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Abstract 

 
Previous studies, both theoretical and experimental, of network level dynamics in the 

cerebral cortex show evidence for a statistical phenomenon called criticality; a 

phenomenon originally studied in the context of phase transitions in physical systems and 

that is associated with favorable information processing in the context of the brain. The 

focus of this paper is on the role of criticality in visual sensory information processing.  One 

line of previous work suggests that the dynamic range of the network, when presented 

with outside stimulus, is maximized at criticality. Another line of previous work suggests 

that adaptation to changes in visual input serves to improve dynamic range.  A third line of 

work suggests that adaptation can bring about criticality.  Taken together, these three 

previous ideas suggest that adaptation to visual input will bring about criticality.  Thus, our 

hypothesis was that visually driven activity does operate near criticality, except during a 

transient period of adaptation immediately after the onset of the stimulus. We 

experimentally confirmed this hypothesis; we demonstrate that sensory driven cortex 

dynamics maintain signatures of criticality and in good agreement with our model; the 

transient response to the stimulus onset is not critical, but supercritical. 
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Introduction 

Self-organized criticality is a key subject that describes complex naturalistic systems (Bak, 

P., Tang, C. & Wisenfeld, 1987). Our study will focus on the network dynamics of the visual 

cortex in the brain, specifically in in-tact visual systems of turtles, and how these large 

networks process sensory information. This in-tact system includes the brain and the two 

eyes that connect to the brain via the optic nerve. We used work done by others, most 

notably Heiss, Levina, Adibi, Shew and their respective collaborators in the field of neural 

networks, self-organized criticality, information processing and neural adaptation to form 

our hypothesis. Adaptation is a phenomenon observed in almost every sensory system. For 

instance, you have experienced adaptation whenever you’ve walked from a dark room into 

a well-lit area; the short span of time that it takes your eyes and brain to adjust to the vast 

difference in lighting is a form of adaptation. The specific hypothesis of this study is that 

adaptation serves to bring neural networks (and therefore visual systems) back to 

criticality. 

 

 

 

 

 
Figure 1 – This graph 

represents the culmination of 

the work that we have based 

our hypothesis on. The lower 

three fields have been 

connected to one another by 

Shew and others. The idea 

that we aim to bring into the 

understanding of neural 

networks is adaptation. As 

the graph shows Heiss, Adibi, 

Levina and their 

collaborators all have 

contributed to each of these 

three different fields 

individually and our 

experiments show that these 

four fields can be cohesively 

brought together.  
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To better connect the ideas presented, Figure 1 has been included to show the 

connection between the four different fields and how we used these ideas to form a 

hypothesis about the visual cortex. Criticality has been hypothesized as a function of 

balance between two types of neurons that are present in the brain, inhibitory and 

excitatory. The brain is made up of approximately 1010 neurons with each neuron 

connecting to tens of thousands of others. As neurons receive information from connected 

neurons it integrates this input over a short period of time - if the total input is greater than 

a given threshold the neuron either fires its own action that is either excitatory or 

inhibitory. The balance of this dynamical system is thought to play a key role in criticality, 

even being described as one method in which you can tune a neural system into, and out of, 

criticality (Shew, Yang, Yu, Roy, Plenz, 2011). It was theorized that this self-organized 

criticality also demonstrated critical avalanches, a type of spontaneous activity in the 

superficial layers of the cortex both in vivo and in vitro, and was later experimentally shown 

(Eurich, C.W., Herrmann and M. & Ernst, 2002); Beggs, Plenz, 2003 and 2004; Plenz, D. & 

Thiagarajan, T.C 2007). Self-organized criticality appears in neural networks due to the 

dynamical synapses that govern them and one key feature of this criticality is the presence 

of power law observables (i.e. Neuronal avalanches) (Levina, Herrmann, Geisel, 2007). 

Within this framework of excitation and inhibition, criticality can be defined a dynamical 

regime balanced between two distinct extremes that are bounded as a phase transition 

(Levina, Herrmann, Geisel, 2009). The first extreme is characterized by highly ordered, 

intense activity that tends to cascade across the entire network due to over excitation and 

the second extreme is characterized by disordered, weak activity that does not propagate 

across the network well due to over inhibition (Shew, Plenz, 2012). These studies show 

that neural networks operate near criticality during spontaneous ongoing activity (i.e. 

activity that occurs with no sensory input) but there has been no experimental evidence to 

whether or not they operate near criticality during activity driven by sensory input.   

