Growth of breast tumors in vitro to characterize a terahertz imaging platform

Scarlett-Marie Acklin

University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/biscuht

Part of the Cancer Biology Commons

Citation

Acklin, S. (2015). Growth of breast tumors in vitro to characterize a terahertz imaging platform. *Biological Sciences Undergraduate Honors Theses* Retrieved from https://scholarworks.uark.edu/biscuht/7

This Thesis is brought to you for free and open access by the Biological Sciences at ScholarWorks@UARK. It has been accepted for inclusion in Biological Sciences Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu.
Growth of breast tumors in vitro to characterize a terahertz imaging platform

An Honors Thesis submitted in partial fulfillment of the requirements for Honors Studies in Biological Sciences

By

Scarlett-Marie Acklin

Spring 2015
Biological Sciences

J. William Fulbright College of Arts and Sciences
The University of Arkansas
Acknowledgements

I would first like to thank Dr. Magda El-Shenawee for choosing me to be a member of her laboratory group. She has given me opportunities other undergraduate students do not receive and allowed me to work with multiple researchers.

Secondly, I would like to thank Dr. David Zaharoff for allowing me to use his lab and offering me advice for the past two years. I could not have conducted my research without his generosity.

I would also like to thank Tyler Bowman and Samantha Kurtz for training me in the techniques needed for my project and research in general.

Sruthi Ravindranathan also deserves my thanks for the assistance she has given me in the last year, especially at the end.

Finally, I would like to thank the other members of my committee, Dr. Timothy Evans and Dr. Mack Ivey for agreeing to serve in this capacity.

Funding for purchase and maintenance of the Pulsed Terahertz System is provided by NSF/MRI award #1228958. This research was supported by a grant from the Arkansas Breast Cancer Research Programs. The University of Arkansas for Medical Sciences Translational Research Institute (CTSA Grant Award # UL1TR000039) provided resources during the review and selection process.
Table of Contents

Acknowledgements ... 1
Table of Contents ... 2
List of Figures ... 3
Abstract .. 4
Introduction ... 6
Materials and Methods ... 9
Results ... 12
Discussion ... 23
References ... 26
List of Figures

Figure 1. Animations of positive and negative margins..................................7
Figure 2. Photomicrographs of spheroids from flat-bottomed plates...............12
Figure 3. Cross section of 4T1 spheroids from flat-bottomed plate...............13
Figure 4. Images of the TPS Spectra 3000 spectrometer.................................14
Figure 5. 40µm cross section of 4T1 spheroid from 600,000 starting cells........15
Figure 6. 45µm cross section of 4T1 spheroid from 600,000 starting cells........16
Figure 7. 100µm cross section of 4T1 spheroid from 600,000 starting cells......16
Figure 8. 40µm cross section of 4T1 spheroid from 1,200,000 starting cells.....17
Figure 9. Photomicrographs of spheroids at 10x from round-bottom well........19
Figure 10. THz cross sections of 4T1 spheroids from 150,000 starting cells, first
 sample...20
Figure 11. THz cross sections of 4T1 spheroids from 150,000 starting cells, second
 sample...21
Figure 12. THz cross sections of 4T1 spheroids from 150,000 starting cells, third
 sample...22
ABSTRACT OF THE THESIS

Growth of breast tumors in vitro to characterize a terahertz imaging platform

by

Scarlett-Marie Acklin
Bachelor of Science in Biological Sciences

University of Arkansas, 2015
Dr. Magda El-Shenawee, Thesis Director

In this research, different methods were investigated to grow in-vitro breast cancer tumors embedded in gel using the 4T1 cell line. The goal of this research was to test a new medical imaging modality available at the University of Arkansas using terahertz (THz) waves. The THz imaging and spectroscopy system has shown capability of high-resolution imaging and characterization of human breast tumors fixed in formalin and embedded in paraffin. In order to further examine this new imaging system in a laboratory environment, attempts to grow breast tumors in-vitro were conducted. Results
were produced in two different environments, flat-bottomed plates and round-bottomed multiwell plates. In the first, a layer of a non-adhesive gel was applied to the bottom of the plate and an indentation was created in which the cancer cells could grow. Another layer of gel mixed with cells and their food source was added on top of the bottom layer. The cells continued to divide and clump together until clusters form, which eventually developed into one or more tumors. The gel encasing the mass was meant to mimic the margin around breast tumors. For the second environment, round-bottomed multiwell plates, a thin layer of non-adhesive gel coated the bottom of the wells and was applied in a way that retained the rounded shape. A solution of media and cells was added on top of the gel and incubated to allow the cells to grow together and form a solid spheroid. This method allowed for faster clumping and increased cell aggregation so the spheroids were larger than those produced in the first method. These methods show great promise for providing a reliable, parameter-controlled source of breast tumors for research needs. The ultimate goal of THz imaging is to illuminate excised tumors to assess the margins during the surgery and hence preventing cancer metastasis.
Introduction

