMAT is different from other forward calculation sub-programs because it can 

perform forward calculations using any combination of layered elastic theory and plate 

theory for pavement layers and either dense liquid or elastic solid modeling for the 
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subgrade.  In addition, DIPLOMAT can handle any number of layers and model the layer 

interfaces as either fully bonded or unbonded. 

 In the grand scheme of pavement analysis, DIPLOMAT is most valuable because 

of its ability to analyze pavements with both HMA and PCC layers.  The principles 

behind the software are not new, but DIPLOMAT is the first successful attempt to unify 

the various models that have been generally considered mutually exclusive since the 

onset of backcalculation in nondestructive testing.  The development of DIPLOMAT is 

documented elsewhere (34). 

 The developers of DIPLO-DEF have recommended several guidelines for its use.  

First of all, care must be taken when choosing seed and range values for layer moduli.  

As with all iterative backcalculation procedures, the seed values do have an effect on the 

final backcalculated values.  The user-input value for Poison’s Ratio of the subgrade 

should also be carefully considered.  The developers found that using values above 0.45 

seemed to cause DIPLO-DEF to abort early.  Therefore, it is recommended that Poisson’s 

Ratio values for the subgrade not be assumed above 0.45. 

 As a general note, the developers of DIPLO-DEF also stress the importance of 

patience when performing backcalculations.  DIPLO-DEF offers many different options 

for modeling any given pavement structure, and the user should be prepared to exhaust 

all practical options and combinations in order to obtain reasonable results.  In this effort, 

it is important to exercise engineering judgment and also to keep a careful record of all 

trials. 
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2.3. Spectral Analysis of Surface Waves 

A measure of seismic disturbances in pavement and subgrade layers can be used to 

estimate the stiffness and thickness of the different layers.  More specifically, the elastic 

waves that are generated by a transient impulse load may be monitored by a recording 

device and then converted into a dispersion curve.  The dispersion curve is then 

iteratively inverted to obtain a vertical profile of the shear wave velocity.  Finally, 

discrepancies in the shear wave velocity profile are used to identify pavement and/or 

subgrade layer interfaces, and the average shear wave velocity within each layer is used 

to estimate the elastic modulus of the layer.  This method of NDT is called the spectral 

analysis of surface waves (SASW) (35). 

 

2.3.1. Theoretical Background 

SASW is based on the theory of stress waves propagating in elastic media.  For analysis, 

the pavement and subgrade layers are considered to comprise a layered elastic half space.  

This means that all of the various layers of pavement and subgrade are elastic, 

homogeneous, and isotropic, and that the entire elastic space ends at the ground surface.  

In contrast, an elastic whole space extends endlessly in all three dimensions.  Two types 

of waves propagate radially outward from a disturbance in an elastic whole space: 

primary waves (also called P-waves or compression waves) and secondary waves (also 

called S-waves or shear waves).  Primary waves cause particles in the elastic medium to 

deflect in the direction of wave propagation, and secondary waves cause particles in the 

elastic medium to deflect in the direction perpendicular to wave propagation.  Primary 

waves always propagate at a higher velocity than secondary waves (35). 
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 Half spaces accommodate two additional types of elastic waves: Rayleigh (R-

waves) and Love (L-waves).  Rayleigh waves are analogous to S-waves because they 

propagate perpendicular to the direction of wave propagation.  The difference is that R-

waves only exist near the boundary of a half space; the amplitude of an R-wave decays 

rapidly beyond a depth of 1.5 times the wavelength (λ) of the R-wave.  L-waves are 

similarly analogous to P-waves.  The velocity at which these various types of waves 

travel is dependent upon the Poisson’s ratio (υ) of the elastic medium.  As υ increases to 

its upper limit of 0.5, the ratio of P-wave velocity to S-wave velocity approaches infinity.  

This is due to the fact that a material with υ = 0.5 is theoretically incompressible, 

incapable of allowing the manifestation of S-waves.  In contrast, the ratio of R-wave 

velocity to S-wave velocity remains within 0.86-0.95 for all values of υ (35).  This leads 

to a common practice of approximating shear wave velocity as 1.1 times the measured R-

wave velocity. 

 A vertical disturbance on the surface of an idealized half space such as the one 

shown in Figure 14 results in the propagation of many different stress waves of myriad 

frequencies.  Considering each different frequency of wave as a unique disturbance, it is 

convenient to define phase velocity (Vph) as the velocity at which a seismic disturbance 

travels.  Low-amplitude, high-frequency waves will penetrate only shallow depths.  

Therefore, the phase velocity of such a wave is influenced mostly by the thin upper layers 

of the pavement system.  Conversely, a high-amplitude, low-frequency wave penetrates 

through greater depths; its phase velocity is indicative of the properties of every layer 

through which it passes.  Thus, the upper pavement layers do influence high-amplitude 
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waves, but with increasing amplitude, semi-infinite subgrade layers play a greater role in 

regulating the velocity of wave propagation. 

 For the purposes of SASW it is necessary to think of the phase velocity as a 

function of wave frequency instead of as a function of time.  In the frequency domain, it 

is clear to see that a wave of particular frequency corresponds to a certain phase velocity, 

as a function of several elastic layer properties. Phase velocity depends upon the 

frequency of the wave (f) and also the mass density (ρ), Poisson’s Ratio (υ), and 

 

         

              

FIGURE 14 Idealized Layered Half Space 

 

especially the Shear Modulus (GS) of the material in that layer.  The height (H) of each 

layer defines how much weight the elastic properties of that layer receive when averaging 

their impact with that from other layers through which a wave travels.  Thus, by inputting 

known or assumed values for elastic layer properties, phase velocity can be solved 

directly in terms of an independent variable, wave frequency.   
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The relationship between wave frequency (or wavelength) and phase velocity 

over some frequency domain is called a dispersion function, the graph of which is called 

a dispersion curve.  Plotting wavelength versus phase velocity is the more tactical choice 

because wavelength is used to estimate the sampling depth of the phase velocity.  In 

practice the sampling depth is usually assumed to be between (½)λ and (1/3)λ; a common 

assumption is to let the sampling depth equal (0.4) λ.  

Dispersion curves that are created from hypothetical (not measured) elastic layer 

properties are referred to as theoretical dispersion curves.  The ultimate goal of SASW 

testing is to identify pavement layer thicknesses and stiffnesses.  This is done by creating 

a dispersion curve from measured R-wave phase velocities and then re-creating that 

shape with a theoretical dispersion curve that is defined by distinct layer thicknesses and 

properties.  Though there is no unique solution of layer thicknesses and properties that 

will re-create a given dispersion curve, a solution can be found that adequately describes 

the layered pavement system under investigation through trial-and-error simulations (36). 

 

2.3.2. Field Procedures 

The basic idea behind SASW testing is to impart a transient vertical impact to the ground 

surface and measure the resulting particle motion from R-wave propagation at two or 

more known distances from the disturbance.  The setup shown in Figure 15 will be used 

to illustrate the process of field data collection. 

The transient impact that is used to generate seismic waves may be imparted by a 

hammer, falling weight, sinusoidal noise source, or a vehicle depending on the desired 

sampling depth.  As was discussed in the previous section, high-frequency, low-
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amplitude waves are used to sample shallow depths.  Hand-held hammers are usually 

sufficient for creating such disturbances.  Large vehicles and/or sinusoidal noise sources 

are more appropriate for generating the high-amplitude, low-frequency waves that are 

required for larger sampling depths. 

 

        

FIGURE 15 SASW Configuration 

 

Sensor spacing (d) is another setup issue that is chosen based upon desired 

sampling depth.  For shallow sampling depths, small sensor spacings are both appropriate 

and convenient.  As the sampling depth increases, however, so must the sensor spacing.  

The reason for this accommodation will be explained with the discussion of data 

reduction. 

 First, though, it is necessary to discuss how the raw field data is transformed into 

a format that can be used to create a dispersion curve.  The first issue to consider is the 

switch from the time-domain to the frequency-domain.  Fourier Transform is the 

mechanism by which the switch is made, and it is performed by an electronic machine 

Receiver 1         Receiver 2 

d2 

d/2 

d d1 

Waveform Analyzer or 
Dynamic Signal Analyzer 

φi 

Transient Impact 
Source 

Various 
Frequencies of  
R-waves 



 61   

called a Wave Form Analyzer or a Digital Signal Analyzer.  An example of one of these 

devices is shown in Figure 16 (37). 

 Depending on the type of analyzer that is being used, there are at least two - and 

sometimes many more - inputs for seismic disturbance readings.  The device that is used 

to measure the particle motion from R-waves is chosen based on the depth and frequency 

of sampling.  For large amplitudes and low frequencies, motion detectors (transducers) or 

velocity transducers (geophones) are sufficient to measure the particle motion for 

calculations of phase velocity.  When performing SASW tests on a layered pavement 

system, however, it is more appropriate to use accelerometers.  Accelerometers have a 

high frequency response that is better suited to the high-frequency waves that are used to 

analyze stiff pavement layers (38).  The time domain can be used to convert the 

acceleration measurements to the desired value of vertical particle motion. 

 

FIGURE 16 HP 35670A Digital Signal Analyzer (37) 
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One problem with using the Fourier Transform for transient impacts is the noise 

that is present from surrounding activities and from the reflection of waves between 

elastic layers.  Noise can be thought of as vibrations in the elastic half space that are 

caused by a phenomenon other than direct propagation of individual R-waves.  Examples 

of such phenomena could be nearby traffic, multi-modal R-waves, or even the reflection 

of just one R-wave.   

