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ABSTRACT In this study, the transmission line concept and the electron transport theory are consolidated
in a global modeling approach, the wave-electron-transport (WET) model, to account for the physical
phenomena in millimeter-wave devices. No equivalent circuit model is required to represent the innate
properties of the device. Hence, themodel is reliable for both small- and large-signal analyses. The electrodes
of a transistor act as coupled multi-conductor transmission lines at millimeter-wave bands. The WET model
consists of a device solver to obtain solutions for carrier-transport equations of the intrinsic device, and an
electromagnetic solver (EM solver) to provide solutions for the governing transmission lines equations. As it
is crucial to transfer data between these two solvers, an interface scheme is also developed and included in
the WET model. The extrinsic parameters of the device are extracted using a novel systematic technique
merely based on the physical structure of the transistor. In this paper, the modeling procedure is applied to a
fabricated GaN-HEMT device. Power sweep analysis has verified the accuracy of the proposed model under
both linear and non-linear operations. Non-uniform voltage distribution caused by traveling waves over the
electrodes is elaborately discussed to demonstrate the necessity of incorporating distributed effects.
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INDEX TERMS Electromagnetic-wave propagations, millimeter-wave transistor, non-linear operations,
transmission line concept, wave-electron-transport model.

I. INTRODUCTION16

The 5G wireless communication systems require high-speed17

transistors to process more data in a short time. High-18

frequency semiconductor devices are therefore in demand19

in 5G technologies for faster data communications. 5G base20

stations require power amplifiers with higher power density.21

Gallium nitride (GaN) is a wide bandgap semiconductor22

material that possesses high cut-off frequencies and high23

saturated electron velocity [1]. Silicon carbide and gallium24

arsenide-based device are being replaced by high electron25

mobility transistors (HEMTs) that utilizes GaN. The high26

power density and good thermal characteristics of GaN27

HEMTs make them preferable to build high power ampli-28

fiers [2]. The first step in the design of any high-frequency29

product is modeling. Fast simulation methods for modeling30

The associate editor coordinating the review of this manuscript and

approving it for publication was Ladislau Matekovits .

the carrier transport in semiconductors are presented in [3] 31

and [4]. In a millimeter-wave band and for all applications, 32

the size of the structure affects the performance and the 33

wave propagations must be taken into account for model- 34

ing purposes [5]. The availability of a reliable simulation 35

tool in a high-frequency design chain reduces the number 36

of design cycles, shortens the design time, and reduces the 37

design cost. High-frequency simulations based on empirical 38

modeling may not be adequately accurate to cover all of 39

the physical phenomena that impact high-frequency designs. 40

Using experimental results in modeling requires data fitting 41

and de-embedding the influence of pad parasitics and inter- 42

connect line effects. Measurement-based models are stud- 43

ied in [6], [7], [8], [9], and [10]. A comparison between 44

three optimization techniques: Genetic Algorithm, GreyWolf 45

Optimization, and Harris-Hawks Optimization was studied 46

in [6]. The test structure parasitics were modeled, and 47

de-embedded, and the best match between measurements and 48
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models was shown up to 10 GHz. In [7], a compact model,49