Because breast cancer is the most common malignant disease in women14, research to develop more effective treatments is extremely important. For the year 2015, the American Cancer Society predicts 234,190 new cases of breast cancer will be diagnosed and 40,730 deaths will occur1. These figures also show an increase, rather than a decrease, from 2011. Routine screenings have become common practice in the United States since the 1960s, and x-ray mammography has been the primary method used6. The use of x-ray mammography comes with disadvantages, though, so alternatives are being sought. X-rays pose a health risk due to their ionizing capabilities that are known to produce free radicals, break and form chemical bonds, and damage vital molecules such as deoxyribonucleic acid, ribonucleic acid, and proteins10. This type of cell damage can actually lead to an increase in cancer development6, compounding the problem. Additionally, the inaccuracy of x-ray mammography is high, ranging from 4\% to 34\%7. Magnetic resonance imaging (MRI) exists as an alternative but only for high-risk patients due to its expensive operating costs and its limited ability to distinguish between normal cells and cancerous cells, leading to overdiagnosis6.

Removing the cancer before metastasis is also crucial, because metastases in the lymph nodes and other vital organs such as the lungs, liver, brain, and bones cause most of the complications linked to breast cancer, including death5. During a lumpectomy to remove small tumors, a region surrounding the tumor, called the margin (Fig. 1), is removed. A pathologist then examines the margin for cancerous cells. To maintain the best cosmetic appearance, it is important to differentiate between cancer, healthy fibrous
and glandular tissue immediately surrounding the tumor, and healthy fatty breast tissue. A positive margin, requiring a second surgery, designates cancer has extended across the edge of the excised tumor. The two other classifications do not require secondary surgery. The first of these is a close margin denoting cancer within 2mm of the tumor’s edge and the second is a negative margin, where no cancer is detected within 2mm of the border. Positive margins not only cause cosmetic and emotional damage for the patient, but they are also very expensive due to the time and resources needed to carry out a second surgery. So far, positive margins are detected 20-40% of the time.

A new medical imaging modality, available at the University of Arkansas, uses THz waves to develop high-resolution images and characterization of human breast tumors fixed in formalin and embedded in paraffin. THz waves measure from one mm to one µm, between infrared light and microwaves. Their wavelengths have the medical advantage of possessing energy levels lower than the levels in x-rays that ionize cells. THz wavelengths have another advantage since they are shorter than millimeter waves.

Figure 1. Animations of positive and negative margins.

A new medical imaging modality, available at the University of Arkansas, uses THz waves to develop high-resolution images and characterization of human breast tumors fixed in formalin and embedded in paraffin. THz waves measure from one mm to one µm, between infrared light and microwaves. Their wavelengths have the medical advantage of possessing energy levels lower than the levels in x-rays that ionize cells. THz wavelengths have another advantage since they are shorter than millimeter waves.
and therefore, generate higher image resolution while still penetrating the sample8. Finally, THz waves produce limited levels of scattering in biological materials due to their longer wavelengths, instead of the strong scattering characteristic of near-infrared and visible wavelengths. Photons are scattered more strongly by biological materials because their size matches the incident wavelength15. For analysis, a THz pulse is emitted and strikes the sample then a receiving antenna measures the intensity of the reflection off of the sample3.

To further examine this new imaging system in a laboratory environment, attempts to grow breast tumors in-vitro were conducted. Current methods drip cells from an upper surface12 or use multilevel chambers to pass the cells from an upper chamber, through a small pore, and into a bottom chamber where they are suspended from the roof4. The materials used in these methods are expensive and make the growth of multiple tumors unrealistic for most laboratories. Replacing these materials with agar gel and other commonly used substances could provide a reliable, parameter-controlled source of in-vitro tumors.