SASW configurations in which only two measurements of vertical particle motion 

are taken are most susceptible to noise.  The two most common and accepted ways to 

arrange a set of two receivers - common receivers midpoint (CRMP) geometry and 

common source (CS) geometry - are shown in Figures 17 and 18, respectively.  It has 

been argued that CRMP geometry reduces scatter by maintaining equidistant spacing 

between receivers and impact, but others have not found the reduction in scatter to be 

significant enough to justify abandoning the convenience of CS geometry (38). 

When using CRMP geometry the two receivers are positioned equal distances 

from an imaginary centerline and the transient impact is applied on either side of the 

receivers at a distance equal to the distance between the receivers.  Next, the receivers 

and transient load are moved further away from the stationary imaginary centerline and 

the test is repeated, again from both sides.  This process is usually repeated 5 or 6 times 

so that different ranges of R-wave wavelength may be measured.  From Figure 17 it can 

be seen that for each repetition of the test both receivers and the transient impact must be 

moved.  CS geometry is more convenient because the source of the transient impact can 

be left in one place for many different receiver spacings.  The transient impact is still 

positioned at a distance equal to the distance between the two receivers, but instead of 
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rearranging the setup about a stationary imaginary centerline, the receivers are simply 

offset a further distance from the transient impact source (39). 

Taking readings of seismic reactions for different sensor spacings provides a larger 

number of wavelength samples that can be averaged to reduce the error from noise.  

Time-domain signals from all of the different spacings are averaged before being Fourier 

transformed (a process called stacking) to improve the quality of signal.  It is particularly 

important to measure the seismic effect that the transient impact has from each side of the 

sensors.  This serves to eliminate the error from phase shifts that occur within the 

 

 

 

FIGURE 17 Common Receivers Midpoint Geometry for SASW (38) 
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FIGURE 18 Common Source Geometry for SASW (38) 

 

receivers and also to measure the homogeneity of the sublayers in the direction of the 

receivers (38, 39). 

 Another method of eliminating error is to increase the number of sensors 

(accelerometers) that are used during testing.  When more than two receivers are used the 

process is sometimes referred to as the multi mode analysis of surface waves (MASW).  

Some wave analyzers may be limited to two input channels, but it is common for newer 

models to have inputs for several dozen sensors (38).  A setup consisting of more than 

one receiver is called an array.  The advantage of using an array is time efficiency.  For 

just one transient impact, wavelengths can be sampled using any combination of two of 

the receivers from the array, whereas a setup of only two receivers can only measure a 

relatively limited amount of time-amplitude data.  Thus, the more sensors that are 

included in the array, the more measurements can be obtained for averaging.  Even for 
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MASW it is important to perform the test from both directions to eliminate any internal 

phase shifts from the receivers.  The literature suggests, however, that testing at higher 

frequencies is more beneficial for pavement analysis than testing with more than two 

receivers (38, 40, 41). 

For either SASW or MASW, the purpose of field testing is to measure particle 

motion that corresponds to the amplitude of R-wave motion in the time domain.  After 

this data is collected for a given site, the measurements are averaged in an attempt to 

eliminate noise in the readings that will hinder contingent calculations.  After the field 

measurements are averaged, the Waveform Analyzer or Dynamic Signal Analyzer is used 

to perform a Fourier transform so that the data can be analyzed in the frequency domain.  

The output from the Fourier transform includes two important pieces of information: the 

coherence function and the cross-power-spectrum. 

The coherence function is essentially a measure of the signal-to-noise ratio that 

provides a quick way to evaluate the quality of recorded data.  Coherence values range 

from zero to one, with values of one corresponding to signals absent of noise and values 

of zero corresponding to signals so noisy that no relationships can be found.  Typically, 

data is considered to be clean enough to use for analysis when the coherence value is 

between 0.9 and 1.0.  Figure 19 shows the plot of a typical coherence function (35). 

Along with the coherence function, the Waveform Analyzer or Digital Signal Analyzer 

gives the cross-power-spectrum.  Consider the idealized R-wave motion represented in 

Figure 15.  Each of the various R-waves travels a sinusoidal path, traversing a phase 

angle (φi) in the time domain that is dependant on the wave’s frequency (fi).  The cross-

power-spectrum uses the Fourier transformed data to represent the particle motion in 
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terms of phase angle and frequency.  Since, at any given point, a higher-frequency wave 

will have traversed a greater total phase angle than a lower-frequency wave, it is rational 

to expect a constant decreasing relationship between phase angle and frequency.  As can 

be seen in Figure 20, the output of a cross-power-spectrum is not a constantly decreasing 

relationship.  Instead, the relationship is asymptotic at regular frequency intervals.  This 

is the result of plotting phase angle in terms of relative displacement (i.e. in terms of 0 < 

|φi| < 180o) instead of total displacement (i.e. 0 < |φi| < ∞ ).  When the phase angle is 

represented in terms of relative displacement it is called the wrapped phase.  The phase 

can be unwrapped by adding 360 ◌۫ to the magnitude of φi every time the wrapped phase 

crosses the dotted line corresponding to φi = 0o (35). 

 

 

FIGURE 19 Typical Coherence Function (35) 
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FIGURE 20 Typical Wrapped Cross-Power Spectrum (35) 

 

The ultimate goal of the field test is to come up with a dispersion curve relating 

wavelength to phase velocity, and these quantities can be calculated using the cross-

power-spectrum.  The first step is to pick a point on the cross-power spectrum and 

identify its frequency and unwrapped phase angle.  The time (t) that it took the wave to 

travel to the unwrapped phase angle is calculated using Equation 55.  Referring again to 

Figure 15, the phase velocity (Vph) is calculated by dividing the space between the 2 

receivers (d) by the previously calculated travel time (t), Equation 56.  The next step is to 

calculate the wavelength, which can be done using Equation 57.  Finally, the process is 

repeated for a sufficient number of points to clearly define the experimental dispersion 

curve (35). 

f
t

⋅
=

360
ϕ .......................................................Eq. 55 
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t
dVph = ..........................................................Eq. 56 

f
Vph

ph =λ ........................................................Eq. 57 

 

2.3.3. Backcalculation Procedure 

Backcalculation for the SASW method consists of two major steps.  First, the field 

dispersion curve is used to create a “true” profile of Shear wave velocity versus depth.  

The second and final step is forward modeling of pavement and subgrade properties to 

recreate the “true” shear wave velocity profile.  The forward modeling process for SASW 

is called inversion.  Inversion can be as simple as “eyeballing” dominant ranges of a 

dispersion curve for representative values, or considerably more exhaustive methods may 

also be undertaken. 

 Inversion can be a relatively complex task that requires a large amount of 

engineering judgment.  Research is underway across the United States to develop 

automated inversion procedures so that SASW tests may be conducted with difficulty not 

significantly greater than other field tests.  The University of Arkansas currently uses a 

computer program called SignalCapture2.0 that was written in LabVIEW to collect and 

store field data from SASW testing.  SignalCapture collects data in the time domain, 

performs a Fourier analysis, and provides the necessary coherence function and cross-

power spectrum.  The program was first developed in 2003 by Kyle Bennett and later 

modified by Andrew Wilson and Sutapa Hazra.  The cross-power spectra from 

SignalCapture are imported into a macro-enabled Excel spreadsheet to produce a field 

dispersion curve.  The spreadsheet employs the approximations that are noted in 
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Equations 58 and 59 below.  In addition, the user is allowed to mask any frequency 

ranges that appear to be inaccurate or scattered. 

 

RS VV ⋅= 1.1 ………………………..………..Eq. 58 

λ⋅= 4.0sd …………………………………Eq. 59 

 Where:  VS = Shear wave velocity 

   VR = Rayleigh wave velocity 

   ds = Sampling depth 

   λ = Wavelength 

 

 The inversion process is most robustly accomplished using the Haskell-Thompson 

transfer matrix, as discussed by Kausel and Roësset (42).  The transfer matrix is used to 

describe the measured phenomenon in terms of all of the parameters that significantly 

affect the seismic behavior of the pavement system.  The transfer matrix utilizes 

approximately 60 points from the field dispersion curve to estimate the shear wave 

velocity in roughly 15 discrete layers.  Statistical methods are then used to minimize the 

error of the transfer matrix.  The end result of this inversion is a profile of shear wave 

velocity versus depth, mechanistically based on measured field data (39).  While this 

method is considerably more involving than the simplified procedure of “eyeballing” the 

field dispersion curve, it is the more robust method that will eventually allow the 

automation of SASW. 

 In either case, inversion involves a type of forward calculation to determine the 

actual thickness and stiffness of pavement and subgrade layers.  First, either visual or 
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analytical inspection of the shear wave velocity profile is used to identify obvious 

discontinuities where layer interfaces are likely to exist.  Then, some reasonable values 

for layer thickness, Poisson’s ratio, density and shear modulus are assumed for each 

layer.  For the simplified method, VS may be directly read from the field dispersion curve 

and converted to the shear modulus using Equation 60. 

 

ρ⋅= 2
SVG ………………………………..Eq. 60 

 Where:  G = Seismic shear modulus (lb/ft2) 

   VS = Shear wave velocity (ft/s) 

   ρ = Mass density (lb*s2/ft4) 

 

 For the transfer matrix method, these assumed values are used to create a 

theoretical dispersion curve which is then compared to the field dispersion curve.  If the 

two curves do not agree within some tolerance, the assumed pavement parameters are 

changed and the theoretical dispersion curve is recreated.  This process is continued by 

trial-and-error until the theoretical and field dispersion curves are sufficiently similar.  

