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1 Introduction

In mathematics, it is often useful to approximate the values of functions that are either too
awkward and difficult to evaluate or not readily differentiable or integrable. To approximate
its values, we attempt to replace such functions with more well-behaving examples such as
polynomials or trigonometric functions. This is accomplished by constructing a well-behaving
function that agrees with the values of a discrete set of arguments from the poorly-behaving
function. Specifically, the problem of interpolation as defined in [18] is: “Given the values
of a function for a finite set of arguments, to approximate the value of the function for some
intermediate argument.”

In the case of using polynomial approximations, it is already known that for a polynomial
f of one variable over the algebraically closed field C and any set of r points on the affine
complex line A1 with multiplicities m1,m2...,mr, f is completely determined by its zeros
and the vanishing conditions up to its mi− 1 derivative for each point. It is then natural to
consider the case in higher dimensions corresponding to polynomials in several variables.

An active area of research is analyzing interpolation with multivariate polynomials. In
this case, the problem is much more difficult so the existing research primarily focuses on
the easier case where the ambient space is the projective rather than the affine space (which
is analogous to using the more varied tools in complex analysis to study integrals of real
functions), and the number of times a polynomial passes through a set of discrete points is
the same for every point in the set. In other words, the multiplicity for each point is equal.
Even with these simplifications, the problems have proved to be incredibly hard, and a large
body of literature is dedicated to investigating them.

For this thesis, we will classify polynomials in three variables passing through a set
of discrete points using an abstract algebraic structure known as an ideal. Then, we will
analyze these ideals and specifically provide structural and numerical information. That is,
we characterize their Hilbert Functions, which in our setting, are functions describing the
number of linearly independent polynomials passing through the set of points with given
multiplicity. Specifically, we will also see that in these cases, there is an expected ”maximal”
Hilbert Function value, and the main goal is to determine if these ideals have the ”maximal”
Hilbert Function or not.

The Hilbert Function of an ideal defined by any set of r ≤ 9 points is well known from
[16]. Additionally, [11] determines that all possible Hilbert Functions for 6 points arise
from only 11 different configurations. This work is even further expanded in [7] where the
authors find 29 different configurations for 7 points, 143 different types for 8 points, and
prove that there are infinite configurations for 9 points or more. However, the methods used
in these publications utilize very advanced theoretical approaches from algebraic geometry.
The strategies used in this thesis aim to answer special cases of the above question using
elementary techniques. In other words, instead of developing and explaining several years’
worth of existing mathematical theory, we will analyze the properties of these polynomial
rings and ideals directly, working closely with their generators and calculating their Hilbert
Functions explicitly. Using such elementary techniques, we will reprove the following results:

• For 3 points each with multiplicity 3, the Hilbert Function is maximal. For 3 points
each with multiplicity m > 3, the Hilbert Function is not maximal.
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• For 4 points each with multiplicity m, the Hilbert Function is always maximal.

• For 5 points each with multiplicity m > 1, the Hilbert Function is never maximal.

• For 6 points each with multiplicity m where m = 4, 6, 8, the Hilbert function is maxi-
mal.

1.1 Connections to Symbolic Rees Algebras and Hilbert’s 14th
Problem

In 1900, German mathematician David Hilbert presented a list of 23 problems all unsolved
at the time which he considered to be fundamental for the development of mathematics in
the 20th century. Particularly, Hilbert’s 14th problem asks about the finite generation of
certain algebras. More precisely, Hilbert conjectured that for a field k and a sub-field of the
field of rational functions in n variables K, the k-Algebra R := K

⋂
k[x1, ..., xn] would be

finitely generated over k. Although Masayoshi Nagata disproved this conjecture in 1958, the
question sparked active areas of research into exploring other algebras which may be finitely
generated. One such example with relatively limited literature is the symbolic Rees Algebras
of an ideal I in a Noetherian ring R, denoted Rs(I).

More information and formal definitions on the properties and structure of the symbolic
Rees Algebras can be found in [10]. More importantly, it is known from [15, Lem 4] and
[8, Thm 3.2] that Rs(I) is a finitely generated R-algebra if and only if there exists a n such
that (I(n))t = I(nt) for all t ≥ 1. We will later define terms such as “ideal,” “ring,” and
“Noetherian” in the context of polynomials and points more rigorously and show that the
ring R that we are working with within this thesis is indeed Noetherian, so a secondary goal
of this research is also to find a n that satisfies that above criteria for a finite generation.
Specifically, we will prove the following results:

• n = 2 suffices for 3 and 5 points.

• Any n suffices for 4 points.

• n = 10 suffices for 6 points.

To summarize, we will primarily study two questions. First, by linear algebra, there is an
expected number of linearly independent equations of given degrees passing through a set of
“random” points with given multiplicity which is represented by the Hilbert Function. We
study this question for sets of points of small size (up to 6 points). Secondly, from Nagata’s
results, for these ideals I we know there exist some n such that (I(n))t = I(nt) for every t.
We study these values of n.

2 Preliminaries/Background

We will begin by explaining the important notations and theorems necessary to prove
the key results in this thesis.
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2.1 Projective Plane

We first describe the projective plane. In R2, points are notated using the tuple (x, y)
where x, y ∈ R. In P2(R), points are determined using three coordinates (x, y, z) where
x, y, z ∈ R.

Definition 2.1 (R-Projective Plane, [3]). For any (x1, y1, z1), (x2, y2, z2) ∈ R3, we define
the equivalence relation ∼ where (x1, y1, z1) ∼ (x2, y2, z2) if there is a nonzero number λ ∈ R
such that (x1, y1, z1) = λ(x2, y2, z2). Then, P2(R) = (R3 − {(0, 0, 0)})/ ∼

The “/ ∼ ” part of the definition means that in P2(R), the points (1, 1, 1), (2, 2, 2), and
(π, π, π) are all equal in P2(R) . Furthermore, it is important to state that (0, 0, 0) is not a
point in P2(R). A line in P2(R) is defined as the set of points (x, y, z) ∈ P2(R) that satisfies
an equation of the form Ax+By + Cz = 0 where A,B,C ∈ R.

For the purposes of this thesis, we will specifically use the projective plane over C, denoted
P2(C). In this set, the definition is identical except a point (x, y, z) has coordinates in C
instead of R. Unless otherwise specified, we will simplify P2(C) to just P2. The reason why
we decide to use C instead of R is because we will later see that there is a relationship
between points and equations primarily motivated by the zeros of the equations. In R, we
have the issue where some equations cannot be associated with any points (x2 + 1 has no
zeros for example). However, in C, there is a property known as algebraic closure, where
every equation will have a zero.

One of the most important fundamental properties of the projective plane is the property
of duality. The property states that any true statement regarding lines and points still
remains true if every instance of the word “line” was replaced with “point” and vice versa.
For example, notice that in the standard R2 space, duality does not hold. We know that
for every two points in R2, there exists a unique line that passes through them. However,
because of the existence of parallel lines, there exist two lines that do not intersect at a
single point. Since duality holds in P2, any two distinct lines will intersect at a unique point,
meaning that parallel lines do not exist in the projective plane.

2.2 Rings, Ideals, and Varieties

Now that we have established the projective plane, we now want to consider the set of
polynomial equations with coefficients in P2. To do this, we will first formalize the definitions
of abstract algebraic structures that generalize these polynomials.

Definition 2.2 (Binary Operation, [5]). A binary operation ? on a set R is a function
? : R×R→ R where for any x, y ∈ R, ?(x, y) = x ? y ∈ R.

Definition 2.3 (Rings, [5]). A set R with two binary operations + and × (called addition
and multiplication) is a ring if R satisfies the following proprieties:

1. + is associative: for all x, y, z ∈ R, (x+ y) + z = x+ (y + z).

2. + is commutative: for all x, y ∈ R, x+ y = y + x
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3. There is an additive identity: there exists an element 0 ∈ R such that for all x ∈ R,
x+ 0 = 0 + x = x

4. There is an additive inverse: for every x ∈ R there exists an element −x ∈ R such
that x+ (−x) = (−x) + x = 0.

5. × is associative: for all x, y, z ∈ R, (x× y)× z = x× (y × z).

6. Left distribution holds: for all x, y, z ∈ R, x× (y + z) = (x× y) + (x× z)

7. Right distribution holds: for all x, y, z ∈ R (x+ y)× z = (x× z) + (y × z),

Additionally, a ring R is commutative if × is commutative and R is a ring with identity
if there exists a 1 ∈ R not equal to the additive identity 0 ∈ R such that for all x ∈ R,
1×x = x×1 = x. We will often denote x×y as just xy. Lastly, in a commutative ring with
identity, a ring element x is called a unit if there exists another element y such that xy = 1.
If every nonzero ring element is a unit, then we call the ring a field.

Common examples of rings with standard addition and multiplication operations include
the integers, denoted Z, and polynomials in one variable with real number coefficients,
denoted R[x]. Intuitively, a ring R is simply a collection of objects with binary operations
that satisfy certain rules. These rules state that we can add, subtract, and multiply ring
elements but not divide them unless the element is a unit. Although the most abstract
definition of a ring does not necessitate that it be commutative or have an identity, for the
remainder of this thesis all rings will be commutative rings with identity. Furthermore, it
is often useful to consider a subset of the entire ring. In particular, a subring I is a subset
of R that also satisfies the conditions for being a ring under the same binary operations
as R. Furthermore, we call a subring I an ideal of R if it satisfies the following additional
properties.

Definition 2.4 (Ideal, [5]). Let R be a ring and let r ∈ R. Let I be a subset of R. Define
rI = {ra : a ∈ I} and Ir = {ar : a ∈ I}. I is an ideal of R if I satisfies the following
properties

1. I is a subring of R.

2. rI ⊆ I.

3. Ir ⊆ I.

Additionally, if r1, r2...rn ∈ R, then we call (r1, r2, ..., rn) the ideal generated by {r1, ..., rn},
which is the smallest ideal that contains {r1, ..., rn}. Ideals generated by one element are
called principal ideals.

For example, consider the ring Z. Then, for any n ∈ Z, the principal ideal (n) consists
of all the elements in Z that are a multiple of n. In fact, all ideals in Z are principal.
Furthermore, for any ring, there is precisely one ideal that contains one element, (0). This
is sometimes called the trivial ideal.

Next, we will define some common ways ideals are used in other structures.
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Definition 2.5 (Quotient Ring, [5]). Let R be a ring and I be an ideal of R. A coset is a
subset of R of the form r + I = {r + i : i ∈ I} for some r ∈ R. If I is an ideal, then the
following two operations are well-defined.

1. For any r, s ∈ R, (r + I) + (s+ I) = (r + s) + I

2. For any r, s ∈ R, (r + I)(s+ I) = (rs) + I.

With these two operations, the collection of all cosets also forms a ring. We denote this ring
using R/I and call it a quotient ring.

Definition 2.6 (Maximal Ideal, [5]). Let R be a ring and m be an ideal of R. We say that
m is a maximal ideal if m 6= R and the only ideals containing m are m and R.

Consider the ring R[x, y]. The ideal (x) is an example of a non-maximal ideal because
(x) ⊂ (x, y). However, (x, y) is a maximal ideal. To see this, suppose there is an ideal
properly containing (x, y), call it m. If we take any element z /∈ (x, y), then z must be a
constant. But, by the closure of multiplication, 1 = z(1/z) ∈ m. But this implies that
m = R, so (x, y) must be maximal.

Definition 2.7 (Ideal Operations, [5]). Let R be a ring and I, J be ideals of R. We define:

• The sum of I and J by I + J = {i+ j : i ∈ I, j ∈ J}

• The product of I and J by IJ is the set of all finite sums of elements of the form ij
with i ∈ I and j ∈ J

• For any n ≥ 1, the n power of I, denoted In is the set of all finite sums of elements of
the form i1i2...in with ik ∈ I for every 1 ≤ k ≤ n

The following is another useful tool to help calculate intersections of ideals directly.

Proposition 2.8 (Modularity Law, [5]). Let R be a ring and I, J,K be ideals of R. Further,
suppose J ⊆ I. Then, I

⋂
(J +K) = J + (I

⋂
K).

Definition 2.9 (Integral Domain, [5]). Let R be a commutative ring with identity. R is an
integral domain if it has no zero divisors. That is, if x, y ∈ R and xy = 0, then either x = 0
or y = 0.

One of the most obvious examples of an integral domain is Z. Indeed, the multiplication
of any two nonzero numbers will always be nonzero. However, the quotient ring Z/(4) is not
an integral domain. This is because 2+(4) 6= 0+(4) but (2+(4))(2+(4)) = 4+(4) = 0+(4).

Definition 2.10 (Unique Factorization Domain, [5]). Let R be an integral domain. Let
r ∈ R be a nonzero element that is not a unit. Call an element xi irreducible if it cannot be
written as a product of elements in R. Then, R is a Unique Factorization Domain (UFD)
if r satisfies the following two properties.