electromagnetic simulation, and SPICE simulation method50

were presented. For parameter extraction, dc and s-parameter51

measurements are required and several parameters are fitted52

to a large number of data in this paper. Although this model53

may be consistent up to 40 GHz, it will be accurate only in54

the range of optimization. In [8], the Curtice model is used55

to fit the experimental results of the I-V characteristic to the56

parameters of a GaN HEMT device. Empirical models may57

provide accurate information about the fabricated device that58

is under investigation at a specific operating frequency range59

and bias conditions. However, they will be predictive neither60

for other functioning conditions of the same device nor other61

devices. Equivalent circuit models are the most common62

way of modeling millimeter-wave devices. In [9] and [10],63

efforts were made to account for the bias dependency of the64

extrinsic parameters. However, the accuracy of the models65

was not examined under non-linear operations. In [11], a66

physics-based model based on ASM-HEMT is proposed.67

An electromagnetic simulation is implemented to develop the68

distributed effects at Ka-band. A power amplifier mea-69

surement results are used to validate the model perfor-70

mance. However, the capability of the methodology was not71

examined for different device widths. Physics-based mod-72

els are cheaper than conducting experiments. And they pro-73

vide information that cannot be achieved by measurements.74

A physics-based modeling approach for electrical analysis75

of GaN HEMTs was proposed in [12]. The consistency of76

the approach is validated over a broad frequency range.77

This model needs to be modified in order to perform the78

large-signal analysis and take the effect of non-linearity into79

account [13]. In [14] a comprehensive physics-based model80

is proposed. In this paper, details of the modeling approach81

are presented. A novel parameter extraction methodology is82

included in the WET model, to obtain accurate values for the83

parasitic resistance of the electrodes. A new power sweep84

analysis incorporating the effects of skin depth on extrin-85

sic resistance of electrodes is performed and the improved86

results are presented in this work. The generated results are87

compared with those of other models and the comparison88

confirms the accuracy of the modeling approach. The main89

contributions of this paper are:90

1) Incorporating the wave-propagation effects in the91

proposed physics-based model for the first time; volt-92

age waveforms over the electrodes of the millimeter93

device are simulated. The temporal and spatial distribu-94

tions of the waveforms demonstrate the inevitable need to95

incorporate the electromagnetic-wave effects in the WET96

model.97

2) Developing a novel parameter extraction methodology98

to improve the accuracy of the WET model at higher operat-99

ing frequencies.100

II. WET MODEL STRUCTURE101

Fig. 1 depicts the general schematic of the millimeter-wave102

transistor defined in three-dimensional XYZ space together103

FIGURE 1. General schematic of a millimeter-wave transistor and WET
model.

with the proposedmodel diagram. Intrinsic and extrinsic parts 104

in this figure, represent the epitaxial layers and electrodes 105

of the device that act as active and passive components in 106

high-frequency operations, respectively. The transportation 107

of carriers through the epitaxial layers is simulated in Silvaco 108

Atlas software. This is accomplished by applying the asso- 109

ciated differential equations derived from Maxwell’s equa- 110

tions to the points in the two-dimensional grid of a device. 111

The electrical performance of the device in the XY-plane is 112

modeled by defining the physical geometry of the intrinsic 113

part and feeding the bias conditions in the device solver. 114

The hydrodynamic model is incorporated into the device 115

solver to account for the effects of velocity overshoot, carrier 116

temperature, and carrier energy distribution. Not all of the 117

physical phenomena, however, take place in the intrinsic part. 118

The z-dimension of the device, width, plays an important 119

role in transistor functioning in millimeter-wave frequencies. 120

Analyzing the device only in the XY plane would be adequate 121

for electrically small devices where the device width is much 122

smaller than the wavelength. As frequency increases, the 123

device width becomes a considerable fraction of wavelength. 124

Thus, the variability of the electrical waveforms along the 125

electrodes’ width, z-dimension, cannot be neglected. Hence, 126

the electrical signal must be represented with spatial and 127

temporal variations. The transmission line concept offers an 128

accurate and computationally efficient approach to investigat- 129

ing this time- and space-variant system. To carry out the trans- 130

mission line analysis, the per-unit-width parameters of the 131

coupled multi-conductor lines are determined. Subsequently, 132

the terminal conditions are applied according to the transistor 133

pad layout [15]. The transmission line equations are then 134

numerically solved by the EM solver that is shown in Fig. 1. 135

The impact of electric currents that are injected from the 136

intrinsic part into the electrodes must be incorporated into the 137

EM solver. 138

Hence, the device solver should transfer this information 139

about the intrinsic part to the EM solver. The EM solver 140

should also provide the device solver with information about 141

the bias points. Continuous data exchange is therefore a cru- 142

cial task for the WET model. The interface code in Fig. 1 ful- 143

fills this duty. 144
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III. PARAMETER EXTRACTION145