The assumed pavement properties that result in the best-fitting theoretical dispersion 

curve are taken to be representative of field conditions (39).  

 Once the shear modulus is obtained for the pavement layers (either by the 

simplified method or the transfer matrix method), Equation 61 is used to convert the 

shear moduli to Young’s moduli (E). 

 

( )ν+= 12GE ………..………………………Eq. 61 
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 Where:  E = Young’s modulus 

   G = Shear modulus 

   ν = Poisson’s ratio 

 The 1993 AASHTO Pavement Design Guide and the new Mechanistic-Empirical 

Pavement Design Guide (MEPDG) both use Resilient Modulus (Mr) as the primary 

subgrade characterization criteria.  Mr is defined as axial stress divided by recoverable 

strain, whereas Young’s Modulus is the same axial stress divided by total strain.  On a 

theoretical basis, Mr and E represent two different values.  On a more realistic basis, 

however, the two quantities can be nearly equal.   

 As shown in Figure 21, as the number of load cycles increases, the recoverable 

strain begins to equal the total strain (19).  This is especially true for loads well shy of a 

material’s capacity and after 100 to 200 repetitions.  Since seismic disturbances impart 

stresses that are well below the strength of all pavement materials, the characteristic E 

and Mr values should be nearly equal (43).  Thus, a common assumption in SASW  

 

 

FIGURE 21 Strains Under Repeated Loads (19) 
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testing is to take the Resilient Modulus to be equal to Young’s Modulus.   

 The last step of backcalculation is to adjust the seismically estimated modulus to a 

more appropriate strain level.  Moduli that are measured at seismic strain levels (< 10-3 

%) are essentially equal to the maximum modulus for the material (43).  With increasing 

loads and corresponding strains, soils exhibit a non-linear decrease in modulus.  This 

trend is shown graphically in terms of Shear Modulus (G) in Figure 22 (19). 

 Since traffic loads induce strains that are significantly greater than what is 

experienced during seismic testing, the modulus of a given soil is expected to be 

significantly less under traffic loading than for seismic loading.  Accordingly, the moduli 

that are obtained from theoretical dispersion curves must be reduced by some amount to 

avoid reporting Resilient Modulus values far in excess of what is true or reasonable.  An 

appropriate percent reduction can be estimated using a normalized modulus reduction 

curve, which relates G/Gmax to shear strain.  Three methods for modeling G/Gmax and/or 

E/Emax against corresponding strain are now presented. 

 The simplest method for adjusting seismic moduli is to use a two-parameter 

hyperbolic model (44).  Equation 62 shows Darendeli’s simplified hyperbolic model 

where the reference shear strain for normalization (γr) represents 0.5Gmax.  .  Equations 63 

and 64 give the reference strain and curvature coefficient (a) for coarse and fine grained 

soils, respectively.   

a

r
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G
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……………………….…….Eq. 62 
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FIGURE 22 Normalized Shear Modulus Reduction Curve (19) 
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Where:  G = Shear modulus at some arbitrary load/strain level 

   Gmax = Shear modulus at seismic strain level 

   γ = Shear strain corresponding to G 

   γr = Reference shear strain corresponding to G = 0.5Gmax 

   a = Curvature coefficient 

   Cu = Uniformity coefficient 

   σ0’ = Effective confining pressure (atm) 

   Pa = Atmospheric pressure (atm) 
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   PI = Plasticity index 

   OCR = Overconsolidation ratio 

 

 Ke and Nazarian have developed another model that uses different parameters 

than the hyperbolic model (45).  Their model is defined by Equation 65, which 

normalizes Young’s modulus in terms of relative confining and deviatoric pressures.  At 

very small or large deviatoric stresses, Equation 65 may report unrealistic values.  As 

such, Nazarian recommends upper and lower limits of Eseis and 0.05Eseis, respectively.  

The statically determined coefficients k2 and k3 for some pavement materials are listed in 

Table 9. 
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 Where:  E = Young’s modulus at some arbitrary load/strain level 

   Eseis Young’s modulus at seismic strain level 

   σc-ult, σc-init = Ultimate and initial confining pressures, respectively 

   σd-ult, σd-init = Ultimate and initial deviatoric stresses, respectively 

   k2, k3 = Statically determined coefficients, Table 9 

 

Table 9 Statically Determined Coefficients k2 and k3 for Equation 65 (45) 

Material Characterization k2 k3 

Base 
High Quality 0.4 -0.2

Average 0.2 -0.3
Poor Quality 0.1 -0.4

Subgrade
Sandy 0.4 -0.2

Low Plasticity Clay 0.1 -0.3
High Plasticity Clay 0.0 -0.4
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 Two final constitutive models are now presented that provide separate, but similar 

models for sands and clays (46).  The primary difference between the two models is that 

the model for clays includes an input for plasticity of the soil.  Equations 66 - 68 are for 

the sand model, and Equations 69 - 72 are for modeling clays or other fines with 

plasticity. 
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 Where:  G = Truck traffic load level modulus 

   Gseis = Seismic modulus 

   k2, k3 = Statically determined coefficients 

   σc-init and σc-ult = Initial and ultimate confining pressures 

   σd-init and σd-ult = Initial and ultimate deviatoric pressures 

   PI = Plasticity index of the base or subgrade material 

   γ = Truck traffic load shear strain 

   σ’0 = Mean effective confining pressure 

 

 This paper does not argue the relative accuracy of the three aforementioned 

methods, but instead suggests that is important to consider several different models 

and/or methods when attempting to estimate quantities that are not well understood or 

defined.  For the case of adjusting seismic moduli, it is necessary to estimate properties 

such as effective confining stresses and/or shearing strains before the ultimate estimation 

of corrected modulus can ever be considered.  Thus, in each step of the process, 

engineering judgment should be used and documented so that unreasonable results may 

be compared with their corresponding methods and assumptions.   

 

2.4. Case Studies: Comparisons of Backcalculation Procedures 

The literature includes a number of comparisons between pavement and subgrade moduli 

determined from different NDT and laboratory methods.  Because of the relative 

popularity of FWD compared to SASW, most of the available comparisons either 

consider different FWD backcalculation procedures or a certain FWD procedure to 
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laboratory testing.  For that reason, this section will only address two comparisons, and 

those will be limited to FWD and laboratory-determined stiffnesses.  Sections 3 and 4 of 

this paper include a direct comparison of SASW and FWD-backcalculated moduli for a 

particular section of roadway. 

2.4.1. Oregon: FWD vs. Laboratory for HMA and Base Course Materials 

A KUAB FWD was used to estimate pavement layer moduli for two typical and similar 

flexible pavement sections in Oregon (47).  The first section, the Rufus Project, consisted 

of a 173-mm (6.8-in.) thick HMA layer underlain by a 457-mm (18-in.) thick base layer.  

The HMA layer was moderately rutted and extensively cracked; the subgrade was non-

plastic sandy gravel.  The second section, the Centennial Project, consisted of a 102-mm 

(4-in.) thick HMA layer underlain by a 406-mm (16-in.) thick base layer.  The HMA 

layer was moderately cracked; the subgrade was a well-graded sandy gravel. 

 A software called BOUSDEF was used to backcalculate layer moduli from FWD 

data.  BOUSDEF is an iterative software that estimates moduli from user-input layer 

thicknesses and Poisson’s ratios as well as measured deflection basin data.  In addition, 

BOUSDEF determines a non-linear regression to model the stress-dependent nature of 

base course modulus if varying load levels are used during testing.  ASTM D-4123 was 

used for laboratory resilient modulus testing. 

 Figures 23 and 24 show the backcalculated and laboratory-measured resilient 

moduli for the HMA layers of the Rufus and Centennial projects, respectively.  It is clear 

from the figure that laboratory values are consistently higher than backcalculated values.  

This could be the result of removing cores at locations that are in relatively good 
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condition.  If that is the case, the laboratory test would have no way to simulate the 

distresses that were encountered in the pavement that was tested via FWD. 

 Figures 25 and 26 show plots of the backcalculated regression for base course 

modulus versus laboratory-measured values for east-bound and west-bound lanes of the 

Rufus and Centennial projects, respectively.  These values have exceptional agreement 

for the Rufus project and very close agreement for the Centennial project. 

 The Oregon report includes backcalculated values for subgrade resilient modulus, 

but states nothing of laboratory or otherwise determined values for comparison.  This 

short comparison provides two pieces of information.  First, iterative backcalculation 

software appears to be able to estimate the non-linear resilient modulus of base materials 

with a good deal of accuracy.  While there is no clear reason why the backcalculated 

HMA moduli did not match up, it is likely that the field samples were taken at locations 

that were not representative of field conditions.  This has dual consequence.  First, it 

emphasizes the need to characterize pavements at many different locations.  Also, it 

shows the importance of using engineering judgment throughout sampling and testing.  If 

relatively few samples are taken from a material in the field, those samples need to err on 

the conservative side of the average.  If an overlay were designed based on the laboratory 

testing of an unrepresentatively strong sample, the overlay may be too thin to serve its 

purpose. 
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FIGURE 23 HMA Moduli for Rufus Project (47) 

 

 

 

FIGURE 24 HMA Moduli for Centennial Project (47) 
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FIGURE 25 Base Course Moduli for Rufus Project (47) 

 

 

 

FIGURE 26 Base Course Moduli for Centennial Project (47) 
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2.4.2. LTPP Database: Comparison of FWD Backcalculation Methods 

The Long Term Pavement Performance (LTPP) Program has compiled a database of 

pavement sections for which FWD and/or laboratory testing has been performed, and one 

study used that database compare the effectiveness of different FWD backcalculation 

methods to estimate the measured stiffness of rigid pavements and subgrades (22).  