1. r can be rewritten as a finite product of irreducibles: r = x1x2...xn
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2. The product is unique up to units. That is, if r = y1y2...ym for some other set of
irreducible elements {yi}, then n = m and the factors can be reordered such that xi =
uiyi for some unit ui for all 1 ≤ i ≤ n.

The rings we will specifically use are polynomial rings over a field which are UFDs.
In more detail, let R = C[x, y, z] be the set of all polynomials with three variables with
coefficients in C. Then, since standard polynomial addition and multiplication satisfy the
ring properties in Definition 2.3, R is a ring. Additionally, since polynomial multiplication
is indeed commutative, and the constant polynomial 1 is the multiplicative identity, R is a
commutative ring with identity. Lastly, from [5, Sec 9.3, Thm 7], R is also a UFD.

The ring R = C[x, y]/(x2 − y3) is an example of a non-UFD. To see this, consider the
elements x and y. These elements do not have inverses in R, so they are not units and there
is no way to write x and y as a product of non-units since they both have degree 1. However
in R, we have x2 = y3. So, we have an element in R with two different factorizations.

We now combine the concepts defined above to describe projective varieties. First, to
establish some intuition, consider the polynomial equation x − y2 = 0. If we take solutions
in C2, the point (4, 2) is a solution to this equation. However, we must be more careful in
P2. For example, in P2, (4, 2) = (8, 4), but 8 − 16 = −8 6= 0 so (8, 4) is not a solution.
To avoid this, we use homogeneous polynomials, which is a polynomial that has the same
total degree in every term. Examples of homogeneous polynomials include x + y, xy − x2,
y30 + x29y. Non-examples include x− y2, y2 + x4, y3 − x2.

Definition 2.11 (Homogeneous Ideal, [3]). I is a called a homogeneous ideal of C[x, y, z] if
I = (f1, f2, ..., fn) where f1, ..., fn are all homogeneous polynomials.

Using the examples from above, the ideal (x+ y, xy − x2, y30 + x29y) is an example of a
homogeneous ideal, where (x + y, x− y2) is not. Notice that in order to be a homogeneous
ideal, each generator does not necessarily have to be homogeneous of the same degree.

Next, we formally define projective varieties. One can think of these objects as the points
that solve a system of homogeneous equations. The goal of studying projective varieties is
to extend linear algebra to homogeneous equations that are not necessarily linear.

Definition 2.12 (Projective Varieties, [3]). If f is a homogeneous polynomial in R =
C[x, y, z], then V(f) = {(x, y, z) ∈ P2 : f(x, y, z) = 0}.
If I is a homogeneous ideal generated by f1, ..., fn, then V(I) = V(f1, ..., fn) = {(x, y, z) ∈
P2 : fi(x, y, z) = 0, 1 ≤ i ≤ n}.
We call these sets projective varieties.

The easiest examples of projective varieties are of the form V(f1, f2, ...fn) where each fi
is a homogeneous degree 1 equation. In this case, the variety is no different than solving the
null space of a system of linear equations in linear algebra. For example, V(x, y) = {(0, 0, 1)}.
For the projective plane P2(R), it is generally difficult to sketch the variety because of the
complicated definitions. However, recall that points in the projective plane are equivalence
classes, so any point of the form (x, y, z) is equivalent to a point of the form (x′, y′, 1). So,
one can always set a variable equal to 1 to visualize at least part of the variety. The sketch
below shows the variety V(yz − x2) by setting z = 1.
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Definition 2.13 (Defining Ideal, [12]). Let x be a point in P2. Then, I(x) = {f ∈ C[x, y, z] :
f(x) = 0}.
If X is a set of r points in P2, then I(X) = {f ∈ C[x, y, z] : f(xi) = 0, xi ∈ X, 1 ≤ i ≤ r}.
We call I(x) and I(X) the defining ideal of x and X respectively.

Let R = C[x, y, z], and X is a set of r points in P2. For 1 ≤ i ≤ r, if Pi is the defining
ideal of the ith point in X, then a consequence of Zariski and Nagata’s Theorem described
in [6, Sec 3.9] states that the defining ideal of X is

⋂
1≤i≤r Pi, and if we let I = I(X), then

the mth symbolic power of I, denoted I(m), is equal to
⋂

1≤i≤r P
m
i . Geometrically, I(m) is the

homogeneous ideal consisting of all the homogeneous polynomials in R that passes through
each point of X at least m times. Note that this is different from ordinary powers as defined
in Definition 2.7, where Im = (

⋂
1≤i≤r Pi)

m. For every 1 ≤ i ≤ r, if x ∈ Im, then x ∈ Pm
i , so

x ∈ I(m). This implies that Im ⊆ I(m), but the reverse inclusion is not always true.

2.3 Advanced Ring/Ideal Theory and the Algebra-Geometry Map

Notice that in the case of polynomial rings, we can write the defining ideal of a set of
points as an intersection of the defining ideals of each individual point. To get a more robust
understanding of the properties of these intersecting ideals and how they connect to points
in P2, we will need to first introduce a few more advanced definitions and properties of rings
and ideals.

Definition 2.14 (Prime and Primary Ideals, [5]). Let R be a ring and P,Q be ideals of R.
P is a prime ideal if xy ∈ P implies that either x ∈ P or y ∈ P . Q is a primary ideal if
xy ∈ Q implies that either x ∈ Q or yn ∈ Q for some n ∈ N. All prime ideals are primary.
Additionally, all maximal ideals are prime.

The ring Z, the ideal (2), or the set of even integers, is a prime ideal. This is due to
the simple fact that a product of any two numbers resulting in an even number implies
immediately that one of the numbers must be even. However, the ideal (4) is not prime
because 2 /∈ (4) but 2 ∗ 2 = 4 ∈ (4)

Definition 2.15 (Radical of an Ideal, [5]). Let I be an ideal of a ring R. Denote
√
I = {x ∈

R : xn ∈ I, n ∈ N}. If
√
I = I, then I is a radical ideal.

In Z, radical ideals are precisely the ideals generated by square free numbers. That is, in
the prime decomposition of any number, every prime component is raised only to the power
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of 1. For example, 10 = 2 ∗ 5 is square free but 45 = 32 ∗ 5 is not. In order to calculate the
radical of an ideal (n) for some n with prime decomposition p1

q1p2
q2 ...pr

qr , one simply needs
to take the ideal (p1p2...pr).

Definition 2.16 (P-Primary Ideal, [5]). Let R be a ring and P,Q be ideals of R. Suppose
P is prime and Q is primary. If

√
Q = P , then Q is a P -primary ideal.

Although we have seen that (4) is not a prime ideal, it is a primary ideal. This is because
if a xy is a multiple of 4, then either x is a multiple of 4 or y is a multiple 2. On the other
hand, (10) is not a primary ideal because 2 ∗ 5 ∈ (10) but 2 /∈ (10) and 5n /∈ (10) for any
n ∈ N.

Proposition 2.17. Here are some useful properties of prime and primary ideals.

1. [17] Suppose n ∈ N. I =
⋂

1≤i≤n Pi where each Pi is a prime ideal if and only if I is a
radical ideal.

2. [5] Every prime ideal is radical.

3. [5] If Q is a primary ideal, then
√
Q is a prime ideal. In other words, Q is

√
Q-Primary.

4. [5] If P is a prime ideal that contains In for some ideal I and natural number n, then,
P also contains I.

It is important to note that the powers of prime ideals are not P -primary in general.
However, in our case where R = C[x, y, z] and P is the defining prime ideal of a point, [6,
Thm 3.14] shows that P n for n ∈ N is indeed a P -primary ideal.

From the examples above working in Z, we have seen that prime ideals correlate to
prime numbers, primary ideals correlate to powers of primes, and radical ideals correlate to
square-free numbers. Furthermore, just as how any number can be decomposed into prime
numbers, we also want to generalize when ideals in general also decompose into their primary
components. It turns out that rings in which this occurs have a very special property.

Definition 2.18 (Noetherian Rings, [5]). Let R be a ring. R is Noetherian if for every
increasing chain of ideals in R eventually stops, that is if I1 ⊂ I2 ⊂ ... ⊂ Ik ⊂ ..., then there
exists a k ∈ N such that In = Ik for all n ≥ k.

Theorem 2.19 (Hilbert Basis Theorem, [5]). If R is a Noetherian ring, then R[X], where
X is a set of variables, is also a Noetherian ring.

Definition 2.20 (Primary Decomposition, [17]). Let I be an ideal of a ring R. The primary
decomposition of I is an expression such that I = Q1

⋂
Q2...

⋂
Qk where:

1. k is a finite natural number.

2. For all 1 ≤ i ≤ k, Qi is a primary ideal.

3. I ⊂
⋂

1≤i≤k,i6=j Qi for every 1 ≤ j ≤ k. This property states that no Qi is redundant.
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4.
√
Qi 6=

√
Qj for all 1 ≤ i, j ≤ k. This property states each Qi is contained in a distinct

prime ideal.

Theorem 2.21 (Primary Decomposition Existence, [17]). In a Noetherian ring R, every
ideal has a primary decomposition.

It is often difficult to calculate the primary decomposition of a specific ideal in general.
However, in cases where we do know the primary decomposition, we gain a lot of additional
information about the ideal. In particular, we can intuitively think of the ideal in terms of
the prime ideals that contain it.

Definition 2.22 (Associated Primes, [17]). Let I be an ideal in a Noetherian ring R with
the primary decomposition Q1

⋂
Q2

⋂
...
⋂
Qk for some k ∈ N. Then, the associated primes

of I, denoted Ass(R/I) is the set {
√
Qi : 1 ≤ i ≤ k}.

Definition 2.23 (Minimal Primes, [6]). Let P be a prime ideal that contains another ideal
I in a Noetherian ring R. Then, P is a minimal prime over I if for any prime Q such that
I ⊆ Q ⊆ P , we have that Q = P . The set of all minimal primes over I is denoted Min(I).

Proposition 2.24 (Minimal Primes are a Subset of Associated Primes, [6]). Let I be an
ideal of a Noetherian ring R. Then, Min(I) ⊆ Ass(R/I)

Definition 2.25 (Irreducible Varieties, [17]). Let X be a nonempty variety in P2. Then, if
X = X1

⋃
X2, then X = X1 or X = X2. Equivalently, X cannot be written as the union of

two strictly smaller projective varieties.

We will soon see in the following theorem that irreducible varieties will correspond to
radical prime ideals using the functions defined in Definitions 2.12 and 2.13.

But first, we note that the set of complex numbers can easily be shown to be a commu-
tative ring with 1. Additionally, for every nonzero element x ∈ C, 1/x ∈ C so there always
exists an element y ∈ C such that xy = 1. If x is a nonzero element in some ideal I of C,
then by property 2 in Definition 2.4, (1/x)x = 1 ∈ I which also implies C ⊆ I. Therefore,
the only ideals of C are 0 and C, so C is Noetherian. By the Hilbert Basis Theorem, we now
know that C[x, y, z] is a Noetherian ring. Lastly, Proposition 2.19 implies that every ideal
of C[x, y, z] indeed has a primary decomposition.

We are now ready to state the key relationship between ideals (equations) in C[x, y, z]
and varieties (points) in P2.

Theorem 2.26 (Hilbert’s Nullstellensatz (C-Projective Version), [3]). Let X = {X ⊆ P2 :
X is a variety} and I = {I ⊆ C[x, y, z] : I is a radical homogeneous ideal}. Let X ′ = {X ⊆
P2 : X is a irreducible variety} and I ′ = {I ⊆ C[x, y, z] : I is a radical homogeneous prime ideal}.
Then, there exist bijective correspondences between

X ↔ I and X ′ ↔ I ′

under the maps V and I as defined in Definitions 2.12 and 2.13.

10



Intuitively, this means that if J is a homogeneous prime ideal, then I(V(J)) = J and if
X is a variety, then V(I(X)) = X. The same bijection holds if J is a homogeneous radical
prime ideal and X is an irreducible variety.

With Hilbert’s Nullstellensatz, we now have a clear picture of the properties of the defin-
ing ideal of a finite set of points in P2. If X is this set of points, then each x ∈ X is a
projective variety since it can be written as V(f, g) where f and g are any two distinct lines
the intersect at x. Furthermore, x is clearly an irreducible variety since it is a single point.
By the Nullstellensatz, this implies that I(x) is a prime ideal and I(x) = (f, g). Recall that
the defining ideal of X can be written as the intersection of each I(x) by Zariski and Nagata’s
Theorem. So the defining ideal of a finite set of points in P2 is simply the intersection of all
the defining ideals of each point generated by two lines that pass through the point.

2.4 Localization

We often want to show when two ideals are equal to each other. When we know the
associated primes of an ideal, we can use a powerful tool known as localization to prove this.

