Habitat Trails . . . a manual for affordable green neighborhood development

Community Design Center

Follow this and additional works at: https://scholarworks.uark.edu/cdcpr

Part of the Architectural Engineering Commons, Environmental Design Commons, Landscape Architecture Commons, Urban, Community and Regional Planning Commons, and the Urban Studies and Planning Commons

Recommended Citation
Community Design Center, "Habitat Trails . . . a manual for affordable green neighborhood development" (2005). Project Reports. 2. https://scholarworks.uark.edu/cdcpr/2

This Report is brought to you for free and open access by the Community Design Center at ScholarWorks@UARK. It has been accepted for inclusion in Project Reports by an authorized administrator of ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu.
Habitat for Humanity of Benton County, Inc.
Debby Wieneke, Executive Director
Bill Adams, Development Coordinator

Habitat Trails Committee
Pat Adams, Adams Excavation
Mark Boyer, UA
Susan Brockway, Tyson Foods
Christopher Crossland, Crossland Construction
Larry Eaton, PB2 Architects
Terry Franklin, XNA Regional Airport
Gary Geiser, PRG Inc.
Steve Glass, City of Rogers
Stephen Luoni, UACDC
John Mack, JKJ Architects
Ken Mangold, JB Hunt
Marty Matlock, UA
Bob Morgan, Beaver Water District
Kristin Pawlik, Keith, Miller, Butler & Webb Attorneys
Dick Trammel, Arvest Bank
Rick Twist, Arvest Bank
John Wary, Morrison Shipley Engineers, Inc.
Bill Watkins, Watkins Law Firm

Project Design Team
University of Arkansas Community Design Center
Stephen Luoni, UACDC Director
Aaron Gabriel, Project Director
Jeffrey Huber, Project Designer
Isaac Moran, Project Designer
John McWilliams, Project Assistant
James Meyer, Project Assistant
Roberto Sangalli, Network Administrator
Amy Marbury, Administrative Assistant

UA School of Architecture
Jeff Shannon, AIA, Dean
Tim de Noble, AIA, Department Head

UA Department of Architecture Students
David Anderson, Entry Court House
Jared Hueter, Entry Court House (Opt.)
Remick Moore, Urban Vernacular
Cari Paulus, Bungalow
Lauren Ratley, Autocourt Duplex A (Opt.)
Rachel Smith, Autocourt Duplex A
Matt Snyder, Meadow Duplex
John Starnes, Autocourt Duplex B

UA Department of Landscape Architecture
Professor Mark Boyer, ASLA, RLA

UA Ecological Engineering Group
Dr. Marty Matlock, PE, CSE
Ruth Victoria Zeledon, Research Assistant

UA Department of Biological and Ecological Engineering Students
Leslie Bartsch
Adam Jokerst
Jennifer Raible
Britt Hill

Morrison Shipley Engineers
John Wary, PE
Sammi May, PE

JKJ Architects
John Mack, AIA, NCARB

Crossland Construction
Christopher Crossland, VP

Adams Excavation
Pat Adams, Owner
34. Housing Typology
Habitat Trails is an eco-friendly affordable neighborhood development consisting of 17 homes. The development incorporates a range of conservation planning strategies supportive of unit clustering that preserves more than one third of the site as open space.
Executive Summary

Parks, Not Pipes
Developed land, including new park space for the City of Rogers, is designed to work in accord with the site’s existing hydrological drainage, catchment, and recharge patterns. Stormwater runoff generated by new development will be retained and treated through a contiguous network of bioswales, infiltration trenches, stormwater gardens, sediment filter strips, and a constructed wet meadow. This exceeds the minimum requirement to simply detain runoff which has negligible treatment capability. The integration of a constructed treatment landscape with open space substitutes an ecologically-based stormwater management system for the expensive curb-gutter-pipe solution in civil infrastructure. Water is treated as a resource rather than a hazard.

Green Streets Maximizing Ecological and Urban Services
Ecological stormwater management solutions are more effective than civil solutions based on economic, environmental, and social measures. While curb-gutter-pipe systems transport and concentrate runoff problems elsewhere, ecologically-based solutions use the landscape to absorb and treat runoff in-situ at half the cost. Ecological management solutions enhance water quality beyond the minimum detention requirements, dissipate peak flows to prevent flooding, and provide erosion and sediment control, while being less prone to the failures common in civil runoff catchment infrastructure. The collateral benefits of ecological solutions include enhanced neighborhood aesthetics, additional passive recreational assets, and provision for wildlife habitat. Contrary to civil “pipe and pond” solutions that separate ecological and urban services, the street is integrated with the landscape to become part of a larger watershed solution.