Twenty-six jointed concrete pavement (JCP) sections were obtained that had deflection 

data and k values measured from plate-load tests, 50 JPC sections were chosen that had 

deflection data and measured EPCC values, and 76 continuously reinforced concrete 

pavement (CRCP) sections were chosen that had deflection data and measured EPCC 

values.   

The deflection data was used as an input in ILLIBACK4, ILLIBACK7, 

NUSBACK, and the LTPP Best-Fit methods to determine the relative ability of each to 

estimate k and/or EPCC for rigid pavements.  Figures 27, 28, and 29 compare measured to 

backcalculated k values, EPCC for JPC, and EPCC for CRCP, respectively, (a) based on the 

average value for each pavement section and (b) based on each deflection basin.  

Similarly, Figures 30, 31, and 32 illustrate how many of the estimates contain varying 

levels of error. 

The authors of the LTPP study offer some interpretation of the results.  First, the 

relative inaccuracy of backcalculated k values is attributed to the likelihood that the plate 

load tests would have been conducted at different times and temperature than the FWD 

tests.  The same is true for EPCC measurements, but k is more dependent on environmental 

factors. 



 82   

It is also noted that ILLIBACK4 and ILLIBACK7 have the most stringent 

deflection basin conformance requirement, and that this may be the cause of their 

relatively poor performance.  The LTTP Best-Fit method attempts to match individual 

deflections instead of the entire deflection basin, and that is probably at least part of the 

reason why the forward calculation was more accurate.  NUSBACK was clearly the most 

accurate backcalculation method, and the authors guess that this is because of 

NUSBACK’s computational flexibility.  NUSBACK can use any two deflection 

measurements, and this study used different strategic pairs for calculating k (d4 and d7) 

and EPCC (d1 and d3).  As a final note, the inclusion of tests on JCP seemed to prove that 

jointed pavements are sufficiently “infinite” to use layered elastic theory as long as the 

FWD test is conducted at an interior point on the slab. 

 

 

 

 

 

 

 

 

FIGURE 27 Comparison of Backcalculated and Measured k Values (22) 
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FIGURE 28 Comparison of Backcalculated and Measured EPCC Values for JPC (22) 

 

 

 

 

 

FIGURE 29 Comparison of Backcalculated and Measured EPCC Values for CRCP 

(22) 
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FIGURE 30 Errors of Backcalculated k Values (22) 

 

 

 

 

 

 

 

FIGURE 31 Errors of Backcalculated EPCC Values for JPC (22) 
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FIGURE 32 Errors of Backcalculated EPCC Values for CRCP (22) 
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3. DATA ANALYSIS 

Falling Weight Deflectometer (FWD) and (Spectral Analysis of Surface Wave) SASW 

tests were conducted for a FHWA project in Nashville, AR during the summer of 2007 

by the Arkansas Highway and Transportation Department (AHTD) and the University of 

Arkansas, respectively.  The current study is completely separate from the research that 

was being undertaken in Nashville, but the raw field data from those tests has been 

provided for this project at no expense.  The data from Nashville were all taken from a 

single stretch of road comprised of approximately 76 adjacent 30-ft slabs, for a total 

length of just under half a mile.  The road, AR-4/US-278/Main St, consisted of a roughly 

6-inch thick, JRCP layer that is underlain by native soils.  At the time of testing the road 

had never undergone major rehabilitation, and the primary distress was poor joint load 

transfer between slabs. 

 The Natural Resources Conservation’s Web Soil Survey was used to classify 

Nashville’s native soil (48).  Figure 33 shows the spatial distribution of the three primary 

soil types that are found in the immediate vicinity of AR-4/US-278/Main St., which is 

drawn in yellow.  Table 10 gives the engineering properties of the three types of soils that 

were available from the Web Soil Survey.  The information from Table 10 was used to 

make educated assumptions about the remaining soil properties that were required for 

analysis.  Table 11 documents the assumptions that were made for backcalculating 

moduli at the Nashville site. 

SASW tests were also conducted at the Nashville site, but on a less frequent basis.  

For each SASW test, a plot of the field dispersion curve is presented in Appendix A.  The 

estimated subgrade and pavement moduli are reported in Table 12 of Section 4.  SASW 
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FIGURE 33 Spatial Distribution of Soil Types in Nashville, AR (48) 

 
 
Table 10 Description of Soil Types at Nashville Site (48) 

Symbol Name LL PI %Sand %Clay %Silt AASHTO USCS

RuB Ruston Fine Sandy 
Loam 31 12 46.0 22.7 31.3 A-6 CL 

SaC Sacul Fine Sandy 
Loam 45 21 25.2 32.1 42.7 A-7-6 CL 

SfB Savannah Fine 
Sandy Loam 30 11 41.7 23.8 34.5 A-6 CL 
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Table 11 General Assumptions for Materials at Nashville Site 

Property Assumed Quantity 
Poisson’s Ratio of Subgrade Soil 0.40 

Poisson’s Ratio of JRCP 0.15 
Unit Weight of Subgrade Soil 115 pcf 

Unit Weight of JRCP 150 pcf 
Thickness of JRCP 6 inches 

Truck-load-level Strain for Subgrade 0.05% 
 

tests were documented according to the slab at which they were conducted, but 

unfortunately there is not a similar record for the FWD tests.  It is believed, however, that 

all of the nondestructive tests were performed in a close enough proximity to one another 

to facilitate a worthwhile comparison of backcalculated moduli. FWD tests were 

performed at mid-slab at two load levels for 65 adjacent slabs, both northbound and 

southbound, for a total of 260 measured deflection basins.  The raw data from these 

measurements is presented in Appendix B.   

In an effort to compare the relative performance of the various FWD 

backcalculation procedures, the raw data from Appendix B has been used to 

backcalculate moduli using all of the reviewed methods that were available and/or 

feasible for use.  A spreadsheet was programmed to perform NUS-BACK and AREA72 

backcalculations for all 260 deflection basins.  The LTPP spreadsheet for forward 

calculation of a rigid pavement was used to estimate the overall pavement stiffness and 

subgrade resilient modulus for 30 deflection basins.  Twenty of the basins were taken 

straight from the raw data, and the other 10 were created by averaging the two sets of 

load and deflections from 10 different locations.  All 30 basins were chosen from basins 

that produced reasonable results in both NUS-BACK and AREA72.  BAKFAA software, 
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which is available to the public at no charge, was used to backcalculate the same 30 

deflection basins.  Lastly, ELMOD was used to evaluate the pavement structure using the 

data file that was output from the FWD.  Tables 34 - 40 in Section 4 document the results 

of the various backcalculations that were performed. 

The literature suggests that DIPLO-DEF and MODULUS are both valuable tools 

for estimating the stiffness of pavement layers, but they were not used for this study.  

Both programs were obtained, but the DOS environment proved too tedious and foreign 

to be practical.  The largest single factor that hindered the feasibility of these programs 

was the process of identifying input and output files for computation.  ILLI-BACK was 

also excluded from the analysis portion of this project for the same reason.  A newer, 

Windows-based version of Modulus has been published, but it was not available for this 

study.  The omission of these programs is justified by considering that any increase in 

accuracy from DIPLO-DEF or MODULUS would likely be offset by human error that 

could arise from attempting to implement such tedious programs for widespread use in 

state highway agencies. 

SASW inversion was also conducted, but a significant additional assumption was 

required.  Either the frequencies that were used or the sensors that were used to measure 

the surface waves generated field dispersion curves that are inconsistent and 

unreasonable for the PCC layer.  The shear wave velocities were expected to be highest 

for the PCC layer, but the results on their own are not consistent enough to facilitate such 

a conclusion.   

The readings from sensor spacings greater than 3 inches consistently report shear 

wave velocities similar to what is shown for the subgrade soil, and only the 3-inch 
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spacing gave results that showed the shear wave velocity to be highest in the PCC layer.  

There are two likely reasons for this problem.  The simplified equation for estimating 

sampling depth could be inaccurate, causing the larger sensor spacings to report accurate 

readings at inaccurate depths.  The other likely scenario is that the larger sensor spacings 

tend to mask the high-frequency signal that is required to analyze a stiff layer like PCC 

with lower-frequency background noise.  For the purposes of this study, the modulus of 

the PCC layer was estimated by considering the most common shear wave velocity that 

was estimated from the 3-inch sensor spacing and ignoring all other readings. 

Another issue with SASW is the correction of seismic subgrade moduli to account 

for the nonlinear stress-dependant variation.  Since the soil at the Nashville site is a low 

plasticity silty soil, Darendeli’s simplified hyperbolic relationship for fine grained soils 

was used.   The process of modulus adjustment is discussed in further detail in Appendix 

C.  A simplified example of the inversion process is also included in Appendix C. 

One last technique of backcalcuation is now discussed before the results are 

presented.  The layered elastic models provide estimates for Young’s modulus of the 

pavement and subgrade values, but rigid pavement design procedures necessitate a value 

for k, the coefficient of subgrade reaction.  The two values are related, and Equation 73 is 

used to convert between the two throughout Sections 4 and 5.  This is a modification of a 

relationship that is given in the ASTM specification for measuring soil stiffness by the 

electromechanical method, which gives stiffness in terms of force per depth penetration.  