Definition 2.27 (Unit of a Ring, [5]). An element u of a ring R is a unit if there exists
another element u−1 ∈ R such that uu−1 = 1.

Definition 2.28 (Ring of Fractions, [5]). Let D be a multiplicative closed subset of a ring
R containing 1. R localized at D or RD = {a

b
: a ∈ R, b ∈ D}. RD is a ring where every

element of D is a unit. When I is an ideal of R, IP is defined similarly as {a
b

: a ∈ I, b ∈ D}

Remark 2.29 (Localization at P). The above definition is slightly different when considering
prime ideals. If P is a prime ideal of a ring R, then R \P is a multiplicatively closed subset
of R that contains 1. We denote RP as R localized at P even though the multiplicatively
closed subset is R \ P .

Proposition 2.30 (Localization Properties, [6]). If I, J are ideals in a Noetherian ring R,
then I ⊆ J if and only if IP ⊆ JP for all P ∈ Ass(R/J).

When localizing an ideal I at P , also notice that if I is not contained in P , then by
definition, there is an element x ∈ I that becomes a unit in IP . Since IP contains a unit, we
automatically know that it is equal to RP .

2.5 Vector Spaces and the Hilbert Function

We are finally now ready to introduce the Hilbert Function. The Hilbert Function is a
powerful tool that uses linear algebra in the setting of projective varieties and homogeneous
ideals. In particular, it gives us a better understanding of homogeneous ideals I by studying
the graded quotient rings R/I. We will first define what it means for a ring to be graded.

Definition 2.31 (Direct Sum, [5]). Let Ri be a collection of rings for some index set I. Then,⊕
i∈I Ri = {(ri) ordered tuples : ri ∈ Ri, and only finitely many of the ri components are nonzero}.

Definition 2.32 (Graded Ring, [5]). A ring R is graded if R =
⊕

i∈I Ri for some index set
I and for all i, j ∈ I, RiRj = {rirj : ri ∈ Ri, rj ∈ Rj} ⊆ Ri+j.

11



In the case where R is a polynomial ring. The most natural grading for R is by de-
gree. The set Ri is the set of all homogeneous polynomials of degree i in R. Therefore,
if R = C[x, y, z], then R is a graded ring by degree. Furthermore, R has an additional
structure where one can view it alternatively as a C-vector space. This alternative algebraic
interpretation on R will be essential to properly define the Hilbert Function.

Definition 2.33 (Field, [5]). Let F be a commutative ring with identity denoted with 1
where 1 is not equal to the additive identity of F . If for every nonzero x ∈ R there exists an
element x−1 ∈ R such that x−1x = xx−1 = 1, then F is a field.

Definition 2.34 (Vector Space and Dimension, [5]). Let V be a set and F a field. Let
+ : V × V → V (notice this map is a binary operation) and × : F × V → V be two maps.
For all α ∈ F , v ∈ V , we will write ×(α, v) as αv. V is a vector space if it satisfies the
following properties:

1. + satisfies the first 4 properties from Definition 2.3 on V .

2. × is associative: For all α, β ∈ F , v ∈ V , (αβ)v = α(βv).

3. Field distribution holds: For all α, β ∈ F , v ∈ V , (α + β)v = αv + βv.

4. Vector distribution holds: For all α ∈ F , v, w ∈ V , α(v + w) = αv + αw.

5. Identity in the field is consistent: If 1 is the multiplicative identity in F , then 1v = v
for all v ∈ V

Let {vi : i ∈ I ⊆ N} be a list of vectors in V . If the following two properties are true, then
we call {vi} a basis for V .

1. {vi} is a set of linearly independent vectors: if
∑

i∈I civi = 0, then for each i ∈ I,
ci = 0.

2. {vi} is a spanning set: V = {
∑

i∈I civi : ci ∈ F}.

If the number of vectors in {vi} is a basis and is finite, we call V a finite nth dimensional
vector space where n is the number of basis vectors. We denote this as dimF (V ) = n.

Definition 2.35 (Hilbert Function, [12]). Let R =
⊕

i∈I Ri be a graded ring with the addi-
tional finite vector space structure over C. Then, the Hilbert Function of R is defined as the
function HR : N→ N where HR(d) = dimC(Rd)

When R = C[x, y, z] and I is the defining ideal for some set of r points in P2, then it is
known from [12] that HR/I(m)(d) ≤ min{

(
2+d
d

)
, r
(
m+1
2

)
}. In particular,

(
2+d
d

)
= HR(d) and

we call r
(
m+1
2

)
the multiplicity of R/I(m) and denote it by e(R/I(m)). When HR/I(m)(d) =

min{
(
2+d
d

)
, e(R/I(m))} for all d ∈ N, we say that HR/I(m) has the expected (or maximal)

Hilbert Function. Furthermore, it is also known from [12, Thm C.7] that HR/I(m) is always
maximal if m = 1 for any r ∈ N.

Lastly, the following is a short list of important notational shorthands regarding the
Hilbert Function that will be used frequently throughout the remainder of the thesis.
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• α(I(m)) denotes the degree of the smallest degree homogeneous polynomial in I(m).
This is also called the initial degree.

• ε(R/I(m)) denotes the smallest d ∈ N such that HR(d) > e(R/I(m)).

2.6 Short Exact Sequences

One of the most effective ways to calculate the Hilbert Function of a graded ring is
by using a short exact sequence. To define a short exact sequence, we first define a ring
homomorphism.

Definition 2.36 (Ring Homomorphism and Kernel, [5]). Let R and S be rings. A ring
homomorphism is a map φ : R→ S such that

1. φ(x+ y) = φ(x) + φ(y) for all x, y ∈ R.

2. φ(xy) = φ(x)φ(y) for all x, y ∈ R.

The kernel of φ, denoted kerφ, is the set of elements of R that map to the additive iden-
tity (denoted 0) of S. Furthermore, if R and S are graded rings, then φ is a graded ring
homomorphism if φ also respects the grading, i.e., if φ(Ri) ⊆ Si for all i in some index set.

Definition 2.37 (Short Exact Sequence, [5]). Let A,B,C be rings and φ : A → B and

τ : B → C be ring homomorphisms. A short exact sequence is the sequence 0→ A
φ−→ B

τ−→
C → 0 where

1. φ is injective.

2. τ is surjective.

3. φ(A) = ker τ .

Proposition 2.38 (Additivity of the Hilbert Function, [12]). Let A,B,C be graded rings
and let φ : A → B, τ : B → C be graded ring homomorphisms such that the rings form a
graded short exact sequence. Suppose in addition that A,B,C has a vector space structure.
Then, HB(d) = HA(d) +HC(d) for all d ∈ N.

The next definition is analogous to division in ideals and will play a key role in developing
useful short exact sequences.

Definition 2.39 (Colon Notation, [5]). Let I be an ideal of a ring R. Let f ∈ R. Then
I : f = {r ∈ R : fr ∈ I}.

For example, suppose I is an ideal of a ring R and I = P1

⋂
P2 where P1 and P2 are

prime ideals. Suppose further that f ∈ P1 but f /∈ P2. By definition, it is trivial to show
that I : f = (P1 : f)

⋂
(P2 : f). If f ∈ P1, then by the closure of multiplication in ideals,

P1 : f = R. And since P2 is prime, for any r ∈ R such that rf ∈ P2, since f /∈ P2, r ∈ P2.
So, P2 : f = P2. So I : f = P2. This also demonstrates why it is often useful to study ideals
in terms of their primary components.
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Proposition 2.40 (Colon Property). Let I, J,H be ideals of a ring R. Let f ∈ R. Then, if
I = (fJ,H), then I : f = (J,H : f).

Proof. The reverse inclusion is clear. For the forward inclusion, let a ∈ I : f , then af =
(fJ,H), so there exists a j ∈ J and h ∈ H such that af = fj + h. Then, f(a− j) = h and
let h′ = a− j. Since a− j = h′ ∈ H : f , then a = j + h′ so a ∈ (J,H : f).

Proposition 2.41 (Fundamental Short Exact Sequence for Polynomial Rings, [6]). Let R
be a polynomial ring and I an ideal of R and f ∈ R. Then, the following sequence is a short
exact sequence:

0 → R/(I : f)
φ−→ R/I

τ−→ R/(f, I) → 0 where φ multiplies an element in R/I : f by f
and τ is the standard projection map taking r + I → r + (I, f).

Proposition 2.42 (Connection between Associated Primes and Short Exact Sequences,
[6]). Let A,B,C be rings and 0 → A → B → C → 0 be a short exact sequence. Then,
Ass(A) ⊆ Ass(B) ⊆ Ass(A)

⋃
Ass(C).

Since a graded ring homomorphism is a homomorphism that preserves the grading, in
order to use Propositions 2.41 and 2.38, we need to shift the degree of R/(I : f) by − deg(f),
which we denote R/(I : f)(− deg(f)). For example, an element a in A has degree deg(a) +
deg(f) in R/(I : f)(− deg(f)). This also implies that HR/(I:f)(− deg(f))(d) = HR/(I:f)(d −
deg(f)). Then, the previous propositions imply that in order to calculate the Hilbert function
of R/I, it is sufficient to calculate the Hilbert function of R/(I : f)(− deg(f)) and R/(I, f).

2.7 Important Theorems and Properties

We end this section by listing some important miscellaneous theorems that will be used
to prove the later results.

Theorem 2.43 (Hilbert Function Properties, [12]). Let R = C[x, y, z], X a set of r points
in P2, and I the defining ideal of X.

1. As an immediate consequence of Proposition 2.38, for all m, d ∈ N, HR/I(m)(d) =
HR(d)−HI(m)(d).

2. HR/I(m) is non-decreasing for all m ∈ N. This implies that in order to prove that
HR/I(m) has the expected Hilbert Function, it suffices to check there that there are no

equations in of degree ε(R/I(m))−1 in I(m) and that there exists at most HR(ε(R/I(m)))−
e(R/I(m)) equations of degree ε(R/I(m)) in I(m). More generally, if I = P1

⋂
. . .
⋂
Pr

defines a set of r points, then HR/(P
m1
1 ∩Pm2

2 ∩...∩Pmr
r ) is non-decreasing for all mi ∈ N

3. If J,K are any ideals of R, and J ⊆ K, then J = K if and only if HR/J(d) = HR/K(d)
for all d ∈ N.

Theorem 2.44 (Bezout, [3]). Let R = C[x, y, z]. Let f, g be homogeneous polynomials in R
with deg(f) = d and deg(g) = m. If gcd(f, g) = 1, then |V(f) ∩V(g)| = md.

14



The definition of “a set of general points” formalizes the algebraic geometry version of “a
set of random points.” However, the definition is very technical, and it involves a few notions
from topology. It requires one to first defined the so-called “Zariski topology,” which goes
well beyond the purpose of this thesis. The interested reader can find the precise definition of
general points in [12, Definition D.2]. For the purpose of this thesis, we will use the following
simplified version (which is a very special case of “a set of general points”), and by abuse of
notation, we will still call it “a set of general points.”

Definition 2.45 (General Points). Let X be a set of points in P2 and p be some point in
X. X is general if for any d ∈ N, any homogeneous equation f of degree d will have less
than

(
d+2
d

)
points satisfying f(p) = 0. That is if no 3 points lie on a line, no 6 points lie on

a quadratic, no 10 points of X are on a cubic, etc.

The next theorem is a celebrated theorem completely solving the problem of when the
symbolic square of a set of general points has the expected Hilbert Function.

Theorem 2.46 (Alexander-Hirschowitz (AH-Theorem), [12]). Let d ∈ N, X be a general
set of r points in P2. Let I be the defining ideal of X. Then, HR/I(2)(d) has the expected
Hilbert Function for all r ∈ N except for r = 2 and r = 5.

Theorem 2.47 (Huneke’s Criterion, [14]). Let X be a set of r points in P2 and let I be the
defining ideal of X. Let k ∈ N. Then, if there exists a f, g ∈ I(k) such that gcd(f, g) = 1
and deg(f) deg(g) = rk2, then I(kt) = (I(k))t for all t ∈ N.

Theorem 2.48 (Waldschmidt-Skoda Constant, [1]). Define α̂(I) = limm→∞
α(I(m))
m

.

1. For all m, t ∈ N, α(I(mt))
mt

≤ α(I(m))
m

.

2. α̂(I) ≤ α(I(m))
m

for all m ∈ N.

3. If there exists a m0 such that (I(m0))t = I(m0t) for all t ∈ N, then, α̂(I) = α(I(m0))
m0

.

Definition 2.49 (Exceptional Curve, [2]). Let X be a set of r general points in P2 and let Pi
be the defining ideal of each point pi ∈ X. Let f be an irreducible equation of homogeneous
degree d. Let ni be the number such that f ∈ P ni

i but f /∈ P ni+1
i . Then, f is exceptional if

d2 −
∑r

i=1 n
2
i = −3d+

∑r
i=1 ni = −1.