Calculating the distributed capacitance needs solving a two-146

dimensional potential problem. The planar structure of the147

transistor makes it difficult to find a solution for the Laplace148

equation. In this work, a conformal mapping technique is149

utilized to map the boundaries of the planer structure into150

a simpler configuration for which the solution to the poten-151

tial problem is easily found. Under this transformation, the152

coordinate system remains orthogonal to satisfy the Cauchy-153

Riemann condition. Consequently, the electrostatic energy154

and the characteristic of the medium formulated by per-155

mittivity, permeability, and conductivity remain unchanged.156

Although the geometry of the configuration is changed, the157

physical nature of the boundaries is identical in coordi-158

nate transformation. Thus the capacitance value is accurately159

calculated for the mapped configuration. To calculate the160

capacitance between every two plane electrodes, Schwarz-161

Christoffel mapping is utilized to map the whole space onto162

the interior of a parallel plate structure, assuming a zero163

thickness conductor. Then correction factors are determined164

based on Cohn’s paper in [16] to compensate for the impact165

of metallization thickness. For the short-length millimeter-166

wave devices, the quasi-TEM mode is valid [17]. Therefore,167

to obtain the value of the inductance, it is assumed that the168

magnetic field is not affected by the presence of the epitaxial169

layers. Hence, with the unity dielectric constant, the induc-170

tance is derived from this equation:171

1
√
LC
= c0 (1)172

where L and C are per-unit-width inductance and capacitance173

of the electrodes respectively; and c0 is the speed of the light174

in free space. To calculate the resistance per unit-width of the175

transmission line, a novel approach, representing an enhance-176

ment of Wheeler’s incremental inductance rule [18], is devel-177

oped. In Wheeler’s method, the conductor loss is estimated178

with the assumption that the current distribution decreases179

gradually until it reaches zero, which requires a conductor180

thickness larger than 4 skin depths (δs). This assumption may181

not be always valid, depending upon the electrode thickness.182

To discuss the applicability (i.e., validity range) of Wheeler’s183

method, three possible cases are anticipated in comparing the184

electrode’s thickness (t) with the skin depth (δs) according185

to Fig. 2:186

(a) t < δs187

(b) t > 4δs188

(c) δs < t < 4δs189

In this figure, the current distribution is demonstrated for all190

three cases.191

In case (a), the current distribution is uniform and the192

resistance is calculated using the following definition:193

R =
1

σ (t.l)
(2)194

where R is per-unit-width resistance, σ is conductivity and195

l is the length of the conductor.196

FIGURE 2. Skin depth and current distribution in conductors of
millimeter-wave devices.

Case (b) represents the condition in which Wheeler’s 197

method is valid because the current density reaches zero at 198

some point over the thickness. Hence, the whole conductor 199

thickness does not contribute to the current conduction. For 200

this case, the resistance is estimated based on the differ- 201

ence between the inductance of the original structure and 202

another structure in which all sides of the conductor are 203

recessed by δs/2. The resistance, in this case, is calculated 204

using Eq. (3): 205

R = 2π f (Lδ − L) (3) 206

where f is the operating frequency, L is the inductance of 207

the conductor and Lδ is the inductance after recessing the 208

conductor surfaces by half of the skin depth. 209

In case (c), the current is distributed non-uniformly all over 210

the thickness as it is depicted in Fig. 2. Hence, estimating 211

the effective conductor’s cross-sectional area becomes more 212

involved. To obtain the resistance, the current distribution 213

over the thickness is extracted based on the fact that the 214

fields inside the conductor and the surface current density 215

decay with depth exponentially [18]. In Fig. 2, for the sake 216

of simple visualization, it is assumed that the magnetic field 217

penetration takes place only from the upper side of the 218

conductor (y=0). If the effect of skin depth is not taken 219

into account, the value of resistance will be underestimated. 220

And if Wheeler’s method is not modified for the condi- 221

tions described in case (c), the value of resistance will be 222

overestimated. 223

An inaccurate value for the per-unit-width resistance will 224

consequently affect the accuracy of the other simulated 225

parameters such as cut-off frequency, output power, and gain. 226

Eq. (3) is adjusted accordingly. 227

IV. NUMERICAL ANALYSIS 228

After extracting the per-unit-width parameters of the extrinsic 229

part, the device width is divided into N segments. Consid- 230

ering dz to be the width of each segment the total device 231

width (W) will be equal to: 232

W = N × dz (4) 233

VOLUME 10, 2022 92383
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FIGURE 3. One unit segment of the WET model.