 

It has been theorized that adaptation serves as a method to maintain a particular 

balance between excitation and inhibition; more specifically that inhibition adapts more 

than excitation (Heiss, Katz, Ganmore, Lampl, 2008). Adaptation also serves to enhance 

information transmission (Adibi, Clifford, Arabzadeh, 2013) while criticality has the same 

functional benefit of enhancing information transmission (Shew, Yang, Petermann, Roy, 

Plenz, 2011). Another key computational benefit of criticality includes maximized dynamic 

range (Kinouchi, Copelli, 2006; Shew, Yang, Petermann, Roy, Plenz, 2009; Shew, Plenz, 

2012). Our hypothesis then follows from this previous work indicating (4) characteristics 

of neural networks: (1) that criticality has many functional benefits during activity with no 
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sensory input , (2) criticality has been related to the balance between excitation and 

inhibition similar to phase transitions, (3) adaptation serves to modify the balance of 

excitation and inhibition in response to outside stimulus, (4) adaptation, similar to 

criticality, has functional benefits that are associated with it. We hypothesized that the 

neural network should exhibit criticality during stimulus driven activity, except for a small 

transient period of adaptation in which the activity is supercritical.  

 

We experimentally tested this hypothesis in the visual cortex of eye-attached whole 

brain prep of turtles by recording activity in the visual cortex while various stimuli were 

displayed on the turtle’s exposed retinal. We discovered that our experimentation 

supported our hypothesis – the network displayed key characteristics of a critical network 

(i.e. power law distributed neuronal avalanches) during both non-stimulus driven and 

stimulus driven activity. However the system was found to not be critical during the 

transient response after the initial onset of the stimulus but rather it was found to be 

supercritical. 

 

Experimental Procedure 

Our experimental procedure involved taking extracellular voltage readings from visual 

cortical brain tissue of attached-eye experiments in vivo from turtles. To do this we used a 

ten by ten Utah microelectrode array at depths in the cortex of approximately 500 µm. This 

array was used in conjunction with the 30Ks/s Blackrock Microsystems neural recording 

suite. This equipment was used to observe and record the local field potential (5-100 Hz) of 

the visual cortex. To perform the experiments on the visual cortex of the turtle with the 

Utah arrays the turtle brain was prepared in an eye-attached whole brain preparation 

(Saha D, Morton D, Ariel M, Wessel R, 2011). Once the brain had been removed from the 

skull the dorsal cortex was surgically unfurled from the DVR to reveal the visual cortex. 

Once the brain was prepared the microelectrode array was placed into the cortex using a 

microcontroller and a microscopic webcam to ensure precision and proper placement. A 

graphic of the microelectrode placement can be seen below as well as photos from the 

microscopic_webcam: 
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Figure 2 – (Left) After removing the brain with eyes attached from the turtle, three cuts (red dashed lines) 

are made to facilitate the unfolding of the cortex and remove the lens exposing the retina in one eye.  (Bottom) 

The cortex is unfolded and flattened to allow insertion of the electrode array.  Approximately half of the 96 

electrodes are located in visual cortex. (Right, Top Left) Photo of microelectrode array used in neural 

recordings. (Right, Top Right) Photo of retina post-surgery in the remaining half of eye. (Right, Bottom Left) 

Photo of the uncurled section of the visual cortex. The bulb centered below the pinned flap is the DVR.  

(Right, Bottom Right) Photo of the uncurled section of the visual cortex post experimentation. Note the small 

imprint left by the microelectrode array.  

 

The visual stimuli were focused directly onto the exposed retina of the turtle. The full 

experimental setup can be seen below: 

 

 
Figure 3 – (Left) After placement of the electrode as seen in Figure 1, a lens is placed above the exposed retina 

that allows for the visual stimulus that was projected from a computer monitor and reflected from a 

positional mirror to be directly focused onto the retina so that it receives the entire stimulus. (Right) A 5 mm 

red LED is positioned slightly above the exposed retina such that when voltage is sent to it the majority of the 

produced light is shown onto the retina. 