Theorem 2.50 (SHGH Conjecture, [2]). For a set of general points in P2 with defining ideal
I, HR/I(d) does not have the expected maximal value if and only if every homogeneous degree
d element in I is a multiple of some fm where m > 1 and f is an exceptional curve.

Although this statement is technically a conjecture, it has been proven for any r points
up to m ≤ 12 in [4, Prop 5.1].
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3 Standard Bezout Theorem Argument

Most of the key results will rely on the following argument using Bezout Theorem. In
this section, we outline this argument and will implicitly refer to it in the next sections.
For brevity, an arbitrary equation of degree n will be denoted as fn and Pi will denote the
defining ideal of the i-th point in a set of X of r general points. Unless otherwise stated,
this notation will be consistent for the remainder of the thesis.

Theorem 3.1. Let X be a set of r general points and I its defining ideal. Suppose the
following:

• For some m,n ∈ N, fn ∈ I(m) =
⋂

1≤i≤r P
m
i .

• There exists an irreducible equation g with a degree d < n such that g ∈
⋂
j∈J(Pj \P 2

j )
where J ⊆ {1, 2, ..., r}.

• |V(g)
⋂

V(fn)| > dn, i.e. the assumptions for the contrapositive of Bezout Theorem
are satisfied.

Then, fn = gfn−d where fn−d ∈
⋂

1≤i≤r P
a
i where a = (m− 1) if i ∈ J and a = m otherwise.

Proof. Since the assumptions for Bezout Theorem (2.44) are satisfied, gcd(fn, g) > 1. But
since g is irreducible, this implies that gcd(fn, g) = g, so g|fn. Therefore, fn = gfn−k and
fn−k ∈ I(m) : g. We now prove that I(m) : g =

⋂
1≤i≤r P

a
i

Consider I(m) : g =
⋂

1≤i≤r(P
m
i : g). If i /∈ J , then g /∈ Pi. If x ∈ Pm

i , then by the
properties of an ideal, xg ∈ Pm

i so x ∈ Pm
i : g. Now suppose x /∈ Pm

i , and assume for
contradiction that xg ∈ Pm

i . Since Pm
i is a primary ideal and x /∈ Pm

i , then this implies that
gη ∈ Pm

i for some η ∈ N. But this implies that g ∈
√
Pm
i = Pi by Proposition 2.17, which

is a contradiction. This shows that Pm
i : g = Pm

i .
Now suppose i ∈ J . This means that g ∈ Pi. So gPm−1

i ⊆ PiP
m−1
i = Pm

i , which implies
Pm−1
i ⊆ Pm

i : g. To prove the reverse inclusion, it is sufficient by Proposition 2.30 to show
that (Pm

i : g)P ⊆ (Pm−1
i )P for all P ∈ Ass(R/Pm−1

i ). By Proposition 2.17 and Definition
2.22, Ass(R/Pm−1

i ) = {Pi}. Since g ∈ Pi \P 2
i , then g

1
= g ∈ (Pi)Pi

\ (Pi)
2
Pi

. Let (f1, ..., fk) be
the finite number of elements that generate (Pi)Pi

. Since g ∈ (Pi)Pi
, g = α1f1 + ... + αkfk.

But since g /∈ (Pi)
2
Pi

, there exists some αη such that αη /∈ (Pi)Pi
. Without loss of generality,

assume η = 1. Then, by Remark 2.29, α1 is a unit. Therefore, f1 = g−(α2f2+...+αkfk)
α1

so

(Pi)Pi
= (g, f2, ..., fk). This implies that (Pm

i : g)Pi
= (g, f2, ..., fk)

m : g = (g, f2, ..., fk)
m−1 =

(Pm−1
i )Pi

.
So, I(m) : g =

⋂
1≤i≤r P

a
i and since fn−d ∈ I(m) : g, then fn−d ∈

⋂
1≤i≤r P

a
i .

4 Results

4.1 3 Point Case

Lemma 4.1. Let X be a set of 3 general points and I its defining ideal. Let `1 ∈ P1

⋂
P2,

`2 ∈ P2

⋂
P3, and `3 ∈ P3

⋂
P1 where each `i is a degree 1 homogeneous equation. Then,

I = (`1`2, `2`3, `1`3).
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Proof. Recall that I = P1

⋂
P2

⋂
P3 and we can write P1 = (`1, `3), P2 = (`1, `2), P3 =

(`2, `3). By Proposition 2.8, P1

⋂
P2 = (`1)+[(`2)

⋂
(`1, `3)]. But `2 is principal, so everything

in [(`2)
⋂

(`1, `3)] is a multiple of `2 so the ideal becomes (`1)+`2((`1, `3) : `2)). Furthermore,
(`1, `3) = P1 is prime and `2 /∈ P1 so (`1) + `2((`1, `3) : `2)) = (`1) + `2(`1, `3) = (`1, `2`3). We
then take (`1, `2`3)

⋂
P3 = (`1, `2`3)

⋂
(`2, `3). After noticing that (`2`3) ⊆ (`2, `3), we can

apply Proposition 2.8 again and after a similar argument, we get that I = (`1`2, `2`3, `1`3)
as desired.

Lemma 4.2. Let X be a set of 3 general points and I its defining ideal. Let `1, `2, `3 be the
same as above. Then, `1`2`3 ∈ I(2) and no equation in degree 2 lies in I(2).

Proof. The first part is clear from the definition of each `i for i = 1, 2, 3. The second part
follows from the AH Theorem (2.46). That is, we know R/I(2) has the expected Hilbert
Function, so HR/I(2) = HR − HI(2) = 1, 3, 6, 9, 9, .... Since HR/I(2)(2) = HR(2) =

(
2+2
2

)
= 6,

there are no equations of degree 2 in I(2).

As a brief remark, the previous lemma and the fact that I2 ⊆ I(2) gives the intuition
that I(2) = (`1`2`3, `

2
1`

2
2, `

2
1`

2
3, `

2
2`

2
3). Although we won’t prove it here, it turns out that this

equality is indeed true.

Theorem 4.3. Let X be a set of 3 general points in P2 and I its defining ideal. Then R/I(m)

has the expected Hilbert Function at m = 3, but R/I(m) does not have the expected Hilbert
Function at m = 4 and m = 5.

From Definition 2.35, we recall the expected Hilbert Function for R/I(m) whenm = 3, 4, 5.

• HR/I(3) = 1, 3, 6, 10, 15, 18, 18, 18, ...

• HR/I(4) = 1, 3, 6, 10, 15, 21, 28, 30, 30, 30, ...

• HR/I(5) = 1, 3, 6, 10, 15, 21, 28, 36, 45, 45, 45, ...

Proof. We will look at each case individually. For each case, we let `1 ∈ P1

⋂
P2, `2 ∈ P2

⋂
P3,

and `3 ∈ P3

⋂
P1 as in Lemma 4.1 and 4.2.

1. m = 3. Using part 2 of Theorem 2.43, it suffices to prove that there are no equations
of degree 4 in I(3) and at most 3 linearly independent equations in degree 5 in I(3).
Assume for contradiction that there exists an equation of degree 4 in I(3), let us denote
it as f4. Then, by Bezout Theorem (2.44), since deg(f4) deg(`i) < 6 ≤ |V(f4)

⋂
V(`i)|

for i = 1, 2, 3, one can write f4 = `1`2`3f1 where f1 ∈ I. But recall that R/I has the
expected Hilbert Function (since I = I(1)), there does not exist any equation of degree
1 in I, so there is no equation of degree 4 in I(m).

Let f5 be an equation of degree 5 in I(3). Then deg(f5) deg(`i) < 6 ≤ |V(f5)
⋂

V(`i)|
for i = 1, 2, 3, so f5 = `1`2`3f2 for some f2 ∈ I. But since R/I has the expected Hilbert
Function, there exists at most 3 linearly independent equations of degree 2 in I, so
there exists at most 3 linearly independent equations of degree 5 in I(3).
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2. m = 4

Using part 2 of Theorem 2.43, to prove that HR/I(4) does not have the expected Hilbert

Function, we show there exists an equation of degree 6 in I(4). Since HR/I(2) has the

expected Hilbert Function, we know there exists one equation of degree 3 in I(2). So
there exists a f6 in I4 where f6 = `1`2`3f3 and f3 is in I(2).

3. m = 5

Similarly to the above, to prove that HR/I(5) does not have the expected Hilbert Func-

tion, we show there exists an equation of degree 8 in I(5). Since HR/I(3) has the expected
Hilbert Function, we know there exist 3 linearly independent equations of degree 5 in
I(3). Let f5 any of these 3 equations. We know that `1`2`3 ∈ I(2), so f5`1`2`3 is an
equation of degree 8 in I(3)I(2) ⊆ I(5).

Theorem 4.4. For all m ∈ N, define g : N → N to be g(m) = 3
2
m if m is even, or

g(m) = 1
2

+ 3m
2

if m is odd. Let X be a set of 3 points in P2 and I its defining ideal. Then

α(I(m)) = g(m). Furthermore for all m ≥ 6,
(
2+g(m)

2

)
< e(R/I(m)) so R/I(m) does not have

the expected Hilbert Function for all m ≥ 6.

Proof. Let us recall from the Lemma 4.1 that `1 ∈ P1

⋂
P2, `2 ∈ P2

⋂
P3, and `3 ∈ P3

⋂
P1.

Furthermore, note that g(m− 2) = g(m)− 3 for all m ∈ N. From Lemmas 4.1 and 4.2, we
know there exists an equation of degree g(1) = 2 in I and there exists an equation of degree
g(2) = 3 in I(2). Recall that we will use fn to denote a homogeneous equation of degree n.
If there exists a k ∈ N such that fg(k−2) ∈ I(k−2), then fg(k) ∈ I(k) since fg(k) = `1`2`3fg(k)−3.
Furthermore, Lemma 4.1 also shows there exist no equations of degree g(1)−1 = 1 in I, and
Lemma 4.2 shows there exist no equations of degree g(2) − 1 = 2 in I(2). Now, assume for
contradiction that there exists a k such that there does not exist any fg(k−2)−1 ∈ I(k−2) but
that there does exist a fg(k)−1 ∈ I(k). By Bezout Theorem (2.44), we know for any f ∈ I(m),
|V (f)

⋂
V (`i)| ≥ 2m for all i = 1, 2, 3. For all m ≥ 3, we note that (g(m)− 1) < 2m. So by

Bezout Theorem, fg(k) = `1`2`3fg(k−2)−1, where fg(k−2)−1 ∈ I(k−2). This gives a contradiction
to the inductive hypothesis. Therefore, α(I(m)) = g(m).

To prove the second part, we note that when m is even,
(
2+g(m)

2

)
=

9
4
m2+ 9

2
m+2

2
. When m

is odd,
(
2+g(m)

2

)
=

9
4
m2+6m+ 15

4

2
. Lastly, e(R/I(m)) = 3m2+3m

2
. Define the following:

• f(m) = 3m2+3m
2

,

• fe(m) =
9
4
m2+ 9

2
m+2

2
, and

• fo(m) =
9
4
m2+6m+ 15

4

2
.

At m = 6, f > fe and f > fo. Assume that there exists a k ∈ N such that f(k) > fe(k).

Then, f(k + 1) = 3(k+1)2+3(k+1)
2

= 3k2+3k
2

+ 6k+6
2

. Similarly, fe(k + 1) =
9
4
(k+1)2+ 9

2
(k+1)+2

2
=

9
4
k2+ 9

2
k+2

2
+

9
2
k+ 27

4

2
. Since for all k ≥ 6, 6k+6

2
>

9
2
k+ 27

4

2
, using the inductive hypothesis we know
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f(k + 1) > fe(k + 1). So by induction, f(m) > fe(m) for all even m. An identical argument
holds for all odd m using fo instead. So for all m ≥ 6,

(
2+g(m)

2

)
< e(R/I(m)). Recall that

in order for R/I to have the expected Hilbert Function, H(R/I)(d) = min{
(
2+d
d

)
, e(R/I(m))}.

Given that we have just shown
(
2+g(m)

2

)
< e(R/I(m)), if we assume for contradiction that

R/I(m) does have the expected Hilbert Function, then we know HR/I(m)(g(m)) =
(
2+g(m)

2

)
.

But this is equal to HR(g(m)), which is a contradiction because there do indeed exist equa-
tions in I(m) at d = g(m). That is, HI(m)(g(m)) 6= 0 and by part 1 of Theorem 2.43,
HR/I(m)(g(m)) = HR(g(m))−HI(m)(g(m)) 6= HR(g(m)).

Next, we want to address the secondary research question by determining which symbolic
powers I(m) of I we do have (I(m))t = I(mt). Huneke’s criterion (2.47) oftentimes can be used
to get a starting point in these kinds of investigations.

Theorem 4.5. For 3 general points, Huneke’s Criterion holds for k = 2.