Fig. 3 illustrates the equivalent circuit of each unit segment234

that is a nominal T-configuration of a coupled transmission235

line.236

The distributed effect is incorporated into the model by237

cascading these unit segments that form the total width of238

the device. R, L, and C are per-unit-width parameters of the239

coupled electrodes. Line voltages and currents noted by V240

and I are represented as traveling wave signals with temporal241

and spatial variations. As described in previous sections, the242

effect of intrinsic currents must be taken into account. For this243

purpose, the governing transmission line equations must be244

adjusted accordingly. The current sources that are identified245

by I’d, I’g, and I’s in Fig. 3, represent the currents injected246

from the active layer into the drain, gate, and source lines. The247

transmission line equations associated with all electrodes are248

illustrated in (5-10). These equation sets are identical in form249

for all lines [19].250

• Drain line equations:251

RD
I t+dtDn + I

t
Dn

2
+ L

D

I t+dtDn − I
t
Dn

dt
252

=
V t
Dn − V

t
Dn+dz

dz
(5)253

CDG
V t+dt
DGn+dz − V

t
DGn+dz

dt
+ CDS

V t+dt
DSn+dz − V

t
DSn+dz

dt
254

=
I t+dtDn − I

t+dt
Dn+dz + I

′
t+dt
Dn+dz

dz
(6)255

• Gate line equations:256

RG
I t+dtGn + I

t
Gn

2
+ L

G

I t+dtGn − I
t
Gn

dt
257

=
V t
Gn − V

t
Gn+dz

dz
(7)258

CDG
V t+dt
DGn+dz − V

t
DGn+dz

dt
+ CGS

V t+dt
GSn+dz − V

t
GSn+dz

dt
259

=
I t+dtGn − I

t+dt
Gn+dz + I

′
t+dt
Gn+dz

dz
(8)260

• Source line equations:261

RS
I t+dtSn + I tSn

2
+ L

S

I t+dtSn − I tSn
dt

262

=
V t
Sn − V

t
Sn+dz

dz
(9)263

CDS
V t+dt
DSn+dz − V

t
DSn+dz

dt
+ CGS

V t+dt
GSn+dz − V

t
GSn+dz

dt
264

=
I t+dtSn − I t+dtSn+dz + I

′
t+dt
Sn+dz

dz
(10) 265

where the voltages on drain-gate (VDG), drain-source (VDS), 266

and gate-source (VGS) electrodes are: 267

VDG = VD − VG (11) 268

VDS = VD − Vs (12) 269

VGS = VG − Vs (13) 270

The superposition t represents the time and n denotes the 271

spatial point. dt and dz are temporal and spatial step sizes, 272

respectively. The value of dz is taken to be much smaller 273

than the guided wavelength. This is to ensure that the value 274

of the electric signal at each unit segment remains invari- 275

ant. Otherwise, the KVL and KCL would fail to accurately 276

describe the behavior of the device at each unit segment. The 277

value of dt must be small enough to limit the numerical errors 278

of the scheme and satisfy the Courant stability condition. 279

Equations (5-10) are coupled equations and cannot be solved 280

analytically. Hence, a numerical scheme is utilized to provide 281

the solution for these equations. In this numerical analysis, 282

equations (5), (7), and (9) are used to update the line currents, 283

and equations (6), (8), and (10) update the line voltages. The 284

EM solver accounts for the effect of the intrinsic part by 285

including the injected currents from the epitaxial layers to (6), 286

(8), and (10). And the device solver is fed with the values of 287

the line voltages at every iteration of the numerical scheme. 288

V. SIMULATION RESULTS AND DISCUSSION 289

A. POWER SWEEP ANALYSIS 290

The proposed modeling scheme applied in this research work 291

was validated in [14]. This was achieved by applying the 292

proposed WET model to the fabricated GaN-HEMT device 293

in [20]. Fig. 4, illustrates the device epitaxial structure and 294

the comparison results. This N-polar device was grown on a 295

SiC substrate. 296

The gate length is 0.1 µm and the device width is 2 × 297

25 µm. Gate has a mushroom shape to avoid high parasitic 298

resistance and the stem height is 250 nm. The pad layout 299

has a T-feed configuration. Gate and drain are the input and 300