The cell line chosen for this experiment was the 4T1 mammary carcinoma cell line produced in BALB/cfC3H mice and first grown at the Karmanos Cancer Institute by Fred Miller13. This cell line was chosen due to its tumorigenicity and invasivity. Furthermore, the 4T1 cell line is an ideal candidate for studying human breast cancer because metastasis occurs randomly from the initial tumor, the cells are transplantable so they can also be grown in \textit{in vivo} environments, and its spread to the lymph nodes and other organs is similar to the metastasis in human breast cancer11.
Methods and Materials

10% FBS DMEM media and 4T1 cell culture

A 10% FBS DMEM media was made from 50mL Fetal Bovine Serum, 5mL Penicillin-Streptomycin solution, 5mL L-glutamine, and 440mL Hyclone Dulbecco’s High Glucose Modified Eagles Medium (DMEM). The 4T1 cell line was obtained from Dr. David Zaharoff at the University of Arkansas. They were cultured in the 10% FBS DMEM media and incubated in a humidified environment at 37° C and washed with Phosphate Buffered Saline (PBS) every two-three days. Each week, the cells were passaged and two-three million cells were redistributed to a new flask with fresh media.

Flat-bottomed plates

Each 60mm flat-bottomed culture plate was lined with 4mL of agar gel made from 2mL of 10% FBS DMEM media, 1.33mL of 1.8% Noble Agar, and .67mL of sterile water. After setting for ten minutes, a mix of 2.67mL of the 4T1 cell solution and 1.33mL of 1.8% Noble Agar was added on top of the gel. Once the gel set, 2mL of media was added on top and the plates were incubated for two nights. The plates were viewed under an optical microscope every two or three days for four weeks. Fresh media was added to the plates to provide a new nutrient source for the cells.

Round-bottom multiwell plates

1% agar was prepared from 40mL sterile water and .4g Difco Noble Agar, then autoclaved for fifteen minutes at 115°C to sterilize the solution. 50μL of agar was
pipetted into each well of the first four rows (A-D) of a 96 well ultra-low attachment multiwell plate. The plate was constantly rotated as the gel cooled to ensure an even layer of gel coated the well while retaining the curved bottom surface. It was then overlaid with 10µL of 10% FBS DMEM media to prevent the gel from drying out and allowed to incubate overnight. 150,000 cells were added to Row A, 300,000 were added to Row B, 600,000 were added to Row C, and 1.2 million were added to Row D. The 10% FBS DMEM media that contained the cells was changed every two to three days to continue providing nutrients.

Preparation of the samples

Multiple methods were used to prepare the samples for the THz imaging system. Some of the flat-bottomed plates were fixed using a 2% paraformaldehyde solution while others were left as controls. Tissue Tek® O.C.T. Compound (OCT) was added to both samples in a plastic form to ensure optimal cutting temperature once frozen. Both types of plates were frozen and kept at -24°C. Using a Leica CM1860 cryostat, the samples were sectioned at a thickness of 20 µm.

The round-bottomed multiwell plate was frozen at -24°C Celsius. Three samples with a starting cell count of 600,000 cells were sectioned with thicknesses of 40µm, 45µm, and 100µm and exposed to the air overnight to allow water molecules to evaporate from the OCT and gel before imaging. Another sample with a starting count of 1.2 million cells was sliced to a thickness of 40µm and placed directly on the viewing plate, preventing evaporation. A sample with a starting cell count of 150,000 cells was thawed, transferred directly to the viewing plate, and dried.
All samples were imaged using the TPS Spectra 3000 terahertz spectrometer from Teraview and analyzed using the TVL Imaging Suite.
Results

Flat-bottomed plates

The spheroids grown in the flat-bottomed plates grew to a maximum size of 200 μm with a maximum center of 75 μm (Fig. 2). They were completely encased in the agar gel base and were easily sectioned due to the gel.

Figure 2. Photomicrographs of spheroids from flat-bottomed plates. Spheroids were immersed within the gel and imaged at 4x magnification.
Imaging of the spheroids using the THz system (Fig. 4) revealed no results. The image from the THz system revealed an almost uniform reflection off the entire surface of the sample (Fig. 3) which included spheroids, gel, and OCT Compound.