Proof. To prove the proposition, we must find homogeneous polynomials f, g ∈ I(2) such
that deg(f) deg(g) = 3k2 = 12 and gcd(f, g) = 1. For the remainder of the proof, let
`12 ∈ P1

⋂
P2, `13 ∈ P1

⋂
P3, `23 ∈ P2

⋂
P3, `1 ∈ P1 \ (P2

⋃
P3), `2 ∈ P2 \ (P1

⋃
P3),

and `3 ∈ P3 \ (P1

⋃
P2) where each `i and `ij are degree 1 homogeneous equations. Define

f3 := `12`13`23 ∈ I(2). Therefore, we want to find a quartic f4 ∈ I(2) such that gcd(f3, f4) = 1.
Let g1 := `12`23`1`3 ∈ I(2) and g2 := l213l

2
2 ∈ I(2). In a UFD, g1 = `12`23`1`3 and

g2 = `213`
2
2 are unique irreducible factorizations, and since `12, `13, `23, `1, `2, `3 define distinct

lines, gcd(g1, g2) = 1. If gcd(f3, g1) = 1 or gcd(f3, g2) = 1, then we are done. Otherwise,
assume gcd(f3, g1) > 1 and gcd(f3, g2) > 1. Let fα = g1 + αg2 and fβ = g1 + βg2 for some
α 6= β ∈ C. Intuitively, what we are trying to show is that there exists some equation of
degree 4 as a linear combination of g1 and g2 such that it is coprime with f3. To do this, we
will show how all elements in the set {fα : α ∈ C} are coprime with each other. Now, we
can go on with the proof.

Consider g = gcd(fα, fβ). We will show that g = 1. Assume for contradiction that g > 1.
Then, g|fα and g|fβ. So, g|(fα−fβ) and g|(fα− α

β
fβ). So, g|(α−β)g2 and g|(1− α

β
)g1 which

implies g|g1 and g|g2. But gcd(g1, g2) = 1, so g = 1. Consider the set {fα : α ∈ C}. For
each fα in the set, gcd(fα, fβ) = 1 for any other β 6= α. This implies there are an infinite
number of elements in {fα : α ∈ C} with each element having its own distinct factorization.
However, since f3 is an equation with a finite number of irreducible factors, there must exist
some γ ∈ C such that gcd(f3, fγ) = 1. Since fγ ∈ I(2) and has degree 4, Huneke’s Criterion
applies for k = 2.

Theorem 4.6. For 3 general points, for all q ∈ N and t ≥ 2 ∈ N, (I(2q+1))t 6= I(t(2q+1)) and
(I(2q))t = I(2tq).

Proof. Since 2q+ 1 is odd, by Theorem 4.4, α(I(2q+1)) = 2 + 3q. This implies α((I(2q+1))t) =
3qt + 2t. Now consider I t(2q+1). If t is even then by Theorem 4.4, α(I t(2q+1)) = 3qt + 3

2
t.

Otherwise, if t is odd, then α(I t(2q+1)) = 3qt+ 3
2
t+ 1

2
. Notice that since 3qt+ 2t 6= 3qt+ 3

2
t

for all t ≥ 2 and 3qt + 2t = 3qt + 3
2
t + 1

2
if and only if t = 1, α((I(2q+1))t) 6= α(I t(2q+1)).

Therefore, (I(2q+1))t 6= I t(2q+1)

Lastly, (I(2q))t = I t(2q) follows immediately from Huneke’s Criterion for k = 2.
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4.2 4 Point Case

To solve the case for 4 points, we utilize some nice properties of ideals which are complete
intersections. Essentially, when an ideal is a complete intersection, Im = I(m). That is, its
ordinary and symbolic power is equal. The proof is relatively complex, and a precise proof
of a more general statement can be found in [13, Thm 16.2].

Definition 4.7 (Complete Intersection). Let R be a ring and I an ideal of R. I is a
complete intersection if I is a proper ideal of R and it is generated by a regular sequence, i.e.
a sequence of elements x1, x2, ..., xn ∈ R where for each 1 ≤ i ≤ n, xi is a nonzero divisor in
R/(x1, x2, ..., xi−1).

For example, if R is a UFD (e.g. R = C[x, y, z], as in our case), and let f, g be any two
polynomials with (f, g) 6= R, then (f, g) is a complete intersection if and only if gcd(f, g) = 1.

Theorem 4.8. Let X be a set of 4 general points in P2 and I its defining ideal. Then, the
initial degree of R/I(m) is 2m for all m ∈ N. Furthermore, R/I(m) has the expected Hilbert
Function for all m ∈ N.

Proof. We first show that 2m is the degree to when we expect the Hilbert Function to
differ from HR provided that it is maximal. Then, we can apply part 2 of Theorem 2.43. Set
d = 2m. Then,

(
1+d
2

)
= 2m2+m, e(R/I(m)) = 4

(
m+1
2

)
= 2m2+2m, and

(
2+d
2

)
= 2m2+3m+1,

Since 2m2+m < 2m2+2m < 2m2+3m+1 for allm ∈ N,
(
1+d
2

)
< 4
(
m+1
2

)
= 2m2+2m <

(
2+d
2

)
.

Therefore, 2m = ε(R/I(m)).
To show that HR/I(m) has the expected Hilbert Function for all m ∈ N, it suffices to

prove there exists no equations of degree 2m− 1 in I(m) and that there are at most
(
2+2m

2

)
−

e(R/I(m)) = m + 1 linearly independent equations of degree 2m. Let `1 ∈ P1

⋂
P2, `2 ∈

P3

⋂
P4, `3 ∈ P1

⋂
P3, `4 ∈ P2

⋂
P4 where each `i is a degree 1 homogeneous equation.

Let q1 = `1`2, q2 = `3`4. For any of the four points, its defining ideal Pi can be defined
as the intersection of two nonparallel lines. In particular, P1 = (`1, `3). We see that `1
and `3 are not parallel (which means they are distinct lines) because `1 ∈ P1

⋂
P2 and `3 ∈

P1

⋂
P3, and three points cannot lie on the same line. Similarly, P2 = (`1, `4), P3 = (`2, `3),

P4 = (`2, `4). Therefore, I = P1

⋂
P2

⋂
P3

⋂
P4 = (`1, `3)

⋂
(`1, `4)

⋂
(`2, `3)

⋂
(`2, `4) =

(`1`2, `3`4) = (q1, q2). Since we are working in a UFD, q1 = `1`2 and q2 = `3`4 are unique
irreducible factorizations. Therefore, since each `i are distinct lines, gcd(q1, q2) = 1.

Therefore, since I is a complete intersection ideal, meaning I(m) = Im for all m ∈ N.
I(1) = I is generated by two equations. So, (q1, q2)

m will be generated by equations of the
form qi1q

j
2 where i + j = m, and i, j ≥ 0. With combinatorics, the number of solutions

to i + j = m is precisely
(
m+1
1

)
= m + 1. Furthermore, this also explicitly proves that

α(R/I(m)) = 2m since the generators are of degree 2. So, there exist no equations of degree
2m− 1.

To show that the m + 1 generators of I(m) are linearly independent, we assume for
contradiction that there exists a sequence of constants ci (with at least one nonzero) such that∑m

i=0 ciq
i
1q
j
2 = 0 where for all i, j = m−i. Then, we dehomgenize with respect to q1, meaning

0 =
∑m

i=0 ciq
i
1q
j
2 = qm1

∑m
i=0 ci(

q2
q1

)j. If we let t = q2
q1

, then we have a single variable polynomial
with coefficients in the algebraically closed field C. So, the polynomial splits completely into
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linear terms, which implies that (t − c) = 0 for some c ∈ C. After rehomogenizing, this
implies q2 = cq1, which contradicts the fact that gcd(q1, q2) = 1. Therefore, the m + 1
generators of I(m) are linearly independent.

4.3 5 Point Case

Theorem 4.9. Let X be a set of 5 general points in P2 and I its defining ideal. Then,
R/I(m) does not have the expected Hilbert function for any m ≥ 2.

Proof. From [12, Thm C.7] and part 1 of Theorem 2.43, we know that HR/I(d) = HR(d) −
HI(d) and that there is precisely one homogeneous polynomial of degree 2 in I. Therefore,
there exists a polynomial of degree 2m in Im. Indeed, since Im ⊆ I(m), there exists at least
one homogeneous polynomial of degree 2m in I(m). This implies that HI(m)(2m) ≥ 1, so
HR/I(m)(2m) = HR(2m)−HI(m)(2m) ≤

(
2m+2

2

)
− 1. So, HR/I(m)(2m) <

(
n+d
n

)
=
(
2m+2

2

)
.

We now note that e(R/I(m)) = 5
(
2+m−1

2

)
= 5m2+5m

2
. Furthermore, note that

(
2m+2

2

)
=

4m2+6m+2
2

. We will show by induction that 5
(
2+m−1

2

)
≥
(
2m+2

2

)
for all m ≥ 2. At m = 2,

5
(
2+m−1

2

)
=
(
2m+2

2

)
. For the inductive step, assume that for some k ∈ N, 5k2+5k

2
≥ 4k2+6k+2

2
.

Then,

• 5(k+1)2+5(k+1)
2

= 5k2+5k+(10k+10)
2

and

• 4(k+1)2+6(k+1)+2
2

= 4k2+6k+2+(8k+10)
2

.

Since 10k+10
2

> 8k+10
2

, then by the inductive hypothesis, 5(k+1)2+5(k+1)
2

≥ 4(k+1)2+6(k+1)+2
2

.

Therefore, 5
(
2+m−1

2

)
≥
(
2m+2

2

)
for all m ≥ 2. So, HR/I(m)(2m) <

(
2m+2

2

)
≤ e(R/I(m)). This

implies HR/I(m) does not have the expected Hilbert Function for all m ≥ 2.

Theorem 4.10. Let X be a set of 5 general points in P2 and I its defining ideal. Then,
α(Im) = 2m for all m ∈ N.

Proof. We already know that there exists an equation of degree 2m in I(m) for all m ∈ N.
Furthermore, because the points are taken to be general there exists an irreducible quadratic
q ∈ I. We also know that there does not exist any equation of degree 1 in I. Now, assume for
contradiction that there exists a k such that there does not exist any f2(k−1)−1 ∈ I(k−1) but
that there exists a f2k−1 ∈ I(k). Note that |V(f2k−1)

⋂
V(q)| ≥ 5k. Since deg(f2k−1) deg(q) =

4k−2, by Bezout Theorem, f2k−1 = qf2(k−1)−1 where f2(k−1)−1 ∈ Ik−1, which contradicts the
inductive hypothesis.

Theorem 4.11. For 5 general points, Huneke’s Criterion holds for k = 2.

Proof. To prove the proposition, we must find f, g ∈ I(2) such that deg(f) deg(g) = 5k2 = 20
and gcd(f, g) = 1. Let q be the irreducible quadratic in I and `ij ∈ Pi

⋂
Pj be degree 1

homogeneous equations for 1 ≤ i, j ≤ 5, i 6= j. Note that f4 := q2 ∈ I(2). So, we need to find
a f5 ∈ I(2) such that gcd(f4, f5) = 1.

Let f5 = `12`23`34`45`51 ∈ I(2). In a UFD, f4 = q2 and f5 = `12`23`34`45`51 have unique
irreducible factorizations. Since `12`23`34`45`51, q are distinct, gcd(f4, f5) = 1. Therefore,
Huneke’s Criterion applies for k = 2.
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4.4 6 Point Case

In the case of 6 points, Bezout Theorem becomes far less useful since it is much more
difficult for the assumptions of the theorem to be satisfied. Furthermore, we will later see
that Huneke’s Criterion also fails for small k. This makes it much more difficult to answer
in full generality if a set of 6 general points has the expected Hilbert Function. However,
using some more advanced techniques involving properties including Artinian Reductions,
unmixed ideals, and short exact sequences, we are able to prove some interesting results
showing (I(2))k = I(2k) when k = 2, 3, 4. We will first introduce these new tools exclusive to
the 6 point case.

Definition 4.12 (Height of an Ideal, [6]). If I is a prime ideal, the height of I, denoted
ht(I) is the maximum length of a chain of prime ideals descending from I. If I is not prime,
then let ht(I) be the minimum of all ht(P ) where P is a prime containing I. Equivalently,
it is the minimum of {ht(Pi) : Pi ∈ Ass(R/I)}.

Definition 4.13 (Unmixed Ideal for Polynomial Rings, [13]). Let R = C[x, y, z]. Then, an
ideal I of R is unmixed of height c if c = ht(Pi) for all Pi ∈ Ass(R/I).

Proposition 4.14 (Determining Height 1 Ideals, [6]). Let R = C[x, y, z]. Then, an ideal I
of R has height 1 if and only if there exists a non-unit f ∈ R such that I = fJ for some
other ideal J .