In order to change that value into a pressure per depth penetration, the ASTM equation 

was simply divided by the area of the loading plate (49).  For the purposes of this study, 

the load plate had a radius of 5.91 inches. 



 91   

 

( ) ( )2
2

2 1
563.0

1
77.1

υ
π

υ −
=÷

−
=

R
ERREk ………………..………..Eq. 73 

 Where:  k = Coefficient of subgrade reaction (psi/in.) 

   R = Radius of load plate (in.) 

   E = Young’s modulus (psi) 

   υ = Poisson’s ratio 

 

The only laboratory measurement that is available for comparison with the 

nondestructive estimations is a single measurement of concrete compressive strength 

(f’c).  This value was determined according to the specifications in AASHTO T 22.  The 

single test reported a compressive strength of 9,441 psi.  Equation 74 was used to 

estimate a value of 5,538,000 psi for EPCC. 

 

'000,57 cPCC fE = ………………………………Eq. 74 

Where:  EPCC = Young’s Modulus of PCC (psi) 

  f’c = Concrete compressive strength (psi) 
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4. RESULTS 

 

4.1. SASW Results 

The dispersion curves for the Nashville SASW tests are presented in Appendix A.  The 

reduced data from those curves is presented below in Table 12.   A detailed explanation 

of the reduction procedure is presented in Appendix C. 

 

Table 12 Profile of Young’s Modulus with Depth from SASW 

Depth 
(in.) 

Young’s modulus (psi) @ Slab (#) 
3 17 25 34 42 52 66 76 

0 – 6 - 2,478,000 6,999,000 11,624,000 3,142,000 189,000 214,000 297,000
6 – 12 68,000 321,000 564,000 - - 645,000 191,000 222,000
12 – 18 134,000 321,000 564,000 618,000 - 645,000 191,000 333,000
18 – 24 134,000 321,000 564,000 618,000 395,000 645,000 191,000 333,000
24 – 30 134,000 321,000 564,000 - 395,000 161,000 191,000 333,000
30 – 36 134,000 321,000 - - 175,000 161,000 - 333,000
36 - 42 134,000 - - - 175,000 161,000 - 333,000

 

 

4.2. NUS-BACK Results 

Figure 34 provides a graphical illustration of the NUS-BACK estimates for EPCC using 

different combinations of sensor spacing and subgrade modeling.  Figure 35 provides the 

same illustration for estimates of k and ES. 
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FIGURE 34 Backcalulated EPCC from NUS-BACK 
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FIGURE 35 Backcalculated Soil Stiffness from NUS-BACK 
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4.3. AREA72 Results 

The AREA72 backcalculation procedure was also used to estimate EPCC and k for the 

Nashville pavement and subgrade.  Figure 36 shows the estimates for EPCC, and Figure 37 

shows those for k. 

 

 

FIGURE 36 Backcalculated EPCC from AREA72 

 

 

 

 

FIGURE 37 Backcalculated k from AREA72 
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4.4. LTPP Forward Calculation Results 

The LTPP forward calculation spreadsheet is capable of estimating the resilient modulus 

and composite pavement modulus for rigid pavements.  Figure 38 shows the LTPP 

estimations for both. 

 

 

FIGURE 38 Mr and EComp from LTTP Forward Calculation 

 

4.5. BAKFAA Results 

Pavement and subgrade moduli were also estimated using BAKFAA, which requires seed 

moduli for the subgrade and the pavement.  Two seed values were used for each input, 

and the results are given in Figure 39.  Seed values for subgrade modulus were 15,000 psi 

and 20,000 psi.  Those for pavement modulus were 4 million psi and 5 million psi. 
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FIGURE 39 ES and EPCC from BAKFAA 
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4.6. ELMOD Results 

ELMOD 5 backcalculation results are presented in Figure 40 using both the radius of 

curvature and the basin matching methods. 

 

 

FIGURE 40 ES and EPCC from ELMOD 

 

4.7. Comparisons 

Figure 41 compares the effectiveness of different sensor spacings for estimating EPCC in 

NUS-BACK for both dense liquid and elastic solid foundations. 
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FIGURE 41 NUS-BACK: D3-D1 vs. D7-D4 for EPCC 

 

Figure 42 compares the different sensor spacings for estimating k (for the dense  

liquid model) and ES (for the elastic solid model). 

 

 

FIGURE 42 NUS-BACK: D3-D1 vs. D7-D4 for k, Es 

 

Figure 43 illustrates the variability in the dense liquid and elastic solid models for  

estimating EPCC. 
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FIGURE 43 NUS-BACK: Dense Liquid vs. Elastic Solid for EPCC 

 

Similarly, Figure 44 compares the ability of the two subgrade models to estimate  

subgrade stiffness.  The line of equality is not 1:1 because the relationship between k and 

ES is not 1:1.  The reader is referred to section 5.6 for a more detailed explanation of this 

topic. 

 

 

FIGURE 44 NUS-BACK: Dense Liquid vs. Elastic Solid for k & ES 

 

The NUS-BACK elastic solid model for both sensor spacings is compared to the  

AREA72 model for estimations of EPCC in Figure 45. 
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FIGURE 45 NUS-BACK (Elastic Solid) vs. AREA72 for EPCC 

 

For completeness, the average of the two NUS-BACK elastic solid models (both  

D3/D1 and D7/D4) is compared to the AREA72 model for estimating EPCC in Figure 46. 

 

 

FIGURE 46 NUS-BACK Average (Elastic Solid) vs. AREA72 for EPCC 

 

Figure 47 compares the estimations of k from the NUS-BACK D7/D4 dense liquid  

setup with those from the AREA72 method. 
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FIGURE 47 NUS-BACK D7-D4 (Dense Liquid) vs. AREA72 for k 

 

Figure 48 compares the estimations of subgrade and pavement stiffness from 

ELMOD 5 according to which optimization procedure is used, basin-matching or radius 

of curvature. 

 

 

FIGURE 48 ELMOD: Radius of Curvature vs. Basin-Matching 

 

The NUS-BACK D7/D4 dense liquid setup is compared to BAKFAA, LTPP, and  

ELMOD 5 for estimating subgrade stiffness in Figures 49, 50, and 51, respectively.  

Similarly, AREA72 is compared to BAKFAA, LTPP, and ELMOD 5 in Figures 52, 53 

and 54. 
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FIGURE 49 NUS-BACK D7-D4 (DL) k vs. BAKFAA ES 

 

 

FIGURE 50 NUS-BACK D7-D4 (DL) k vs. LTPP Mr 

 

 

FIGURE 51 NUS-BACK D7-D4 (DL) k vs. ELMOD ES 
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FIGURE 52 AREA72 k vs. BAKFAA ES 

 

 

FIGURE 53 AREA72 k vs. LTPP Mr 

 

 

FIGURE 54 AREA72 k vs. ELMOD ES 
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The subgrade stiffness estimates from BAKFAA and LTPP are presented in  

Figure 55.  Figure 56 shows the same for BAKFAA and ELMOD 5, and Figure 57 makes 

the comparison for LTPP and ELMOD 5. 

 

 

 

FIGURE 55 BAKFAA ES vs. LTPP Mr 

 

 

 

FIGURE 56 BAKFAA ES vs. ELMOD ES 

 



 106   

 

FIGURE 57 LTPP Mr vs. ELMOD ES 

 

Estimations of the different procedures for EPCC are presented in figures 58 – 63.  

The estimates of AREA72 are compared to those from BAKFAA, LTPP, and ELMOD 5 

in Figures 58, 59, and 60, respectively.  The BAKFAA estimates of EPCC are plotted 

against those from LTPP and ELMOD 5 in Figures 61 and 62, respectively.  Finally, a 

comparison between LTPP and ELMOD 5 for estimating EPCC is given in Figure 63. 

 

 

FIGURE 58 AREA72 EPCC vs. BAKFAA EPCC 
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FIGURE 59 AREA72 EPCC vs. LTPP Ecomp 

 

 

FIGURE 60 AREA72 EPCC vs. ELMOD EPCC 

 

 

FIGURE 61 BAKFAA EPCC vs. LTPP EComp 
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FIGURE 62 BAKFAA EPCC vs. ELMOD EPCC 

 

 

FIGURE 63 LTTP EComp vs. ELMOD EPCC 
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5. DISCUSSION 

5.1. SASW Results 

SASW results are presented in Table 12 of Section 4.1.  The subgrade stiffness is 

consistently overestimated, and less than half of the estimates of EPCC are reasonable.  In 

fact, only one dispersion curve (Figure A2, Slab 17) is actually considered reasonable.  It 

is not clear exactly why SASW performed so poorly at the Nashville site, but it is evident 

that SASW did not provide any valuable estimates for the Nashville site.  This could have 

been due to human error, but the consistently unreasonable estimates suggest that SASW 

was not appropriate for the Nashville pavement.  This could have been because of voids 

underneath the pavement that interfered with wave propagation, or simply because 

SASW is not an effective tool for analyzing rigid pavements. 

 

5.2. NUS-BACK 

NUS-BACK is capable of modeling a foundation as dense liquid or elastic solid, and it 

can calculate layer moduli based on any two of seven measured deflections.  The 

literature suggests that using the deflection measured directly under the load plate along 

with the third measured deflection (D1 and D3, respectively) is best for estimating the 

pavement stiffness since those two deflections are due almost entirely to pavement 

response.  Similarly, D7 and D4 are considered to work best for estimating subgrade 

moduli.  Thus, NUS-BACK, on its own, provides many possible ways to backcalculate 

rigid pavement and subgrade stiffness. 