Porches Between House and Neighborhood
Streets are designed as landscapes to calm vehicular traffic and provide stormwater management functions. Their dimensions follow “skinny street” programs for residential areas recommended by the Congress for New Urbanism and implemented by municipalities nationwide. By decreasing street widths and installing pervious materials like grasscrete for parking strips, green streets minimize costly, impervious pavement while dampening unsafe motorist speeds (width is the major variable effecting speed, not geometry—curved or straight). Especially for children, residential streets can once again be safe and attractive for pedestrian activity without inhibiting emergency vehicle access. Elimination of raised curbs, gutters, and pipes in conventional runoff catchment infrastructure relieves the city of a significant maintenance obligation, allowing a contiguous system of rainwater gardens and bioswales along right-of-ways to absorb and treat runoff. Vegetated stormwater landscapes project a unique neighborhood character and visually link house porches and street. Since all homes feature a generous porch, setbacks are minimized to facilitate opportunities for neighborly interaction. Low impact residential development not only achieves affordability, but also allows for creative project design that stewards first-time buyers in all aspects of responsible home ownership. This also becomes a model for achieving high quality residential development in the City of Rogers.
porch
interface

autocourt duplexes 3

meadow duplex 2

green street bungalow 1

urban vernacular 5

Habitat Trails | Rogers, Arkansas
as the interface between public and private, urban and architectural, it is the porch, rather than the house, that holds the greatest promise for recapturing the art of good neighborhood design.
project components

Open Space Solution

Hydrological Solution

Green Streets Solution

Housing Typologies

Habitat Trails | Rogers, Arkansas
“... a good solution in one pattern preserves the integrity of the pattern that contains it.”

Wendell Berry, “Solving for Pattern” in *The Gift of Good Land*
Conventional Subdivision Development

Alternative Green Neighborhood

Wet Meadow

Neighborhood Lawn

Entry Court

open space solution
conservation planning pools otherwise private resources to create a shared neighborhood landscape. The amenity-rich neighborhood is the most cost-effective way to build home value.
Water Shed and Catchment Plan
80% pervious, 20% impervious

1 bioswale-conveyance/treatment
2 infiltration trenches-subgrade retention
3 sheetflow-recharge
4 wet meadow-treatment/recharge
5 sideyard bioswales-treatment/conveyance
6 parking filter strips-sediment control/recharge
7 piped civil stormwater catchment
8 stormwater gardens
parks, not pipes
planning incorporates the stormwater system into neighborhood landscape, bypassing the need for costly civil engineering solutions.

“research indicates that when impervious area in a watershed reaches 10 percent, stream ecosystems begin to show evidence of degradation, and coverage more than 30 percent is associated with severe, practically irreversible degradation.”

Green Streets: Innovative Solutions for Stormwater and Stream Crossings
Asphalt Street

Grasscrete
Filter Strip

Sheet flow from roadway

Water Main

15' Easement

18'

5'

36' (min) gravel base

Perforated underdrain

Original soil

3:1 slope (max)

Water quality design

Depth = 2' (min) - 4' (max)

Grasscrete filter strip

Filter Strip

Public Lawn Street

Sidewalk

Bioswale

Sidewalk

Habitat Trails | Rogers, Arkansas
Bioswale

- Sheet flow from roadway
- Recharge
- Sidewalk

Bottom Width:
- 2'(min) - 25'(max)

Facultative Plant Varieties:
- Perforated underdrain
- Original soil
- 6" (min) gravel base
- 2" compost tilled into 6" native soil
- 3:1 slope (max)

Water Quality Design:
- Depth = 2" (min) - 4" (max)
facultative plant varieties

3:1 slope (max)
2" compost tilled into 6" native soil
6" (min) gravel base
perforated underdrain
original soil

water quality design
depth = 2"(min) - 4"(max)
green streets solution

1 bioswale-conveyance/treatment
2 infiltration trenches-subgrade retention
3 crushed brick-recharge
4 grasscrete-sediment control/recharge

5 unit pavers-recharge
6 porous asphalt-recharge
7 porous concrete-recharge

Habitat Trails | Rogers, Arkansas
Green Streets are designed as landscapes to calm vehicular traffic and provide stormwater management functions.

“...the guiding principle for today’s road design and planning has to be to conserve, protect and restore the environment as the first consideration. This can be a new and unfamiliar principle, with an unclear vision, to those who have perceived roads solely as a means of transportation.”