The following is a nice result of the previous definition. If I ⊂ C[x, y, z] is an unmixed
ideal of height 2, then for all P ∈ Ass(R/I), ht(P ) = 2. This automatically shows that
the maximal ideal (x, y, z), which has height 3, is not an associated prime of I. Since we
are working with homogeneous ideals, it turns out that (x, y, z) is indeed the only maximal
ideal and also the only ideal of height 3. Furthermore, the definition also implies that
Ass(R/I) ⊆ Min(I) so as a consequence of Proposition 2.24, we actually get that the two
sets are equal for unmixed ideals.

The next definition and proposition are motivated by some more intricate results involving
very special types of rings known as Cohen-Macaulay (CM) rings. To fully describe it here
would be unnecessarily arduous for the main results of this thesis, so the reader may refer
to chapter 6, sections 16 and 17 of [13] for precise definitions and properties.

Definition 4.15 (Hilbert Function of the Artinian Reduction). Let R = C[x, y, z], I be a
defining ideal of a set of general points, and HR/I be the Hilbert Function of R/I. The Hilbert
Function of the Artinian Reduction of R/I, denoted HA(R/I), is defined as HA(R/I)(d) = 1
when d = 0 and HA(R/I)(d) = HR/I(d)−HR/I(d− 1) otherwise.

The easiest way to comprehend the relatively complicated definition above is with an
explicit example. Consider I = P1

⋂
P2

⋂
P3

⋂
P4

⋂
P5

⋂
P6. That is, I is the defining

ideal for 6 general points of multiplicity 1. We know that HR/I = 1, 3, 6, 6, .... Then,
HA(R/I) = 1, 2, 3, 0, 0, .... Intuitively, the Artinian Reduction starts at 1 and then is the
subsequent first difference of the original Hilbert Function.

Proposition 4.16 (Complete Intersection and Artinian Reduction). Let R = C[x, y, z] and
I = (f, g) be a complete intersection. Let a = deg f and b = deg g and assume a ≤ b. Then,
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• HA(R/I)(d) = d+ 1 when 0 ≤ d ≤ a− 1,

• HA(R/I)(d) = a when a ≤ d ≤ b− 1, and

• HA(R/I)(d) = max(a− (b+ 1− d), 0) when d ≥ b.

Once again, we will consider an explicit example. Let R = C[x, y, z] and suppose
I = (f, g) is a complete intersection with deg f = 3 and deg g = 7. Then, HA(R/I) =
1, 2, 3, 3, 3, 3, 3, 2, 1, 0, 0, .... Intuitively, the proposition above states that the Artinian Re-
duction will increment upwards by 1, remain constant from d = a, and will increment back
down at d = b. Also notice that knowing the Artinian Reduction also immediately deter-
mines the Hilbert Function. In the example above, HR/I = 1, 2, 5, 8, 11, 14, 17, 19, 20, 20, ....
We are now ready to begin proving results for 6 points.

Lemma 4.17. Fix j for some 1 ≤ j ≤ 6. For a general set of 6 points in P2, any quadratic
in
⋂

1≤i≤6,i 6=j Pi is irreducible.

Proof. Suppose q ∈
⋂

1≤i≤6,i 6=j Pi is reducible. Then q = `1`2 where `1 and `2 are equations
are degree 1. However, since q ∈

⋂
1≤i≤6,i 6=j Pi, either `1 or `2 is an element in 3 of the 5

intersecting Pi’s (three points lie on the same line). But in a general set of 6 points, any
three points do not lie on the same line, so q must be irreducible.

For the remainder of the section, let qj ∈
⋂

1≤i≤6,i 6=j Pi for some 1 ≤ j ≤ 6, and let
`ij ∈ Pi

⋂
Pj. By Lemma 4.17, each qj is irreducible. Next, in order to fully utilize these

new techniques, we need to work explicitly with the generators of different ideals. We first
determine the generators of I(2).

Theorem 4.18. Let X be a set of 6 general points in P2 and I its defining ideal. Then,
I(2) = (q1q2`12, q1q3`13, q2q3`23, q1q2q3).

Proof. Set K = (q1q2`12, q1q3`13, q2q3`23, q1q2q3). By definition of each qi and `ij, it is clear
that every generator of K passes through the 6 points twice, so K ⊆ I(2). Therefore, by
part 3 Theorem 2.43, it suffices to show that K and I(2) have the same Hilbert Function
for all d ∈ N. To show this, consider the following short exact sequences all in the form of
Proposition 2.41:

• 0→ R/(q1q2, q1`13, q2`23)(−2) = R/(K : q3)(−2)→ R/K → R/(K, q3) = R/(q1q2`12, q3)→
0 and

• 0 → R/(q1, `23)(−4) = R/((K : q3) : q2) → R/(K : q3)(−2) → R/(K : q3, q2)(−2) =
R/(q1`13, q2)(−2)→ 0

By additivity of the Hilbert Function (2.38), HR/K = HR/(q1q2`12,q3) + HR/(q1`13,q2)(−2) +
HR/(q1,`23)(−4). All of the ideals in the sum are complete intersections, so applying Proposition
4.16, we get that as we increment d,

• HA(R/(q1q2`12,q3)) = 1, 2, 2, 2, 2, 1, 0, 0, .... Therefore,

• HR/(q1q2`12,q3) = 1, 3, 5, 7, 9, 10, 10, ....
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• HA(R/(q1`13,q2)(−2)) = 0, 0, 1, 2, 2, 1, 0, 0, .... Therefore,

• HR/(q1`13,q2)(−2) = 0, 0, 1, 3, 5, 6, 6, ....

• HA(R/(q1,`23)(−4)) = 0, 0, 0, 0, 1, 0, 0, .... Therefore,

• HR/(q1,`23)(−4) = 0, 0, 0, 0, 1, 2, 2, ...

Then we add the respective Hilbert Functions.

HR/(q1q2`12,q3) = 1, 3, 5, 7, 9, 10, 10, ...
HR/(q1`13,q2)(−2) = 0, 0, 1, 3, 5, 6, 6, ...
HR/(q1,`23)(−4) = 0, 0, 0, 0, 1, 2, 2, ...

H(R/K) = 1, 3, 6, 10, 15, 18, 18, ....

Given that e(R/I(2)) = 18 and by the AH Theorem we know that R/I(2) has the expected
maximal Hilbert Function, we have that K = I(2).

We now move on to the main results of this section where we prove that (I(2))n = I(2n)

for n = 2, 3, 4.

Lemma 4.19. Let qj and `ij be the same as before. Then, there exists lines a1, a2, a3 and
units u1, u2, u3 such that q1 = u1(a1`23 + `12`23), q2 = u2(a2`13 + `12`23), and q3 = u3(a3`12 +
`13`23). Furthermore, a1, a2, `12 are linearly independent.

Proof. Recall that P1 is the defining ideal of a point, so it is generated by two lines that
pass through the point. In other words, P1 = (`12, `13). Similarly, P2 = (`12, `23) and
P3 = (`13, `23). Since by definition, q1 ∈ P2

⋂
P3 = (`23, `12`13), q1 = a`23 + c`12`13 for some

line a and constant c. Since q1 is irreducible, we can assume that c > 0 and since it is a
constant, it is a unit. Therefore, q1 = c(ac−1`23 + `12`13). We then get the desired result by
setting u1 = c and a1 = ac−1. The proof for q2 and q3 are identical.

We now show that a1, a2, `12 are linearly independent. Because our sets of points are
always general, it is sufficient to prove that these lines are linearly independent for one set
of points. We use the following points in P2:

• P1 = (y, z) corresponding to the point (1, 0, 0).

• P2 = (x, z) corresponding to the point (0, 1, 0).

• P3 = (x, y) corresponding to the point (0, 0, 1).

• P4 = (x− y, y − z) corresponding to the point (1, 1, 1).

• P5 = (2y − x, 3z − 2y) corresponding to the point (1, 2, 3).

• P6 = (4y + x, 6z − 4y) corresponding to the point (−1, 4, 6).

Using the computation software from [9], we can calculate the intersection of ideals ex-
plicitly and get that l12 = z, a1 = −7x+ 17y− 11z, and a2 = 1

11
(19x− 14y− 16z). To show

that these lines are linearly independent, we calculate the rank of the following matrix with
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entries corresponding to the basis {x, y, z} using row operations: 0 0 1
−7 17 −11
19
11

−14
11

−16
11

→
−7 17 −11

19
11

−14
11

−16
11

0 0 1

→
−7 17 −11

0 225
77

−321
77

0 0 1

.

Since the matrix has the maximal rank, the a1, a2, `12 are linearly independent.

Theorem 4.20. For a general set of 6 points let I be its defining ideal. Then, (I(2))2 = I(4).

Proof. For the remainder of the proof, let qj ∈
⋂

1≤i≤6,i 6=j Pi for some 1 ≤ j ≤ 6 where qj is
a degree 2 homogeneous equation, and let `ij ∈ Pi

⋂
Pj where `ij is a degree 1 homogeneous

equation. By Lemma 4.17, each qj is irreducible. Let J = (q1q2`12, q1q3`13, q2q3`23). Note that
J ⊆ I(2) ⊆ I(4). We will prove that J2 = I(4). To do this, we will show that J2 = I(4)

⋂
H

where H is either a (x, y, z)-primary ideal or 0 and then prove that H must be zero by
showing J2 is unmixed.

We first show that J = I(2)
⋂
H ′ where H ′ is a (x, y, z)-primary ideal. To begin, first

note by Proposition 4.14, since there isn’t any non-unit equation f that divides the three
generators of J , we know ht(J) ≥ 2. This implies that the prime ideals in Ass(R/J) have
height 2 or 3.

Next, consider the element q1q2q3. Any element in J can be written in the form f1q1q2`12+
f2q1q3`13 + f3q2q3`23 for some f1, f2, f3 ∈ R. Furthermore, in order for the degrees to be
consistent, f1, f2, f3 must also all be degree 1, so they are all also irreducible. Assume
for contradiction that q1q2q3 ∈ J , that is q1q2q3 = f1q1q2`12 + f2q1q3`13 + f3q2q3`23. But
this implies that f3q2q3`23 = q1(q2q3 + f1q2`12 + f2q3`13). That is, f3q2q3`23 ∈ (q1). Since
R = C[x, y, z] is a UFD, this is a contradiction, so q1q2q3 /∈ J . However, by Proposition
2.40, J : q1q2q3 = (`12, `13, `23). For a general set of points, `12, `13, `23 will be linearly
independent, so with a change of variables we have that (`12, `13, `23) = (x, y, z). This
implies that q1q2q3(x, y, z) ⊆ J . If we then localize at a non-maximal prime ideal P , we
see that q1q2q3(x, y, z)P ⊆ JP . Since (x, y, z) is a maximal ideal, there exists some element
f ∈ (x, y, z) \ P , so (x, y, z)P contains a unit f , so (x, y, z)P = RP . This shows that

q1q2q3 ∈ JP . Recall that I(2) = (J, q1q2q3), so I
(2)
P = (J, q1q2q3)P = JP .

Given that I(2) 6= J , we know that J must have a height 3 ideal in its primary decompo-
sition. In other words, there must be a (x, y, z)-primary ideal in the primary decomposition
of J , call it H ′. Rewriting J as G′

⋂
H ′ where G′ is the intersection of the height 2 primary

components of J , we see that I
(2)
P = JP = G′P for all non-maximal primes P . Therefore, by

Proposition 2.30, G′ = I(2). So, J = I(2)
⋂
H ′.

We will use this fact to show that J2 = I(4)
⋂
H. Since J2 = (q21q

2
2`

2
12,

q21q
2
3`

2
13, q

2
2q

2
3`

2
23, q

2
1q2q3`12`13, q1q

2
2q3`12`23, q1q2q

2
3`13`23), by proposition 4.14, J2 is also a height

2 ideal. Recall that H is a (x, y, z)-primary ideal, and rewrite J2 = G
⋂
H where G is

the intersection of the height 2 primary components of J2. If H = 0, then we are done,
so assume that H is a (x, y, z)-primary ideal. By part 4 of Proposition 2.17, any non-
maximal ideal P (so P has height 2) containing J2 also contains J . Since J has height 2,
any prime of height 2 containing J is a minimal prime so P ∈ Min(J) ⊆ Ass(R/J). Since
Ass(R/J) = {P1, P2, ..., P6, (x, y, z)} and P is non-maximal, P = Pi for some 1 ≤ i ≤ 6. This
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implies that the associated primes of R/J2 can only be (x, y, z) or the associated primes of
R/I.

Let P = Pi for some 1 ≤ i ≤ 6. Then, from the result we have just proven, GP = J2
P =

(JP )2 = (I
(2)
P )2 = (P 2

P )2 = P 4
P = I

(4)
P . So by Proposition 2.30, G = I(4) and J2 = I(4)

⋂
H.