output lines, respectively. The device is biased at 12 V and 301

500 mA/mm under class-AB operations and a sinusoidal 302

voltage is applied to the gate pad at 94 GHz. This voltage 303

is increased gradually to sweep the power up to 20 dBm. 304

The results presented in Fig. 4(b) and 4(c) demonstrate the 305

enhancement of the new modeling scheme compared to that 306

used in [14]. This enhancement is primarily due to the pro- 307

posed parameter extraction method presented in Sec. III. 308

of this paper. 309

As discussed before, any assumption about the current 310

distribution of the conductors impacts the value of the resis- 311

tances. And if the effect of skin depth in high frequency is not 312

taken into account, the values obtained for resistance would 313
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FIGURE 4. (a) Fabricated GaN-HEMT device in [20] (b) Gain comparison
results (c) Power added efficiency comparison results.

TABLE 1. Per-unit-width resistance values.

not be sufficiently accurate. Table 1 compares the value of314

per-unit-width resistance obtained in this work with those315

used in [14].316

Modified Wheeler’s method gives a better estimation for 317

the resistance since the thickness of the device is equal to 318

1.15δs at 94GHz. In [14], the current distribution was approx- 319

imated to be uniform since the skin depth was believed to be 320

roughly equal to the thickness of the conductors. This under- 321

estimates the resistance value which translates into a higher 322

gain in [14] compared to the generated results in this work. 323

This discrepancy is shown in Fig. 4(b) and 4(c). Under small- 324

signal operations, output power increases linearly and the 325

gain remains almost constant. As input voltage increases, the 326

output power starts to saturate and there comes a point where 327

the large-signal phenomenon is recognizable. As it is depicted 328

in Fig. 4(b), the device reaches its 1 dB compression point 329

(P1dB) at which the input power is about 17 dBm. Fig. 4(b) 330

and 4(c) illustrate that the improved model used in this 331

work offers more accurate results than the small-signal model 332

in [14] during linear and non-linear operations. As expected, 333

the small-signal model over-estimates the device behavior 334

because of the following reasons: 335

• The model relies on measurement data. Thus, it includes 336

the parasitic effects of device pads and interconnects that 337

are not de-embedded. 338

• The model uses small-signal equivalent-circuit ele- 339

ments, and may not adequately account for the bias 340

dependency of the intrinsic parameters. In large-signal 341

operations, these variations appear to be significant and 342

need to be accounted for. 343

B. WAVE PROPAGATION ANALYSIS 344

To further investigate the versatility of the presented model, 345

the effect of electromagnetic wave propagations on the per- 346

formance of millimeter-wave devices is studied. This is 347

accomplished by employing this model to predict the per- 348

formance of the fabricated MIS-HEMT device presented 349

in [21]. The structure of the device is shown in Fig. 5. After 350

fabrication, the two-dimensional electron gas density and 351

averagemobility of 1.1×1013 cm−2 and 1097 cm2/(V.s) were 352

recorded respectively byHall measurements. The gate-source 353

distance is 0.3 µm and the gate-drain spacing is 1.61 µm 354

which is large enough to limit the drain-gate coupling and 355

FIGURE 5. Fabricated GaN-HEMT device in [21].
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the feedback capacitance. The gate length is 90 nm and the356

device width is 2 × 75 µm. Power sweep analysis of this357

device at 10 GHz was studied in [20].358

FIGURE 6. Time and space dependency of input line (gate electrode)
voltage.