 

 We performed three different types of visual testing for the turtles. Our first visual 

stimulus was a video clip comprised of 10 sec clip from a video recorded with a camera 

LED 
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mounted to the head of a cat while it moved through a forest and a 10 s clip from the 

popular Disney movie, Tarzan. It was normalized in terms of contrast and color. This clip is 

regarded as a naturalistic movie and has been used in previous studies of the visual cortex 

(Betsch BY, Einhäuser W, Körding KP, König P (2004)).   The first stimulus set, using 

naturalistic movies, consisted of 15 minutes of naturalistic stimulus, 15 minutes of no 

stimulus, and 15 minutes of stimulus etc. for 4 hours. The second stimulus used scanning 

black dots that moved across a white screen in a specific pattern based upon angles of 

movement. Eight black dots move across the screen for each angle 0, 90, 180, and 270 

across a white background. Each of these dots takes two seconds to traverse the screen.  A 

10 second pause with no motion separates each consecutive dot scan for a total time for 

one angle of 86 seconds. After each dot set no stimulus is shown for 214 seconds and is 

then followed by another angle set. For angles 45, 135, 225, and 315, 15 black dots move 

across a white background.  Each of these dots takes 2.83 seconds to traverse the screen 

with a 10 s pause with no motion to separate consecutive dot scans.  The total time for one 

of these angle sets is 182.5 seconds.  After each dot set no stimulus is shown for 117.5 

seconds and then followed by the next angle set. This stimulus set was performed for four 

hours per turtle. The third type of stimulus set was diffuse flashes of a red (5 mm) LED. 

This stimulus set consisted of a diffuse flash of the LED followed by 119 seconds of no 

stimulus for a total of 120 seconds, or two minutes. This set was performed 120 times for a 

total of four hours of recording per turtle.  Lastly, spontaneous ongoing activity was also 

recorded for four hours as a control for each turtle. 

 

For each stimulus set a synchronous signal was sent from the stimulus set computer to the 

neural recording device to mark the beginning of each break and start of new stimulus, 

regardless of set. For each turtle the stimulus sets were performed while the turtle was 

submerged in a saline bath. Full experimentation was run on a total of eight turtles for this 

study.   

 

Data Analysis 

To extract avalanches from LFP data the data was first filtered through a band-pass 

Butterworth filter to eliminate low (<5 Hz) and high (> 100 Hz) frequencies. To define a 

neuronal event (black dots in Figure 3) an event threshold was defined at six standard 

deviations and the peaks that occurred either beneath or above the threshold were 

considered events. It is important to note that for data consisting of only spontaneous 

ongoing activity the standard deviation was found by calculating it according to the entire 
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data set. For data consisting of both spontaneous and evoked activity two separate 

standard deviations were found, one for both type of data set and their respective averages 

were used to find events within each data set. Next we determined which electrodes were 

located in visual cortex based on whether they exhibited strong response to visual 

stimulus.  A strong response was defined based on the average response over many 

repetitions of the stimulus, as shown in the next figure. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Graphical representation of the visual cortex during recording sessions. On the left is a graphical 

representation of the temporal activity to due stimulus for all 96 electrodes. Note that in the lower fourth of 

the 96 electrodes there was erroneous data on some electrodes, thus the large appearance of activity where 

there was none. The red bar represents when a stimulus was shown to the exposed retina. In the middle a 

graph of percent change in LFP fluctuations across all electrodes. The red bar in this graph is a threshold 

applied to determine which electrodes, and thus which area of the cortex, were active during a stimulus set. 

The graph on the right is an over the top view of the electrodes looking down during a stimulus set. The area 

highlighted in red represents the electrodes with active neuronal activity. This area, we call V1, was the area 

of most activity during stimulus and ongoing activity for all turtles during all stimulus sets. It is on this area 

that we perform our analysis of transient and steady-state data present later. 

 

An avalanche is defined as a spatiotemporal cluster of LFP peaks, or events, with inter-peak 

intervals < ΔT. The size of an avalanche is defined as the number of peaks within a given 

avalanche and the duration is the time between the first and last peak. Using these 
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definitions the neural recording data was categorized to examine criticality. A graphic 

showing the characterization can be seen below: 

 

 
Figure 5 – (Top) An example section of neuronal activity on a single electrode with black dots placed on the 

peaks of activity that are greater than or less that 6 SD. Note that there may be peaks in activity but not be 

considered part of an avalanche due to being within 6 SD. (Bottom) Five examples of neuronal avalanches 

across a sample size of 28 electrodes of the 96 total. Note that these avalanches are spatiotemporally 

correlated and that as size increases duration does as well.  