Figure 3. Cross section of 4T1 spheroids from flat-bottomed plate. The sample was embedded in agar gel and OCT compound, 20µm thick, and processed using the THz imaging system.
Figure 4. Images of the TPS Spectra 3000 spectrometer. A) shows the system as a whole, B) shows more detail of the reflection imaging module, C) shows the placement of samples within the viewing window, and D) shows a close-up of a potential sample.
Round-bottom multiwell plates

Wells containing over 150,000 cells appeared crowded with no areas of increased cell concentration or spheroid formation. The samples obtained from the 600,000 wells were difficult to section and the gel appeared very brittle and fragmented. Upon slicing, the gel containing the sample would flake and disintegrate as it rolled off the sample block or came into contact with the metal on the cryostat machine. Thicker sections were taken to obtain a solid sample without flaking. THz viewing showed no positive reflection where the tumor should have been. The 40µm slice showed the same reflection in the center of the OCT, where the tumor should have been, as the area that had only the viewing plate (Fig. 5). The same was the case for the 45µm (Fig. 6) and 100µm (Fig. 7) slices. The bright blue spot on the 100µm slice was observed as a bubble (Fig. 7).

Figure 5. 40µm cross section of 4T1 spheroid from 600,000 starting cells. The sample was embedded in agar gel and surrounded by OCT Compound and processed using the THz imaging system. The yellow area, where the tumor should have been, within the red are indicates a lack of cancer cells.
Figure 6. 45µm cross section of 4T1 spheroid from 600,000 starting cells. The sample was embedded in agar gel and surrounded by OCT Compound and processed using the THz imaging system. The uniform reflectance across the sample indicates a lack of cancer cells.

Figure 7. 100µm cross section of 4T1 spheroid from 600,000 starting cells. The sample was embedded in agar gel and surrounded by OCT Compound and processed using the THz imaging system. The uniform reflectance across the sample indicates a lack of cancer cells, as the blue portion was a bubble.
The sample from the well beginning with 1.2 million cells again disintegrated during sectioning and only showed a single reflection off the center of the viewing plate. No spheroids or concentrations of cells were present (Fig. 8).

Wells with 150,000 starting cells produced spheroids centered in the middle with multiple tighter spheroids around the edges (Fig. 9). Transportation of the samples to the viewing plates showed the tumors were embedded into the gel, but it is not clear how deep.

Figure 8. 40µm cross section of 4T1 spheroid from 1,200,000 starting cells.
The sample was embedded in agar gel and surrounded by OCT Compound and processed using the THz imaging system. The single reflectance in the center of the image corresponds to only OCT compound and indicates a lack of a tumor.
Figure 9. Photomicrographs of spheroids at 10x magnification from round-bottomed multiwell plate. The cells and spheroids were embedded into the gel base layer and the initial cell count was 150,000.
The colors seen on the THz images are assigned arbitrarily to best show the difference reflections that are given off because the original image is black and white. THz spectroscopy showed a difference in reflection between the media that contained the sample and the tumors as a whole. In Figure 10a, the medium blue area surrounding the brighter blue shows a negative reflection, but one with a lower magnitude than the viewing plate. The brightest blue shows a positive reflection while the darkest blue shows a negative reflection. The area of positive reflection corresponded to the area of high cell density on the microphotograph and the negative reflection responded to the area of low density. The tumor measured about 5mm.

Figure 11a shows similar results with the central red area exhibiting a positive reflection, the darkest blue area showing a negative reflection, and the yellow area around it demonstrating a negative reflection with a lower magnitude than the viewing plate. The red area correlated to the area of high density on the microphotograph and the dark blue correlated to the area of low density. Approximate size of the tumor was 7mm.