 Figures 34 and 35 in Section 4 show a graphical representation of the 

backcalculated values for pavement and subgrade stiffness, respectively, for different 
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combinations of the previously discussed methods.  The EPCC values were unreasonably 

large for the dense liquid model, and only moderately reasonable (between 2 and 3 

million psi) for the D3/D1 layout of the elastic solid model.  The elastic solid D3/D1 model 

consistently predicted values of EPCC roughly 2 million psi lower than the laboratory 

estimated moduli. 

The ES values were more consistent throughout the different subgrade models and 

sensor spacings.  The most consistent results, however, were observed when the dense 

liquid model was used.  The dense liquid model gave k values mostly between 100 and 

200 psi/in for both D3/D1 spacing and D7/D4 spacing.  Unexpectedly, the D3/D1 spacing 

estimated the most reasonable values for ES with the elastic solid model, having a range 

of 5,000 to 10,000 psi.  Further comparisons within the NUS-BACK results are discussed 

in section 5.6. 

 

5.3. AREA72 

The AREA72 method provides an estimation of the coefficient of subgrade reaction (k) 

and the subgrade stiffness (EPCC).  The estimate is made by taking the average of seven 

individual layer moduli estimations, one for each deflection measurement.  Figures 36 

and 37 in Section 4 show a graphical representation of the backcalculated moduli for the 

pavement and subgrade, respectively.   The coefficients of subgrade reaction vary 

between about 75 and 125 psi/in., and the PCC moduli mostly fall between 2.5 and 4.5 

million psi.  The estimates of EPCC were consistently 1 million psi below the laboratory 

estimate of EPCC.  Both of these ranges are within reason for the Nashville pavement 

system. 
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5.4. LTPP Forward Calculation 

The LTPP forward calculation spreadsheet was used to estimate moduli for 30 selected 

deflection basins from the Nashville project.  The NUS-BACK and AREA72 results were 

used to screen the database of Nashville data for basins that were most likely to yield 

reasonable estimates of layer moduli.  Basins were chosen that corresponded to NUS-

BACK and AREA72 estimates between 115 and 250 psi/in. for k and between 3 million 

and 6 million psi for EPCC.  The subgrade resilient modulus (Mr) and composite pavement 

stiffness (Ecomp) that were estimated for those selected basins are illustrated graphically in 

Figure 38.  The Mr estimates range between about 18,000 and 25,000 psi with good 

consistency.  The composite pavement stiffness should be a close estimation of the PCC 

modulus since the Nashville pavement was only comprised of that single layer.  The 

range of EComp from forward calculation was about 400,000 to 600,000 psi with a few 

exceptions around 1 million psi.  These estimates are unreasonably low for PCC stiffness. 

 

5.5. BAKFAA 

BAKFAA was used to analyze the same 30 deflection basins that were loaded into the 

LTPP forward calculation spreadsheets.  BAKFAA is interation-based software that 

relies on user-input values for seed moduli.  Thus, unlike the previous closed-form 

methods, BAKFAA allows the user to alter the final estimate of moduli by using different 

seed values.  Figure 39 shows the estimates that BAKFAA provides for various seed 

moduli.  The EPCC ES seeds were chosen based on the results of NUS-BACK and 

AREA72 backcalculations.  Accordingly, ES seeds of 15,000 and 20,000 psi were used, 
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and EPCC seeds of 4 million and 5 million psi were used.  The corresponding 

combinations and results are shown graphically in Figure 39. 

 At least for the variation in the seed values that were chosen, BAKFAA did not 

appear to be very sensitive to differences in seed values.  For all 8 trial combinations the 

ES estimate ranged between 19,000 and 24,000 psi fairly consistently.  Similarly, the EPCC 

estimates ranged between roughly 3 and 4 million psi.  The EPCC estimates are between 1 

million and 2 million psi lower than the laboratory estimated moduli.  The effect of 

averaging the basins from different load levels did not have any significant effect.  The 

backcalculated moduli from the averaged basins are not noticeably different than those 

from the true basins. 

 

5.6. ELMOD 

ELMOD 5.0 was used to backcalculate the layer moduli straight from the FWD output 

files.  In practice, this feature makes ELMOD significantly more convenient than the 

other methods, because deflection basins are not entered manually by individual 

deflections and sensor spacings.  The data is included in the .F25 file, and ELMOD 

provides the pertinent output as a Microsoft Access database file.  As was mentioned in 

the literature review, ELMOD is capable of backcalculating moduli by matching either 

the radius of curvature of the basin or by matching the basin itself.  Figure 40 summarizes 

the results from both techniques for ES and EPCC. 

 While there was significant scatter for the different basins, the overall results did 

not vary much based solely on the backcalculation technique.  Furthermore, the scatter is 

likely due to inconsistent pavement distresses rather than errors in the backcalculation 
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program.  The estimates for subgrade modulus were mostly between 5,000 and 10,000 

psi.  Those for PCC modulus were mostly between 2 million and 5 million psi.  These 

ranges are both reasonable for the Nashville pavement and subgrade.  However, the EPCC 

estimates are consistently lower than the laboratory estimates. 

 

5.7. NUS-BACK Variations 

Considering the different sensor arrangements and pavement modeling schemes that are 

possible with NUS-BACK, there are many different potential ways for NUS-BACK to 

backcalculate FWD data.  If the NUS-BACK software were being used, it would be 

feasible to estimate moduli from 21 different 2-sensor arrangements, and each of those 

arrangements could be modeled as elastic solid or dense liquid.  Since the graphical 

procedure was used for this study, the 2-sensor arrangements had to be limited for 

practicality.  The two chosen sensor arrangements were D3/D1 and D7/D4.  The literature 

suggests that these two spacings give the best idea of pavement and subgrade stiffness, 

respectively.  All 260 deflection basins from the Nashville project were analyzed in this 

manner. 

 Figure 41 in Section 4.7 compares the values that NUS-BACK estimated for EPCC 

using D3/D1 and D7/D4.  Points lying on the dashed diagonal line represent deflection 

basins for which D3/D1 and D7/D4 both predict the same pavement stiffness.  From the 

figure, it is clear that the D3/D1 configuration estimates much higher PCC moduli than the 

D7/D4 configuration for both dense liquid and elastic solid models.  Figure 42 shows a 

similar comparison for subgrade stiffness instead of pavement stiffness.  In this case, the 

sensor arrangement makes little difference for the dense liquid model, but for the elastic 
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solid model the D7/D4 model is observed to estimate higher moduli than the D3/D1 

configuration. 

 Another important comparison to make for NUS-BACK procedures is the relative 

strength of the dense liquid and elastic solid models.  Figure 43 compares the two 

models’ estimates of pavement stiffness.  The figure suggests that the dense liquid model 

predicts significantly larger EPCC values than the elastic solid model.  In addition, it can 

be seen that the values predicted by the dense liquid are unreasonably large.   

For the comparison of k and ES, two equality lines were initially drawn to 

represent Equations 4 and 73.  It was quickly seen, however, that the difference in the 

two relationships was insignificant compared to the scatter of data and the two lines laid 

so close together that they could not be differentiated.  Thus, for the remainder of this 

study, a single equality line was drawn for all comparisons between k and ES that 

corresponds to ES = 9.55k.  Figure 44 shows the comparison between backcalculated ES 

and k for the dense liquid and elastic solid models.  Interestingly, the dense liquid model 

predicted higher values for the D3/D1 spacing while the elastic solid model predicted 

higher values for the D7/D4 spacing. 

 

5.8. NUS-BACK vs. AREA72 

Comparisons were made between AREA72 and several variations of NUS-BACK for 

estimating pavement and subgrade moduli.  The comparison of Section 5.6 indicates that 

the dense liquid model is not appropriate for estimating the moduli of pavement layers in 

NUS-BACK.  Therefore, only the elastic solid model was used within NUS-BACK for 

EPCC backcalulation.   
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Figure 45 compares the both NUS-BACK arrangements to the AREA72 model for 

estimating pavement stiffness.  Figure 46 does the same, but takes the average of the 

D3/D1 and D7/D4 arrangements for NUS-BACK.  The results show that the D7/D4 

arrangement causes NUS-BACK and AREA72 to show the greatest agreement for EPCC 

backcalculation.  The average NUS-BACK estimates also show fairly close agreement 

with AREA72 estimates for PCC modulus.  It is noted that the two comparisons including 

D3/D1 show the least scatter and indicate an underpriction by AREA72, while the D7/D4 

NUS-BACK estimates seem to show an overprediction by AREA72.  These results are not 

significant enough to indicate which method is best, but they do indicate that NUS-

BACK and AREA72 report EPCC values fairly close to one another. 

 In addition, NUS-BACK was compared to AREA72 for the ability to estimate the 

subgrade stiffness.  Figure 47 shows the dense liquid D7/D4 NUS-BACK estimates 

plotted against the AREA72 estimates.  This relationship shows a high degree of 

continuity, with NUS-BACK consistently and slightly predicting higher soil moduli than 

AREA72.  Again, this does not indicate whether one method is more accurate than the 

other, but it shows that the two methods estimate very similar ranges of moduli for the 

same deflection basins. 

 

5.9. ELMOD Variations 

It was noted in Section 5.5 that the two backcalculation options with ELMOD do not 

have a significant impact on the final results.  The two options are to simulate the radius 

of curvature of the deflection basin or to replicate the basin based on the individual 

deflections.  Figure 48 shows the effect of these options for estimating both subgrade and 
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PCC stiffness.  The figure shows a significant amount of scatter for both cases, but in 

both cases the scatter is centered on the line of equality. 