Fig. 6 shows the pattern of voltage waveforms along the359

input electrode at frequencies of 10 GHz and 100 GHz.360

To demonstrate the wave propagations over the electrodes,361

the voltage distribution at different time intervals is obtained362

and plotted. This graph presents the temporal and spatial363

evolution of the input voltage waveforms, simultaneously.364

This demonstrates that the electric size of the gate increases365

at higher frequencies and the distributed effects become more366

considerable.367

To obtain the voltage distribution, the device width368

is divided into 30 segments. Each unit segment has a369

width (dz) of 2.5 µm. This dz is set to be much smaller than370

the guided wavelength. The pad layout of this device has371

a T-feed configuration with two fingers as outlined in the top372

view of the device in Fig. 5. The simulation has been con-373

ducted only for one finger and to account for the second finger374

appropriate boundary condition is implemented considering375

the symmetry of the configuration [15].376

Fig. 7 illustrates the RMS values of the voltage distribution377

over input and output electrodes for six different operating378

frequencies, from 10 GHz to 60 GHz.379

There are two observations in Fig. 7:380

1. As presented in Fig. 7(a), the gate voltage is not dis-381

tributed uniformly along the input electrode for fre-382

quencies higher than 10 GHz. The non-uniform drain383

voltage is also demonstrated in Fig. 7 (b). This effect384

is due to the presence of traveling waves on input385

and output electrodes at higher frequencies where386

the device width is comparable to the wavelength.387

FIGURE 7. Voltage distribution along (a) Input line (gate electrode) and
(b) output line (drain electrode).

As frequency increases the electrical width (not the 388

physical width) of the electrodes increases and a more 389

phase change is observed in the voltage waveforms 390

over the electrodes. Hence, electromagnetic waves are 391

the source of nonuniformity in signal electric properties 392

(i.e. voltages and currents). Therefore, these variables 393

must be characterized as spatial and temporal variations 394

in millimeter-wave bands. 395

2. For all operating frequencies, the output transmission 396

line (electrode) exhibits a more phase change than 397

that of the input line. At 10 GHz, for instance, the 398

gate voltage is uniform all along the electrode, but the 399

drain electrode exhibits more presence of the traveling 400

waves. This takes place because the drain electrode is 401

a larger fraction of the wavelength. Hence, the drain 402

is electrically wider than the gate and exhibits a more 403

phase change. This is due to a phase velocity mis- 404

match caused by their naturally different reactance. 405

This phenomenon causes a partial phase-mismatch at 406

W-band and beyond that significantly degrades the 407

device performance. 408
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FIGURE 8. Power gain of the GaN-HEMT device offered by the WET model.