Figure 12a also supported the previous findings. The red and black areas showed positive reflection, with black having a higher magnitude. The two black areas in the larger spheroid corresponded to the split spheroid seen in Figure 12b, although the orientation does not completely correspond. The second, smaller tumor was also seen in the microphotograph and measured 2mm while the larger one measured 5mm.
Figure 10. THz cross sections of 4T1 spheroids from 150,000 starting cells, first sample. The sample was embedded in agar gel and processed in its entirety using the THz spectrometer and imaged at 4x magnification. A) shows positive reflection in the bright blue area and negative reflection in the darkest blue area, corresponding to the area of highest density and area of low density in the microphotograph (B).
Figure 11. THz cross sections of 4T1 spheroids from 150,000 starting cells, second sample. The sample was embedded in agar gel and processed in its entirety using the THz spectrometer and imaged at 4x magnification. A) shows positive reflection in the red area and negative reflection in the darkest blue area, corresponding to the area of highest density and area of low density in the microphotograph (B).
Figure 12. THz cross sections of 4T1 spheroids from 150,000 starting cells, third sample. The sample was embedded in agar gel and processed in its entirety using the THz spectrometer and imaged at 4x magnification. A) shows positive reflection in the red areas and even stronger positive reflection in the black areas, corresponding to the multiple areas of thick cell density area in the microphotograph (B).
Discussion

Using the round-bottom multiwell plate helped aggregate the 4T1 cells together and gave them greater opportunities for cell-cell contact to form the primary tumor as well as the peripheral spheroids. The sample obtained from the round-bottomed well was 25x the size of the largest spheroid grown in the flat-bottomed plates. However, the environment in the flat-bottomed plate ensured the tumor was fully encased in gel, as it would be in an actual patient. Growing in this environment is not an option for this project, though, because the THz spectroscopy was not able to produce results from the sample. The lack of reflection on the THz image is likely due to the spheroids being too small for viewing, or the section could have been too thin leading to desiccation and loss of sample.

In the round-bottom environment, the uniform dispersal of cells starting with more than 150,000 cells suggest there is an upper limit to the cell count that can grow in a multiwell plate of this size. Potential causes are a lack of space, a lower nutrient:cell ratio, and limited access to the nutrients contained in the media. In order to remove the entire sample from the well and ensure all parts of the tumor were removed as a whole, freezing initially seemed to be the best option because it is also required for sectioning. However, the agar gel became too brittle at the -24°C temperature in which it is sectioned, and prevented a quality sample of the actual tumor from being included with the OCT Compound in the sample slice. This is shown in Figures 5-7 where the OCT produced a reflection different from that of the viewing plate, but the center of the plate had the same reflection as the plate.
Additional samples were placed onto a different material, polyurethane, to ensure this was not the result of the sample having a refractive index equal to that of the original glass slide. Figure 8 also supports the idea that the wells cannot hold that many cells as it produces a uniform reflection across the entire slide.

Transferring the sample directly to the viewing plate corrected this problem while still differentiating between the media and the 4T1 cells and eliminated the need for the OCT Compound. The resolution of the THz system was not able to distinguish between the entire sample and the tighter spheroids that were attached to the outer edge of the tumor. This would be of less significance when dealing with a patient with breast cancer because the tumor would be a size large enough to be detected using the THz system.

Microphotographs of the spheroids from the 150,000 wells strengthen the findings of the THz imaging. Figure 10b aligns with 10a and shows a higher cell concentration and tumor height on the left of the image. More cells are seen on the right, with a much lower density in between. Figures 11a and 11b also correspond to each other, showing decrease tumor thickness on the bottom left corner of the sample. Finally, Figures 12b and 12c show the results obtained in 12a. The microphotograph explains the two dark areas within the tumor as areas of greater tumor thickness and gives more detail to the smaller, separated spheroid.

Based on the results, particularly Figure 12c that shows a separate smaller spheroid that grew in addition to the primary tumor, terahertz spectroscopy is a viable method for detecting breast cancer in patients with tumors 2mm or larger. This is much lower than the current median detectable size, 7.5mm. For future
research, I recommend plating 150,000 4T1 cells in a 96 well multiwell plate with a base layer of agar maintaining the rounded shape. To prepare and image the sample using the THz spectrometer, the sample should be transferred directly to the viewing plate without prior freezing and all water should be evaporated overnight.

The initial goal of this project was to grow breast tumors in vitro that mimicked in vivo tumors in size and encasement in a flexible substance. While the tumors were limited in size, the results revealed a new methodology for growing tumors for THz spectroscopy at a lower cost that could be replicated on a larger scale.
References