 

5.10. Other Comparisons for Estimating Subgrade Stiffness 

NUS-BACK D7/D4 (DL) and AREA72 were found to give consistent and reasonable 

results for the coefficient of subgrade reaction.  The other backcalculation programs do 

not give k as a direct output, but the soil modulus (ES) was compared to k from NUS-

BACK and AREA72 by the equation discussed in Section 5.6. 

 Figure 49 compares NUS-BACK with BAKFAA for estimating k and ES, 

respectively.  The figure shows that, according to the line of equality, BAKFAA predicts 

significantly higher soil moduli than NUS-BACK.  Figure 50 compares NUS-BACK to 

the LTPP forward calculation spreadsheet for estimating k and Mr, respectively.  In this 

case, the graph again suggests that NUS-BACK is estimating lower values than the 

compared technique.  Figure 51 compares NUS-BACK to ELMOD for estimating soil 

stiffness.  This case continues the trend of underestimation by NUS-BACK, but the 

agreement is much better than for the BAKFAA or LTPP methods.  As expected, Figures 

52 – 54 show very similar results for comparisons in which the NUS-BACK data was 

replaced by AREA72 data. 

 In order to further assess the various techniques for estimating subgrade stiffness, 

several additional comparisons were drawn.  Figure 55 shows a direct comparison 

between the BAKFAA and LTPP methods for estimating ES and Mr, respectively.  The 

two methods show a consistent agreement with the LTPP method predicting slightly 

lower values than BAKFAA.  Figure 56 then compares BAKFAA to ELMOD.  In this 



 117   

case, BAKFAA again predicts the higher values, but the agreement is less consistent and 

more scattered.  Finally, LTPP and ELMOD are compared in Figure 57.  The figure 

shows a mild agreement between the two methods, with ELMOD consistently predicting 

lower values than the LTPP spreadsheet.  This shows that ELMOD predicted lower 

values than BAKFAA and the LTPP spreadsheet for soil stiffness. 

 

5.11. Other Comparisons for Estimating PCC Stiffness 

 AREA72 was compared to the other studied methods for estimating PCC modulus.  

Figure 58 shows such a comparison between AREA72 and BAKFAA with excellent 

agreement between the two data sets.  Figure 59 compares AREA72 to LTPP, but with 

less agreement in the data.  The LTPP spreadsheet is observed to predict a lower value 

for EPCC than AREA72 in almost every case.  Figure 60 shows close agreement between 

the estimated EPCC values from AREA72 and ELMOD.  As with the other ELMOD plots, 

there is a good deal of scatter, but the scatter is centered on the line of equality. 

 To further investigate these techniques, BAKFAA was compared to the LTPP 

spreadsheet and ELMOD in Figures 61 and 62, respectively.  Figure 61 shows little 

agreement between the LTPP and BAKFAA data, and it suggests that the LTPP 

spreadsheet estimated lower values than BAKFAA.  Figure 62 shows a wide range of 

scatter for the BAKFAA and ELMOD estimates of EPCC, but the data is centered on the 

line of equality.  Finally, the LTPP and ELMOD estimates were compared in Figure 63.  

The figure shows relatively little agreement, and shows again that the LTPP spreadsheet 

tends to predict lower values than other similar procedures. 
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6. CLOSING 

The purpose of this project was to analyze and compare backcalculation techniques for 

rigid and flexible pavements.  Most of the techniques discussed have been in terms of the 

falling weight deflectometer (FWD), but the spectral analysis of surface waves (SASW) 

is also a viable approach.  The literature review suggests that DIPLO-DEF is the most 

flexible program for analyzing FWD field data, and that automated procedures are being 

developed to ease the process of SASW inversion. 

 Field data for this project was limited to raw FWD and SASW data from a rigid 

pavement in Nashville, AR.  The raw FWD data was used to perform backcalculations 

with five different procedures.  DIPLO-DEF and MODULUS both seemed promising 

from the literature review, but the input/output process in a DOS-based environment 

proved too difficult to be practical for this project.  The SASW field dispersion curves 

appeared to be flawed by some aspect of the field conditions.  It is likely that air pockets 

existed between the concrete pavement and the subgrade which inhibited the regular 

propagation of Rayleigh waves.  Nevertheless, the field dispersion curves were inverted 

by a simplified method. 

 Closed form solutions for rigid pavements were found to be very useful during 

this study because they facilitate the development of a user-friendly spreadsheet for 

backcalculation.  ELMOD proved even more convenient by allowing the user to input a 

raw FWD file instead of entering individual basin dimensions.  NUS-BACK and AREA72 

were analyzed via spreadsheet; LTPP forward calculations were performed using a 

publically available spreadsheet; BAKFAA was run by entering basin dimensions 
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through an easy-to-use graphical user interface; ELMOD was run by inputting raw FWD 

files. 

 The SASW results were not ideal, and a larger library of field data would likely 

give more reasonable and valuable results for comparison with FWD backcalculations.  

The simplified procedure that was used for this study is valuable for comparison with 

other testing methods, but an analysis using more advanced inversion procedures would 

also be practical to gauge the effect of automation on the final SASW-estimated layer 

moduli. 

 The discussion in Section 5 can be summarized by the following findings: 

• The simplified SASW method was an ineffective and likely inappropriate tool for 

analyzing the rigid pavement in Nashville. 

• The backcalculation procedures consistently estimated EPCC values between 1 

million and 2 million psi lower than the laboratory estimation.  This could be due 

to flawed laboratory data. 

• NUS-BACK D7/D4 with dense liquid model and AREA72 are equally effective at 

estimating reasonable values for the coefficient of subgrade reaction, k, for rigid 

pavements.  However, they both appear to predict much lower values than the 

other methods that were studied. 

• The LTPP forward calculation spreadsheet for rigid pavements consistently 

underpredicts values of Mr and EComp 

• BAKFAA is an effective tool for estimating PCC moduli, but it seems to 

overpredict soil stiffness.  This could be remedied by changing the values used for 

seed moduli. 
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• ELMOD reflects the scatter that is inherent in the field, but the overall quality of 

data is more consistent and reasonable than any of the other methods. 

 

It is stressed that there is no “right” way to estimate in-situ pavement and soil 

properties.  Every method is “wrong” to some extent, but the art of backcalculation 

requires the engineer to tweak whatever method(s) he or she is using to get the most 

reasonable results without resorting to destructive and expensive laboratory testing.  

The engineer’s knowledge of typical values, reasonable assumptions, and common 

sense is the most important element of backcalculation.  That being said, FWD has 

shown a greater applicability to the type of pavement that was tested in this study, 

jointed reinforced concrete pavement (JRCP). 

Since laboratory modulus tests were not available for the materials on which the 

FWD and SASW tests were run, the current study cannot assess the relative accuracy 

of the backcalculation procedures, but only their relative performance.  Future studies 

would optimize their value by performing laboratory resilient modulus tests for a 

more valid comparison.  In addition, the LTPP forward calculation, BAKFAA, 

ELMOD, and SASW could have been more adequately compared if raw data had 

been obtained for flexible or overlaid pavements.  Nevertheless, the current study 

provides a detailed comparison of a simplified SASW inversion and several FWD 

backcalculation techniques for assessing the stiffness of rigid pavements and 

subgrade soils. 
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APPENDIX A   RAW DATA FROM SASW TESTING 
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FIGURE A1 Nashville, AR – AR4/US278/Main St – Slab 3 

 

 

TABLE A1 Analysis of Slab 3 

Depth 
(in.) 

Measured VS 
(ft/s) 

Assumed 
υ 

Assumed γ 
(pcf) 

Gseis 
(psi) 

G 
(psi) E (psi) 

0 – 6 - - - - - - 
6 – 11 1,500 0.40 115 55,000 24,200 67,760 
11 – 40 2,100 0.40 115 109,000 47,960 134,288
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FIGURE A2 Nashville, AR – AR4/US278/Main St – Slab 17 

 

 

TABLE A2 Analysis of Slab 17 

Depth 
(in.) 

Measured VS 
(ft/s) 

Assumed 
υ 

Assumed γ 
(pcf) Gseis (psi) G (psi) E (psi) 

0 – 6 8,700 0.15 150 2,448,000 1,077,000 2,478,000
6 – 36 3,600 0.40 115 321,000 141,240 395,472 
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FIGURE A3 Nashville, AR – AR4/US278/Main St – Slab 25 

 

 

TABLE A3 Analysis of Slab 25 

Depth 
(in.) 

Measured VS 
(ft/s) 

Assumed 
υ 

Assumed γ 
(pcf) Gseis (psi) G (psi) E (psi) 

0 – 6 9,700 0.15 150 3,043,000 3,043,000 6,999,000
6 – 28 4,300 0.40 115 458,000 201,520 564,256 
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FIGURE A4 Nashville, AR – AR4/US278/Main St – Slab 34 

 

 

TABLE A4 Analysis of Slab 34 

Depth 
(in.) 

Measured 
VS (ft/s) 

Assumed 
υ 

Assumed γ 
(pcf) Gseis (psi) G (psi) E (psi) 

0 – 6 12,500 0.15 150 5,054,000 5,054,000 11,624,000
6 – 10 - - - - - - 
10 – 23 4,500 0.40 115 502,000 220,880 618,464 
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FIGURE A5 Nashville, AR – AR4/US278/Main St – Slab 42 

 

 

TABLE A5 Analysis of Slab 42 

Depth 
(in.) 