Fig. 8 presents the simulated power gain of the device versus409

frequency. The input and output lines are matched to the410

circuit in order to transfer the maximum energy. As fre-411

quency increases, the performance of the device is degraded412

as expected. The frequency response of the device is provided413

to show the ability of the modeling approach in predicting414

the device behavior in a broad frequency range. To obtain415

the power gain at each frequency, the equations (5)-(10)416

are solved after temporal and spatial discretization. In this417

scheme, equations (6), (8), and (10) are solved simultane-418

ously to obtain the line voltages at all segments. These equa-419

tions use (a) the previous time step values of line voltages;420

(b) the current time step value of intrinsic semiconductor421

currents updated by the device solver; and (c) the current422

time step value of line currents provided by equations (5),423

(7), and (9). And equations (5), (7), and (9) are also solved424

simultaneously to obtain the line currents at all segments.425

These equations use: (a) the previous time step values of426

line currents; (b) the current time step value of line voltages427

provided by equations (6), (8), and (10). Using the value of428

voltages and currents at pad terminals, output power, input429

power, and gain are then calculated for each frequency.430

C. INTERMODULATION ANALYSIS431

The intermodulation distortion is one of the important metrics432

in analyzing the linearity of the RF and microwave compo-433

nents. At the device level, however, there is not much research434

available in the literature on multi-tone simulations.435

In order to further evaluate the large-signal capabilities of436

the proposedmodeling strategy, two-tone simulations are per-437

formed for two particular device structures in [22] and [23],438

and comparison results with measurements are presented439

in Fig. 9 (a).440

The device structure in [22] is grown on Sapphire and is441

similar to the fabricated device in [21]. The only difference442

is GaN channel thickness and Al composition of the barrier443

which are changed to 9.3 nm and %27 respectively. The444

3rd order intermodulation (IMD3) and the output third-order445

intercept point (OIP3) are obtained at two different bias points446

for a two-tone power sweep at 10 GHz with a tone spacing447

FIGURE 9. Two-tone power sweep simulation results compared to
measurement results in (a) [22] (b) [23].

of 10MHz. TheWETmodel accurately predicts intermodula- 448

tion distortion caused by non-linearity according to Fig. 9 (a). 449

The measurement results in this figure are presented in [22] 450

and the simulation results are based on the proposedmodeling 451

strategy in this work. 452

The device structure in [23] is grown on SiC and is similar 453

to the fabricated device in [20]. The gate-source spacing 454
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is 85 nm, the gate length is 60 nm and the gate-drain spacing455

is 315 nm. The simulation results offered by the WET model456

are compared to the measurement results presented in [23]457

and the results are shown in Fig. 9 (b). The fundamental out-458

put power, the upper and lower intermodulation products, and459

their associated OIP3 at 30 GHzwith a tone spacing of 1MHz460

are shown in this figure. The accuracy of the comparison461

results validates the consistency of theWETmodel. Since the462

proposed model in this work is physics-based, it is possible463

to optimize the device structure for low distortions.464

The two-tone simulation results are also obtained for the465

device fabricated in [24]. The device is grown on a 400 µm466

SiC substrate. The transistor has four fingers; each finger467

width and length are 50 µm and 0.15 µm respectively.468

The gate-source spacing is 1 µm and the gate-drain spacing469

is 2.85 µm.470

Figure 10 shows the fundamental, second, and third-order471

intermodulation power products. The simulation results in472

this graph are offered by the proposed model in this work473

and measurement results are obtained from [25]. This figure474

demonstrates that the WET model results are in very close475

agreement with the measurement results.476

Table 2, summarize the comparison results presented in477

section V by providing the deviation from measurement478

FIGURE 10. Two-tone power sweep simulation results compared to
measurement results in [25].

TABLE 2. Performance of WET model in comparison with other
references.

results for each parameter in the proposed models in the lit- 479

erature. Not all references in Table 2 provided the simulation 480

results for multi-tone intermodulation distortion. According 481

to this table, the proposed WET model offers a lower devi- 482

ation from measurement results. Hence, it provides a better 483

prediction of the device behavior under non-linear operations. 484

VI. CONCLUSION 485

In this research work, a novel physics-based model for 486

millimeter-wave transistors is presented. This model inte- 487

grates the transmission line theory with the carrier transport 488

properties of the device to account for the traveling waves. 489

A novel parameter extraction method is proposed to find the 490

parasitic resistance of the electrodes. Power sweep analysis 491

is conducted to evaluate the performance of the modeling 492

scheme in both linear and non-linear regions around the 1dB 493

compression point. The WET model does not require any 494

measurement data or equivalent circuit model to perform the 495

analysis. The influence of traveling waves on the device is 496

demonstrated by performing the wave propagation analysis. 497

TheWETmodel is comprehensive since it is predictivewithin 498

the frequency range, bias conditions, and device-width it is 499

intended for. This modeling approach provides insight into 500

physical phenomena in the millimeter-wave band and is capa- 501

ble of being used as a simulation tool to design and optimize 502

high-frequency devices. 503
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