 

To examine whether or not the neuronal avalanches had observables that were power law 

distributed size and duration distributions were made from the now categorized sets of 

avalanches. These were made by plotting logarithmically both the size and duration of an 

avalanche against the probability of getting a size or duration greater than that avalanche 

in two plots.  These distributions are called complementary cumulative probability 

distributions.    

 

Since avalanche size and duration distributions are expected to be power-laws at criticality, 

we assessed “proximity to criticality” by the following two steps.  First we computed the 

best-fit power-law function to our observed distribution using established maximum 

likelihood methods (Clauset A, Shalizi CR, Newman MEJ, 2009). Second, we computed how 

far the observed distribution deviated from the best-fit power-law using the Kolmogorov-

Smirnov statistic.  This deviation from the best-fit power-law (presented in Figure 9) can 

be interpreted as a quantitative estimate of deviation from criticality. The larger the 

deviation, the greater the deviation from criticality.  This analysis was carried out for the 

avalanches that occurred during a short time following the stimulus turning on, i.e. 
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transient avalanches.  It was also carried out for the visually evoked avalanches following 

the transient and for ongoing activity.   

 

Although power-law avalanche size and duration distributions are one important piece of 

evidence for criticality, they do not definitively prove that the system is critical.  An 

additional type of evidence comes from examining the relationship between size and 

duration (show in Fig 8).  Theory of criticality predicts that size should increase with 

duration in a specific way (Friedman N, Ito S, Brinkman B, et al., 2012), depending on the 

exponents found in the power-laws for size and duration distributions.  We also tested how 

well this prediction fit our observed data (results shown in the inset in Figure 9).  The 

greater the deviation from the prediction, the further from criticality the system is likely to 

be. 

 

Experimental Results 

The data recorded using the Blackrock Microsystems Neural Suite was multi-site ongoing 

and visually evoked low frequency potentials (LFPs). An example of the data can be seen 

below: 

 

 

 
Figure 6 – An example neural recording that shows both ongoing activity and evoked activity across 7 

electrodes. The grey bar beneath the data represents the signal sent from the stimulus computer indicating 

stimulus onset. The ongoing activity is an example of a neuronal avalanche and is characterized by a growth 

of activity, a peak, and a declination of activity. The evoked activity is characterized by a sharp increase in 

activity due to stimulus, slight declination and then a steady-state response until the stimulus ends in which 

the activity declines back to a baseline. 

 

As it can be seen the ongoing and evoked data are both spatially and temporally correlated. 

The evoked avalanches begin with a large immediate response which lasts ~5 ms, called 

the transient, which is marked with a large LFP at the stimulus onset. It is these transients 

that will be discussed in the ‘Discussion of Results’ section that follows. To ensure that the 

recorded data was reliable a trial-averaged spatial patterns of the evoked LFPs was 

calculated and can be seen below: 
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Figure 7 - Top: Black line is the average over 45 repetitions of the movie stimulus.  The gray band delineates 

lower to upper quartiles for variation around the average line. 

 Middle: Movie images  

Bottom: Average spatial patterns of LFP activity at the times indicated by the black arrows.  Color indicates 

% change compared to a baseline period before the movie turns on. 

 

 
There was also a reliable trial-to-trial low frequency LFP response with respect to general 
response to stimulus set. This can be seen below: 
 

 
 

Figure 8 – Top: Scenes from the naturalistic movie 

Middle: 45 repeated trials of naturalistic movie as seen by one electrode. This graph is meant to show a 

reliable response in the visual cortex to the visual stimulus 

Bottom: Black line is the average over 45 repetitions of the movie stimulus.  The gray band delineates lower 

to upper quartiles for variation around the average line. 

 

 
It should also be noted that these results are applicable to all stimulus sets: naturalistic 
movie, scanning dots and LED flashes.  
 