Therefore, it suffices to show that J2 is unmixed of height 2. To do this, recall that complete
intersections of two elements are unmixed of height 2 by Proposition 4.14 and the observation
that they are not the maximal ideal (because the Hilbert Function will always be different
from H(x,y,z)). Using the notation from Proposition 2.42, B will be unmixed of height h if A
and C are unmixed of height h.

Consider the following list of short exact sequences. All are in the form of Proposition
2.41.

• 0→ R/(J2 : q3)(−2)→ R/J2 → R/(J2, q3)→ 0.
Let A3 = J2 : q3.

• 0→ R/(A3 : q2)(−2)→ R/A3 → R/(A3, q2)→ 0.
Let A32 = A3 : q2.

• 0→ R/(A32 : q1)(−2)→ R/A32 → R/(A32, q1)→ 0.
Let A321 = A32 : q1.

By direct calculations and Proposition 2.40, we see that:

• A3 = J2 : q3 = (q21q
2
2`

2
12, q

2
1q3`

2
13, q

2
2q3`

2
23, q

2
1q2l12`13, q1q2q3`13`23, q1q

2
2`12`13),

(J2, q3) = (q21q
2
2`

2
12, q3).

• A32 = A3 : q2 = (q21q2`
2
12, q

2
1q3`

2
13, q2q3`

2
23, q

2
1`12`13, q1q3`13`23, q1q2`12`13),

(A3, q2) = (q21q3`
2
13, q2).

• A321 = A32 : q1 = (q1q2`
2
12, q1q3`

2
13, q2q3`

2
23, q1`12`13, q3`13`23, q2`12`13),

(A32, q1) = (q2q3`
2
23, q1).

From these calculations, it is clear that J2 is unmixed of height 2 if A321 is also unmixed
of height 2. To show A321 is also unmixed, let B = (q1`12`13, q2`12`23, q3`13`23) ⊆ A321 and
we consider another set of short exact sequences.

• 0→ R/(B : `23)(−1)→ R/B → R/(B, `23)→ 0.
Let B3 = B : `23 = (q1`12`13, q3`13, q2`12) and note that (B, `23) = (q1`12`13, `23).

• 0→ R/(B3 : `13)(−1)→ R/B3 → R/(B3, `13)→ 0.
Let B32 = B3 : `13 = (q1`12`13, q3`13, q2`12) and note that (B3, `13) = (q2`12, `13).

• 0→ R/(B32 : `12)(−1)→ R/B32 → R/(B32, `12)→ 0.
Let B321 = B32 : `12 = (q1, q2, q3) and note that (B32, `12) = (q3, `12).

If A321 is not unmixed, we can rewrite A321 = C1

⋂
C2 where C1 are the height 2 primary

components of A321 and C2 is a (x, y, z)-primary component. We will end up showing that
this subset B is precisely equal to C1. We first show that B is indeed unmixed of height
2. Using the Proposition 2.42 as above, this follows if B321 is unmixed of height 2. Indeed,
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B321 = (q1, q2, q3) ⊆ P4

⋂
P5

⋂
P6. By definition, q1, q2, q3 are linearly independent equations,

and since Lemma 4.1 implies that the defining ideal of 3 general points is generated by 3
linearly independent equations of degree 2, we have that B321 = (q1, q2, q3) = P4

⋂
P5

⋂
P6.

Next, we directly calculate Ass(R/C1). Note thatA321 = J2 : q1q2q3 = (I(4) : q1q2q3)
⋂

(H :
q1q2q3) = (

⋂
1≤i≤6(P

4
i ) : q1q2q3)

⋂
(H ′). Where H ′ := H : q1q2q3 is a (x, y, z)-primary ideal.

Let P = Pi where i = 1, 2, 3. It is clear that P 2 ⊆ P 4 : q1q2q3. For the reverse inclusion, note
that since q1, q2, q3 are irreducible, they are elements of P \ P 2 provided that i 6= qi. Given
that P 2 = P (2) by the definition of symbolic powers, this is equivalent to saying that q1, q2, q3
each pass through P precisely once. So, if x ∈ P 4 : q1q2q3, then xq1q2q3 ∈ P 4 = P (4). Since
q1q2q3 passes through P twice, x must pass through P at least 2 times, so x ∈ P (2) = P 2.
Now let P = Pi for i = 4, 5, 6. Once again, it is clear that P ⊆ P 4 : q1q2q3. For the
reverse inclusion, we make the same argument as above. In this case, q1q2q3 passes through
P three times, so x must pass through P at least once. So, x ∈ P . This implies that
C1 = P 2

1

⋂
P 2
2

⋂
P 2
3

⋂
P4

⋂
P5

⋂
P6 and Ass(R/C1) = {P1, P2, ..., P6}.

We now prove that Ass(R/B) = Ass(R/C1). Since we have proven that B is unmixed
of height 2, the inclusion Ass(R/C1) ⊆ Ass(R/B) is clear since Ass(R/B) = Min(B)
and Pi is a height 2 ideal containing B. By Proposition 2.42, we can write Ass(R/B) ⊆
Ass(R/(B, `23))

⋃
Ass(R/(B3, `13))

⋃
Ass(R/(B32, `12))

⋃
Ass(R/B321). We can calculate each

of the associated primes of each of the ideals in the union explicitly. We have already shown
Ass(R/B321) = {P4, P5, P6}. The remaining ideals are all complete intersections of two ele-
ments, so they are unmixed of height 2 and the associated primes are equal to their minimal
primes. (B32, `12) = (q3, `12) and q3 ∈ P1

⋂
P2 and `12 ∈ P1

⋂
P2. So, P1 and P2 are minimal

primes over (B32, `12) and therefore {P1, P2} ⊆ Ass(R/(B32, `12)). If there was another prime
in P ∈ Ass(R/(B32, `12)), then q3, `12 ∈ P . Recall from Hilbert’s Nullstellensatz (2.26) that P
corresponds to a point in P2, so q3 and `12 will intersect at some other point. But this implies
that |V(q3)

⋂
V(`12)| > 2 which by Bezout Theorem (2.44) implies that `12 divides q3. This

is a contradiction since q3 is irreducible. So, {P1, P2} = Ass(R/(B32, `12)). The other ideals
are similar. (B3, `13) = (q2`12, `13). q2`12, `13 ∈ P1

⋂
P3 so {P1, P3} ⊆ Ass(R/(B3, `13)). No

other prime can be in Ass(R/(B3, `13)) since that would imply that |V(q2`12)
⋂

V(`13)| > 3
which contradicts Bezout Theorem. (B, `23) = (q1`12`13, `23). q1`12`13, `23 ∈ P2

⋂
P3 so

{P2, P3} ⊆ Ass(R/(B, `23)). No other prime can be in Ass(R/(B, `23)) since that would imply
that |V(q1`12`13)

⋂
V(`23)| > 4 which again contradicts Bezout Theorem. So, Ass(R/B) ⊆

Ass(R/C1).
Lastly, since Ass(R/B) = Ass(R/C1), by Proposition 2.30, it suffices to show that

BP = (C1)P for all P ∈ Ass(R/C1) = {P1, P2, P3, P4, P5, P6} to conclude B = C1. The
inclusion B ⊆ C1 is clear by definition. For the reverse inclusion, let P = P1. Then,
BP = (q1`12`13, q2`12`23, q3`13`23)P . Using the fact that q1, `23 are units in RP and further
simplifying using Lemma 4.19, we get that BP = (`12`13, q2`12, q3`13)P = (`12`13, (a2`13 +
`12`23)`12, (a3`12 + `13`23)`13)P = (`12`13, `

2
12, `

2
13)P = P 2

P = (C1)P . By symmetry of the gener-
ators of B, the cases where P = P2 and P = P3 are proved identically. Now let P = Pi where
i = 4, 5, 6. Then, since `12, `13, `23 are units in RP , BP = (q1, q2, q3)P = (P4

⋂
P5

⋂
P6)P ⊆

PP = (C1)P .

Lemma 4.21. Let J, qj and `ij be the same as before. Then, J3 : q1q2`12 = J2.
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Proof. Since q1q2`12 ∈ J , the inclusion J2 ⊆ J3 : q1q3`12 is trivial. For the reverse inclusion,
we know that J2 = I(4) and Ass(R/I(4)) = {Pi} for 1 ≤ i ≤ 6. So, by Proposition 2.30, it
suffices to show that J3

Pi
: q1q2`12 ⊆ J2

Pi
for all i. We first note that regardless of which i is

chosen, J2
Pi

= I
(4)
Pi

= P 4
Pi

and J3
Pi

= (JPi
)3 = (I

(2)
Pi

)3 = (P 2
i Pi

)3 = P 6
i Pi

. Additionally, by the
definition of symbolic powers, if P is a prime ideal, then its primary decomposition is simply
itself, so its ordinary power is equal to its symbolic power.

Now consider P = P1. Since q1 /∈ P , q1 is a unit in RP . So, J3
P : q1q2`12 = P 6

P : q2`12.
Since q2 and `12 are irreducible, both are elements of P \ P 2. Since P 2 = P (2), this is
equivalent to saying that q2 and `12 passes through P precisely once. So, if x ∈ P 6 : q2`12
then xq2`12 ∈ P 6 = P (6). Since xq2`12 passes through P at least 6 times, then then x must
pass through P at least 4 times. That is, x ∈ P (4) = P 4. Finally, since J2

P = I
(4)
P = P 4

P , the
reverse inclusion when localizing at P1 is proved.

The argument for P2 is identical by replacing q1 with q2. Lastly, the argument for P = Pi
for i = 3, 4, 5, 6 follows by noticing that `12 /∈ P , so `12 is a unit. Therefore, we have that
J3
P : q1q2`12 = P 6

P : q1q2, and we use a similar argument as above. Then, we have shown that
J3
Pi

: q1q2`12 ⊆ J2
Pi

for all i.

Lemma 4.22 (SHGH Conjecture Results). Using the SHGH Conjecture, R/I(m) has the
expected Hilbert Function for m = 4, 6, 8.

Proof. Let qj and `ij have the same definition as above and note from Definition 2.49 that
they are indeed exceptional. Recall from Proposition 2.43 that to prove R/I(m) has the
expected Hilbert Function, we show that there are no equations of degree ε(R/I(m)) − 1 in
I(m) and there are at most HR − e(R/Im) equations of degree ε(R/I(m)) in I(m). We will
show the first part using the standard Bezout Theorem argument. However, we will use the
SHGH Conjecture (2.50) for the second part.

• m = 4

Note that e(R/I(m)) = 60 and ε(R/I(m)) = 10. Suppose for contradiction there ex-
ists an equation of degree 9 in I(m), call it f9. Since |V(f9)

⋂
V(q1)| = 20 > 18,

we can rewrite f9 = q1f7 where f7 ∈ P 4
1

⋂
P 3
2

⋂
P 3
3

⋂
P 3
4

⋂
P 3
5

⋂
P 3
6 . Notice again that

|V(f7)
⋂

V(q1)| ≥ 15 > 14 so we have that f7 = q1f5 where f5 ∈ P 4
1

⋂
P 2
2

⋂
P 2
3

⋂
P 2
4

⋂
P 2
5

⋂
P 2
6 .

Continuing this argument, we eventually see that f9 = q21q
2
2f1 where f1 ∈ P 2

1

⋂
P 2
2 . This

is a contradiction since f1 is linear and therefore cannot pass through P1 and P2 twice.
So there are no equations of degree 9 in I(m).

Consider the following equations in of degree 10 in I(m): q1q2q3q4q5, q1q3q4q5q6, q1q2q4q5q6,
q1q2q3q5q6, q1q2q3q4q6, q2q3q4q5q6. For any irreducible quadratic passing through 5 points
or line passing through 2 points, one can find an equation from the list above that is
not a multiple of the chosen exceptional equation. So by the SHGH conjecture, I(m)

has no more than 6 equations.

• m = 6

Note that e(R/I(m)) = 126 and ε(R/I(m)) = 15. Suppose for contradiction there exists
an equation of degree 14 in I(m), call it f14. By the same argument as above, we can
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write f14 = q21q
2
2q

2
3f2 where f2 ∈ P 2

1

⋂
P 2
2

⋂
P 2
3 . This is a contradiction by Lemma 4.2.

So there are no equations of degree 14 in I(m).

Consider the following equations in of degree 15 in I(m): q21q2q3q4q5`12`13`45, q1q
2
3q4q5q6`34`35`16,

q1q2q
2
4q5q6`14`24`56, q1q2q3q

2
5q6`15`25`36, q1q2q3q4q

2
6`16`12`34, q

2
2q3q4q5q6`23`24`56. By the same

argument as above, we can apply the SHGH conjecture and conclude that I(m) has no
more than 10 equations of degree 15.