Green Streets: Innovative Solutions for Stormwater and Stream Crossings

- Stormwater bioswales eliminate the need for costly curb and gutter systems and reduce peak load effects during storms.
- Decentralization of stormwater facilities eliminates the use of large unsightly detention basins.
- Stormwater runoff is treated through bioremediation, locally removing suspended solids and pollutants. (Treated effluent is recharged, improving local groundwater quality.)
- Green streets significantly reduce the total pervious surface of the development; lessening the impact of polluted urban runoff and the urban heat-island effect.
“Up to 47 percent of surface pollutants can be removed in the first 15 minutes of a storm event, including pesticides, fertilizers and biologically derived materials and litter. In order to prevent these pollutants from entering our streams and rivers via the conventional piped stormwater system, areas for infiltration and treatment should be created. Providing pervious surfaces that capture stormwater runoff increases opportunities for pollutant removal and attenuation of flow velocity.”

Green Streets: Innovative Solutions for Stormwater and Stream Crossings
2. Crushed brick: by-product of brick manufacturing process, provides a permeable surface which aids in filtration of stormwater.

3. Grasscrete: permeable surface with facultative vegetation provides sediment control and recharge capacity.

4. Concrete and asphalt: concrete used at sidewalks, asphalt used at roads, asphalt is more pervious than concrete and is used where current codes will allow.

5. Bioswales: facultative vegetation aids in phytoremediation and pollutant removal—"right plant, right place".

- Soft rush (Juncus effusus)
- Red cardinal flower (Lobelia cardinalis)
- Soft rush (Juncus effusus)
- Equisetum variegatum
housing typologies

1 bungalow
2 urban vernacular
3 entry court house
4 autocourt duplex a
5 autocourt duplex b
6 meadow duplex

Habitat Trails | Rogers, Arkansas
Within Habitat’s budget of $55/sq ft and floor plan requirements:

- Open-section living area combines porch and public space to amplify inhabitation scenarios.
- Responsive to Habitat’s corporate donor model, which relies on available surplus material.
- Facilitates convective ventilation for energy conservation.
housing typologies

Bungalow

Floor Plan

Left Elevation

Front Elevation

Right Elevation

Habitat Trails | Rogers, Arkansas
“with a weaving of fabric for dwelling - a weaving of people to places, houses to settings, indoors to outdoors - the discipline of architecture is reinserted into the suburban housing debate.”

Renee Chow, *Suburban Space: The Fabric of Dwelling*
housing typologies

First Floor Plan

Second Floor Plan

Left Elevation

Front Elevation

Right Elevation

Urban Vernacular
housing typologies

First Floor Plan

Second Floor Plan

Left Elevation

Front Elevation

Right Elevation

Entry Court House

Habitat Trails | Rogers, Arkansas
housing typologies

Entry Court House (Option)

Habitat Trails | Rogers, Arkansas
housing typologies

Autocourt Duplex A

Habitat Trails | Rogers, Arkansas
housing typologies

Autocourt Duplex A (Option)

Habitat Trails | Rogers, Arkansas
housing typologies

Autocourt Duplex B

First Floor Plan

Second Floor Plan

Left Elevation

Front Elevation

Right Elevation

Habitat Trails | Rogers, Arkansas
Meadow Duplex
MISSION	The mission of the University of Arkansas Community Design Center is to advance creative development in Arkansas through education, research, and design solutions that enhance the physical environment.
VISION	As an outreach center of the School of Architecture, UACDC is developing a repertoire of new design methodologies applicable to community development issues in Arkansas, with currency at the national level. UACDC design solutions introduce a multiple bottom line, integrating social and environmental measures into economic development. Integrative design solutions add long-term value and offer collateral benefits related to sustained economic capacity, enhanced ecologies, and improved public health—the foundations of creative development.
APPROACH	**Expanding the Consideration of Civic Space** The contemporary public domain has shifted to an expanded urban field that includes suburban and other non-urban environments—a geography of sprawl. Compounded by the decline of traditional downtowns, this shift poses new planning challenges for which no adequate civic development models exist. Our planning approaches are tailored for historic downtowns, rural sites, watersheds, highway/rail infrastructure, the college campus, retail environments, and the office/residential/retail subdivision. **Developing New Models of Design** Through meta-disciplinary research and design principles, UACDC combines ecological, architectural, landscape architectural, and urban design solutions to address emerging planning challenges. Our research maps the unique economic, political, and cultural processes that have shaped the Arkansas landscape. Our work addresses new challenges in affordable housing, urban sprawl, environmental planning, and management of regional growth or decline.
IMPACT	UACDC was founded in 1995 and has provided design and planning services to over 30 communities across Arkansas. Our planning has helped Arkansas communities to secure nearly $64 million in grant funding to enact suggested improvements.