The focus of this study was the transient responses to visual stimulus and therefore we 

focused a secondary avalanche characterization, mentioned in the Data Analysis section, on 

the transient response. In a graph below the pre-stimulus ongoing activity (black), the 

transient response (red) and the stimulus driven activity (blue) is shown temporally in two 
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ways: avalanche size and avalanche duration. The grey bar beneath the graph represents 

the pulse sent by the stimulus computer indicating that a stimulus had been sent to the 

screen. 

 
 

 

Figure 9 – Graphs showing avalanche size and 

duration during evoked activity. Ongoing activity 

is represented in black, transient response in red 

and steady-state response in blue. The grey bars 

beneath the graphs represent the signal sent by 

the stimulus computer to indicate stimulus onset. 

Note the characteristic bimodal distribution of 

avalanche size and duration during the transient 

response (red) compared to the steady-state 

response (blue). 

 

 

From this graph alone it can be seen that there are marked differences between the 

ongoing, transient and steady-state response. There is little activity pre-stimulus in the 

ongoing stage, a large spike in neural activity which is then followed by a downward slope 

in activity due to activity until the steady state response. Note that in both duration and 

size the transient has a bimodal distribution of avalanches, a characteristic of supercritical 

neuronal networks. 

 

To examine criticality within this graph, three graphs are made from the same avalanche 

data shown above with the same color code using the method described in the Data 

Analysis section. As discussed earlier a property of criticality in neural systems is power-

law distribution of observables. Note that the scale for Figure 8 is logarithmic and therefore 

the plots across each graph are power-law distributed. The grey data points on the graphs 

represent a time-jittered control to ensure that our neuronal avalanche data was indeed 

temporally related in a meaningful way. We found that it appears that ongoing activity is 

critical in accordance with previous theory and experimentation. For the first time 

experimentally however, we show that the steady-state response to visual stimuli appears 

to be critical as well – an indication that the dynamic range may be maximized as well as 

broadened.  
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Figure 10 – Top: Two graphs showing the power-law distribution of avalanche size and duration for evoked 

data (blue) next to a graph of best-fit to the power law function as discussed in the Data Analysis section. A 

connection should be made between the noted bimodal distributions of size and duration in Figure 7 to the 

transient data (red) presented in these graphs as the bimodal distribution of both size and duration can be 

more clearly seen.  

Bottom:   Two graphs showing the power-law distribution of avalanche size and duration for evoked data 

next to a graph of best-fit to the power law function as discussed in the Data Analysis section. This data 

confirms previous studies which found critical behavior in ongoing, spontaneous activity. 

For both the top and bottom plots, the gray points are based on a control analysis in which the times of LFP 

peak events are randomized, thus destroying temporal correlations across electrodes.  The dramatic 

difference between the gray distributions and the blue and black distributions indicates that temporal 

correlations play an important role in determining the shape of these distributions.   

 

When looking at the three different data types: ongoing, transient evoked and steady-state 

evoked three observations can be made. (1) That in accordance to previous research, 

ongoing activity in the brain is critical, (2) steady-state evoked activity is critical and (3) 

that transient evoked activity is not-critical, but supercritical which is consistent with 

theorized models. Evidence for this can be further seen in the graph below which 

summarizes deviation from best fit from best fit power-laws for both size and duration in 

avalanches for ongoing, steady-state and transient evoked activity. We found that this is 

evident in all three types of stimulus set: naturalistic movies, scanning dots and LED 

flashes. This suggests that this effect is fairly general to all types of visual stimulus. 
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Figure 11 – Graph of deviation from best fit using the κ value from both size and duration. This graph shows 

that both the ongoing and the steady-state response were operating near criticality while the transient 

response was super critical.  

 

Conclusions 

In previous studies of neuronal networks it has been shown that criticality was present 

during spontaneous, ongoing activity. However, there has yet to be experimental data that 

indicates that the network exhibits criticality during stimulus driven activity. It was also 

shown that adaptation served to maintain neuronal activity in a critical-like state and that 

there were functional benefits of both adaptation and criticality on the dynamic range of 

the network. In this experiment we have proven experimentally for the first time that 

sensory driven cortex dynamics maintain signatures of criticality, except for a small period 

called the transient response that occurs after stimulus onset.  Our data suggests that this 

transient period, thought to be a period of adaptation, is not critical, but rather 

supercritical. This data provides a strong case that adaptation maintains cortical visual 

processing at criticality.  
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