• m = 8

Note that e(R/I(m)) = 216 and ε(R/I(m)) = 20. Suppose for contradiction there exists
an equation of degree 19 in I(m), call it f19. By the same argument as above, we can
write f19 = q21q

2
2q

2
3q

2
4f3 where f3 ∈ P 2

1

⋂
P 2
2

⋂
P 2
3

⋂
P 2
4 . This is a contradiction since

the AH Theorem (2.46) implies that α(I(2)) = 4 for r = 4 points. So there are no
equations of degree 19 in I(m).

Consider the following equations in of degree 20 in I(m): (q1q2q3q4q5)
2, (q1q3q4q5q6)

2,
(q1q2q4q5q6)

2, (q1q2q3q5q6)
2, (q1q2q3q4q6)

2, (q2q3q4q5q6)
2. By the same argument as above,

we can apply the SHGH conjecture and conclude that I(m) has no more than 15 equa-
tions of degree 20.

Theorem 4.23. For a general set of 6 points let I be its defining ideal. Then, (I(2))3 = I(6)

and (I(2))4 = I(8).

Proof. We will first show that (I(2))3 = I(6). By the Lemma 4.22, we know that R/I(6) has
the expected Hilbert Function. Since it is clear that J3 ⊆ (I(2))3 ⊆ I(6), it to show by part
3 of Theorem 2.43 that HR/J3 = HR/I(6) . To show this, we first consider the following short
exact sequences:

• 0→ R/(J3 : q1q2`12)(−5)→ R/J3 → R/(J3, q1q2`12)→ 0.
Let K0 = (J3, q1q2`12).

• 0→ R/(K0 : q33)(−6)→ R/K0 → R/(K0, q
3
3)→ 0.

Let K1 = K0 : q33.

• 0→ R/(K1 : q1)(−8)→ R/K1(−6)→ R/(K1, q1)(−6)→ 0.
Let K2 = K1 : q1.

• 0→ R/(K2 : q2)(−10)→ R/K2(−8)→ R/(K2, q2)(−8)→ 0.
Let K3 = K2 : q2.

• 0→ R/(K3 : `213`
2
23)(−14)→ R/K3(−10)→ R/(K3, `

2
23`

2
13)(−10)→ 0.

Let K4 = K3 : `213`
2
23.

By Proposition 2.38, HR/J3 = HR/(J3:q1q2l12)(−5)+HR/(K0,q33)
+HR/(K1,q1)(−6)+HR/(K2,q2)(−8)+

HR/(K3,`223`
2
13)(−10) +HR/K4(−14). We now calculate each of the relevant ideals directly.

• (J3 : q1q2`12) = J2 by Lemma 4.21.
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• K0 = (q1q2`12, q
3
3(q1`13, q2`23)

3) so (K0, q
3
3) = (q1q2`12, q

3
3).

• K1 = (q1q2`12, q
3
1`

3
13, q

2
1q2`

2
13`23, q1q

2
2`13`

2
23, q

3
2`

3
23) so (K1, q1) = (q32`

3
23, q1).

• K2 = (q2`12, q
2
1`

3
13, q1q2`

2
13`23, q

2
2`13`

2
23, q

3
2`

3
23) so (K2, q2) = (q21`

3
13, q2).

• K3 = (`12, q
2
1`

3
13, q1`

2
13`23, q2`13`

2
23, q

2
2`

3
23). Using Lemma 4.19, we can rewrite K3 as

(`12, a1`
2
23`

2
13, a2`

2
23`

2
13). So, K4 = (`12, a1, a2) and (K3, `

2
23`

2
13) = (`223`

2
13, `12).

We also know the Hilbert Function for all of the relevant ideals as well. HR/(J3:q1q2l12)(−5)
follows from R/I(4) having the expected Hilbert Function by Lemma 4.22, and HR/K4(−14)
follows from Lemma 4.19 which states that K4 = (x, y, z). The remaining ideals are com-
plete intersections, so we will utilize Proposition 4.16. For these ideals, the technique is
identical to the calculations in Theorem 4.18, so for brevity, the Artinian reductions will not
be explicitly written below.

H
R/(J3:q1q2l12)(−5)

= 0, 0, 0, 0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 60, 60, ...

H
R/(K0,q33)

= 1, 3, 6, 10, 15, 20, 24, 27, 29, 30, 30, ...

HR/(K1,q1)(−6) = 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 18, 18, ...

HR/(K2,q2)(−8) = 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 9, 11, 13, 14, 14, ...

H
R/(K3,`223`213)(−10)

= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 4, ...

HR/K4(−14) = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, ...

H
R/J3 = 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 126, 126, ...

From the last row of the table, we see that HR/J3 = HR/I(6) so (I(2))3 = I(6).

Since now that we know that J3 = I(6), by a similar argument as Lemma 4.21, we have
that J4 : q1q2`12 = J3. The techniques to prove used to show (I(2))4 = I(8) are identical to the
above argument so for conciseness, we will simply write the relevant short exact sequences
and the appropriate Hilbert Functions.

• 0→ R/(J4 : q1q2`12)(−5)→ R/J4 → R/(J4, q1q2l12)→ 0.
Let K0 = (J4, q1q2`12).

• 0→ R/(K0 : q43)(−8)→ R/K0 → R/(K0, q
4
3)→ 0.

Let K1 = K0 : q43.

• 0→ R/(K1 : q1)(−10)→ R/K1(−8)→ R/(K1, q1)(−8)→ 0.
Let K2 = K1 : q1.

• 0→ R/(K2 : q2)(−12)→ R/K2(−10)→ R/(K2, q2)(−10)→ 0.
Let K3 = K2 : q2.

• 0→ R/(K3 : `313`
3
23)(−18)→ R/K3(−12)→ R/(K3, `

3
23`

3
13)(−12)→ 0.

Let K4 = K3 : `313`
3
23.

We note thatHR/J4 = HR/J3(−5)+HR/(K0,q43)
+HR/(K1,q1)(−8)+HR/(K2,q2)(−10)+HR/(K3,`323`

3
13)(−12)+

HR/K4(−18).
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H
R/J3(−5)

= 0, 0, 0, 0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 126, 126, ...

H
R/(K0,q43)

= 1, 3, 6, 10, 15, 20, 25, 30, 34, 37, 39, 40, 40, ...

HR/(K1,q1)(−8) = 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 24, 24, ...

HR/(K2,q2)(−10) = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20, 20, ...

H
R/(K3,`323`313)(−12)

= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, ...

HR/K4(−18) = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, ...

H
R/J4 = 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 216, ...

So, we see that HR/J4 = HR/I(8) so (I(2))4 = I(8).

We conclude this section with a brief analysis of the usability of Huneke’s Criterion.
As previously mentioned, Huneke’s Criterion fails for small k. However, one can use it for
k = 10, and we prove that it is indeed the smallest k that holds.

Theorem 4.24. For 6 general points, Huneke’s Criterion holds for k = 10 and cannot be
applied for k ≤ 9.

Proof. As before, let qj ∈
⋂

1≤i≤6,i 6=j Pi and let `ij ∈ Pi
⋂
Pj.

We first show that Huneke’s Criterion is applicable when k = 10. To show this, we must
first find f, g ∈ I(10) such that deg(f) deg(g) = 6k2 = 600 and gcd(f, g) = 1. I claim that
α(I(10)) = 24. To show this, note that q21q

2
2q

2
3q

2
4q

2
5q

2
6 is an equation of degree 24 in I(10). Now

assume for contradiction that there exists a f23 ∈ I(10). Then, Bezout Theorem implies that
f23 = q21q

2
2q

2
3q

2
4q

2
5q6f1 where f1 ∈ P1

⋂
P2

⋂
P3

⋂
P4

⋂
P5. This is a contradiction for a general

set of 5 points, so there does not exist an equation of degree 23 in I(10).
Lastly, we need to show that if f24 = q21q

2
2q

2
3q

2
4q

2
5q

2
6, then gcd(f24, f25) = 1 for some

f25 ∈ I(10). Let g1 = q1q2` ∈ I(2) and let g2 = q3q4`
′ ∈ I(2). In a UFD, g1 = q1q2`12 and

g2 = q3q4`34 are unique irreducible factorizations, and since q1, q2, q3, q4, `12, `34 are distinct,
gcd(g1, g2) = 1. Then, this implies that for g51, g

5
2 ∈ I(10), gcd(g51, g

5
2) = 1. If gcd(f24, g

5
1) = 1

or gcd(f24, g
5
2) = 1, then we are done. Otherwise, assume gcd(f24, g

5
1) > 1 and gcd(f24, g

5
2) >

1. Let fα = g51 + αg52 and fβ = g51 + βg52 for some α, β ∈ C. Consider g = gcd(fα, fβ).
We will show that g = 1. Assume for contradiction that g > 1. Then, g|fα and g|fβ. So,
g|(fα − fβ) and g|(fα − α

β
fβ). So, g|(α − β)g52 and g|(1− α

β
)g51 which implies g|g51 and g|g52.

But gcd(g51, g
5
2) = 1, so g = 1. Consider the set {fα : α ∈ C}. For each fα in the set,

gcd(fα, fβ) = 1 for any other β 6= α. This implies there are an infinite number of elements
in {fα : α ∈ C} with each element having its own distinct factorization. However, since f24
is an equation with a finite number of irreducible factors, there must exist some γ such that
gcd(f24, fγ) = 1. Since fγ ∈ I(10) and has degree 25, Huneke’s Criterion applies for k = 10.

To show that Huneke’s Criterion fails when 2 ≤ k ≤ 9, we recall the following facts from
Theorem 2.48.

1. For all m, t ∈ N, α(I(mt))
mt

≤ α(I(m))
m

2. Define α̂(I) = limm→∞
α(I(m))
m

and α̂(I) ≤ α(I(m))
m

for all m ∈ N.

3. If there exists a m0 such that (I(m0))t = I(m0t) for all t ∈ N, then, α̂(I) = α(I(m0))
m0

.

Since Huneke’s Criterion holds for k = 10 and that α(I(10)) = 24, by fact (3), α̂(I) = 2.4.
Then, fact (2) implies the following
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• α(I(2)) ≥ 4.8 so α(I(2)) ≥ 5,

• α(I(3)) ≥ 7.2 so α(I(3)) ≥ 8,

• α(I(4)) ≥ 9.6 so α(I(4)) ≥ 10,

• α(I(5)) ≥ 12,

• α(I(6)) ≥ 14.4 so α(I(6)) ≥ 15,

• α(I(7)) ≥ 16.8 so α(I(7)) ≥ 17,

• α(I(8)) ≥ 19.2 so α(I(8)) ≥ 20,

• α(I(9)) ≥ 21.6 so α(I(9)) ≥ 22.

Consider the set A := {(a, b) : ab = 6k2, a, b ∈ N}. A is a finite set, so let (a′, b′) =
min{|a − b| : (a, b) ∈ A}. It suffices to prove that there do not exist equations of degree
min{a′, b′}. Without loss of generality, if a′ < b′, then max{a, b} > a′ for all (a, b) ∈ A.
So if there do not exist equations of degree a′, then there do not exist equations of degree
max{a, b} for all (a, b) ∈ A. The following table shows that for all 2 ≤ k ≤ 9, α(I(k)) ≥ a′,
so Huneke’s Criterion fails.

k 6k2 (a′, b′)
2 24 (4,6)
3 54 (6,9)
4 96 (8,12)
5 150 (10,15)
6 216 (12,18)
7 294 (14,21)
8 384 (16,24)
9 486 (18,27)

5 Conclusion and Areas of Further Research

To summarize, in the case of 3,4, and 5 general points on the projective plane, we have
determined if the Hilbert Function of the defining ideal is maximal or not for any multiplicity
m. In regards to finding a k such that (I(k))t = I(kt) for all t ∈ N, k = 2 suffices for 3,4,
and 5 points. The case for 6 points is particularly interesting. We could only determine the
Hilbert Function for low multiplicities using a specific conjecture, but doing so showed that
(I(2))t = (I(2t)) for t = 2, 3, 4. This gives some intuition that k = 2 also works in the case
of 6 points, but unfortunately, this equality explicitly fails at t = 5. Nevertheless, k = 10 is
also the point that Huneke’s Criterion can be applied. In some sense, I(10) has some special
numerical oddities that could be further explored.

For an even broader picture of more general problems, recall that the Alexander-Hirschowitz
Theorem proved in full generality the expected growth of the Hilbert Function in the case of
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double points. In that theorem, the multiplicity of the points was fixed, but the dimension
of the projective space and the number of points were variable. An analogous theorem would
involve fixing the dimension of the projective space to be two but instead allow multiplicity
and the number of points to vary. Our results aim to provide an intuitive start to this
problem by analyzing specific cases involving a very small finite set of points, but future
researchers should search for a proof that considers any number of points. Naturally, if the
above theorem can be proven, one may then also consider the most general case where all
three parameters can vary. Specifically, answering if one can show if the Hilbert Function
for a defining ideal is maximal for any number of points, any dimension of the projective
space, and any multiplicity.
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