Measured VS 
(ft/s) 

Assumed 
υ 

Assumed γ 
(pcf) Gseis (psi) G (psi) E (psi) 

0 – 6 6,500 0.15 150 1,366,000 1,366,000 3,142,000
6 – 15 - - - - - - 
15 – 30 3,600 0.40 115 321,000 141,240 395,472 
30 – 40 2,400 0.40 115 142,000 62,480 174,944 
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FIGURE A6 Nashville, AR – AR4/US278/Main St – Slab 52 

 

 

TABLE A6 Analysis of Slab 52 

Depth 
(in.) 

Measured VS 
(ft/s) 

Assumed 
υ 

Assumed γ 
(pcf) 

Gseis 
(psi) G (psi) E (psi) 

0 – 6 1,600 0.15 150 82,000 82,000 189,000
6 – 23 4,600 0.40 115 524,000 230,560 645,568
23 – 40 2,300 0.40 115 131,000 57,640 161,392
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FIGURE A7 Nashville, AR – AR4/US278/Main St – Slab 66 

 

 

TABLE A7 Analysis of Slab 66 

Depth 
(in.) 

Measured VS 
(ft/s) 

Assumed 
υ 

Assumed γ 
(pcf) 

Gseis 
(psi) 

G 
(psi) E (psi) 

0 – 6 1,700 0.15 150 93,000 93,000 214,000
6 – 28 2,500 0.40 115 155,000 68,200 190,960
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FIGURE A8 Nashville, AR – AR4/US278/Main St – Slab 76 

 

 

TABLE A8 Analysis of Slab 76 

Depth 
(in.) 

Measured VS 
(ft/s) 

Assumed 
υ 

Assumed γ 
(pcf) 

Gseis 
(psi) G (psi) E (psi) 

0 – 6 2,000 0.15 150 129,000 129,000 297,000
6 – 13 2,700 0.40 115 180,000 79,200 221,760
13 – 40 3,300 0.40 115 270,000 118,800 332,640
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APPENDIX B   RAW DATA FROM FWD TESTING 
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Table B1 Raw FWD Data from Nashville, Northbound Lane 
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Table B2 Raw FWD Data from Nashville, Northbound Lane (Continued) 
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Table B3 Raw FWD Data from Nashville, Southbound Lane 
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Table B4 Raw FWD Data from Nashville, Southbound Lane (Continued) 
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APPENDIX C   EXAMPLE SASW INVERSION 
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The purpose of this appendix is to provide a transparent documentation of the 

method by which moduli were obtained from SASW tests.  As was described in the 

literature review, SASW field tests involve measuring the phase velocity of Rayleigh 

waves for various seismic disturbances at several different sensor spacings.  Wider sensor 

spacings (i.e. 24-in. instead of 6-in.) are used to measure relatively low-frequency waves 

that correspond to deeper sampling depths.  Figure C1 shows an idealized field dispersion 

curve for a pavement structure.   

Note that the data points from smaller sensor spacings correspond to shallower 

depths than the data points from larger sensor spacings.  Also notice that the field 

dispersion curve exhibits a decrease in shear wave velocity with increasing depth.  This is 

because, for a pavement system, the stiffest layers are at the top.  If a similar test were 

run on bare soil for the design of a new roadway, the field dispersion curve would have a 

different shape.  There would not be a stiff layer on top, and the soil stiffness would 

likely increase with depth due to increased confining pressure.  The range of shear wave 

velocities for this scenario would be lower than what is measured for pavement layers, 

and the general shape would be close to a lateral reflection of the curve in Figure C1. 

 The process now described may be thought of as a simplified inversion process, 

as mentioned in the literature review.  In this process, the first step is to identify depths at 

which the dominant shear wave velocity exhibits an abrupt change.  Such changes are 

indicative of a change in the material through which the shear wave is traveling.  If the 

depth of the pavement layer(s) is already known, this information should be used to aid in 

the interpretation of the field dispersion curve.  Especially if the shear wave velocity 

changes uniformly, minimally, haphazardly, or in any fashion that hinders inversion, 
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Figure C1 Idealized Field Dispersion Curve 

 

the known layer thicknesses should be used to aid in interpretation.  

 After the field dispersion curve has been discretized into sections of semi-uniform 

shear wave velocity a representative shear wave velocity is estimated for each discretized 

layer.  More complex inversion methods utilize stiffness matrices and the analytic 

minimization of corresponding error functions for this step.  Such methods are 

convenient for automation, but unless they enhance the resolution of the field dispersion 

curve, they will not ultimately enhance the accuracy of the estimated layer moduli.  In the 

present study layer moduli were estimated by “eyeballing” the field dispersion curve and 
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drawing in sections of vertical lines (representing constant shear wave velocity through a 

depth) that best and most realistically represent the field data. 

 Table C1 summarizes the data that can be taken from the hypothetical field 

dispersion curve in Figure C2.  The next step for data reduction is to either measure, 

estimate or assume the quantities that are needed to relate shear wave velocity to Young’s 

Modulus.  These quantities include unit weight and Poisson’s ratio.  If the unit weight of 

the material in any given layer is unknown, the probable constituent of that layer should 

be guessed and its unit weight assumed.  Poisson’s Ratio is not usually measured, and it 

may be estimated using sources such as Table 2 in the literature review or estimated 

using engineering judgment.  

 

Figure C2 Discretized Field Dispersion Curve 

VS ≈ 17,000 ft/s 

VS ≈ 7,000 ft/s 

VS ≈ 5,500 ft/s 

VS ≈ 4,000 ft/s 
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 After measuring, estimating or assuming the necessary material characteristics, 

the shear wave velocity is converted into a value for seismic shear modulus (G) using 

Equation  60 from the literature review, shown below.  The mass density may be 

calculated by dividing the material’s unit weight by gravity.  Then, Young’s modulus is 

estimated from the assumed value for Poisson’s ratio using Equation 61 from the 

literature review, also shown below.  As discussed in the literature review, seismic values 

for Young’s modulus may be taken as equal to resilient modulus (Mr). 

ρ⋅= 2
SVG ………………………….……Eq. 60 

( )ν+= 12GE ………………………….…Eq. 61 

Lastly, Mr is adjusted to account for the stress-sensitive behavior of soil moduli.  

For this study, Mr was adjusted using Darendeli’s model for fine-grained soils (44).  This 

relationship is defined in the literature review by Equations 62 and 64, and is repeated 

below.  This model (as would similar models) is used to generate a curve for G/Gmax 

versus strain.  

a
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γ
γ1

1

max

……………………..…….Eq. 62 

( ) 3483.0'
0

3246.00010.00352.0 σγ ⋅××+= OCRPIr ; 9190.0=a  ……..Eq. 64 

 

This model requires several additional assumptions.  First, the overconsolidation 

ratio is assumed equal to one.  This is reasonable since the soils in Nashville, AR have 

not supported glaciers or other tremendous weights in their geologic past.  Secondly, the 

effective confining stress was taken equal to 0.5 atmospheres.  The literature suggests 
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that values in this region are common and appropriate (44).  These two assumptions 

facilitate the development of the graph in Figure C3, which was used to reduce all of the 

moduli estimates from the Nashville site. 

 

 

Figure C3 Darendeli’s Modulus Reduction Curve for Fine-Grained Soils 

 

 Next, the estimated layer modulus for each of the discretized layers is adjusted to 

a FWD/Truck-loading strain using Figure C3.  This may be accomplished on an 

analytical basis.  The first step in this process is to identify a shear strain that is 

representative of FWD/Truck loading.  The FWD can be used to identify such a strain.  

Using a representative deflection basin, first calculate the horizontal distance from the 

load plate at which deflections are due entirely to subgrade deformation.  This distance is 

called ae and is found using Equations 1-4.  The normal strain at this point (εFWD) is 

calculated as the vertical deflection divided by the subgrade sampling depth.  The 
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subgrade sampling depth is taken as 1.5 times the radius of the FWD load plate minus the 

depth of pavement layer(s). 

 εFWD may then be converted to a shearing strain (γFWD) using the principles of 

Equation 61 and Mohr’s Circle.  The first step is to replace the Young’s Modulus and 

Shear Modulus terms in Equation 61 with their component quantities, as shown below in 

Equation 61.B.  Rearranging this relationship to the form of Equation 61.C gives a 

solvable expression for shear strain (γ).  The normal stress (σ) and strain (ε) are available 

from FWD data, Poisson’s Ratio (υ) is assumed, and the shear stress (τ) may be found 

using Mohr’s circle.   

( )ν
γ
τ

ε
σ

+= 12 ……………………..………Eq. 61.B 

( )
E
ντγ +

=
12 ………………………………Eq. 61.C 

 

 The current analysis used a simplified procedure for determining γFWD.  Instead of 

an analytical estimation, a general rule of thumb was employed.  That is, the FWD load 

was assumed to impart a shear strain of 0.05%.  This undoubtedly introduces some error 

into the problem, but the assumption is that this error will not significantly affect the final 

estimation. 

Using γFWD as an input, Figure C3 is used to find a single reduction factor for all 

of the seismically determined modulus.  Figure C4 illustrates this procedure.  Finally, 

each of the seismically measured moduli is multiplied by the reduction percentage.  

These final values are representative of the soil moduli at an appropriate load level for 

highway design. 
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Figure C4 Simplified Determination of γFWD 

γFWD = 0.05% 

G/Gmax = 0.44 
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