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Abstract 

 Research has shown that immune cells increased from an immune response, and 

endocrine concentrations directly affect sperm characteristics (Jones and Mann, 1976; Hansson 

et al., 1989; Grattan et al., 2007). Previous findings show a negative relationship between 

leukocytes and sperm function (Jones and Mann, 1976) and prolactin and fertility (Grattan et al., 

2007). On the other hand, research has shown a positive relationship between insulin-like growth 

factor (IGF) and sperm characteristics (Hansson et al., 1989). The objective of this study is to 

identify biomarkers for yearling bull sperm associated with endocrine response and activation of 

the immune system.  

 Seventeen Brahman-influenced bulls (mean age 1.1 ±�0.1 yr; BW 478 ±�38 kg) were 

administered lipopolysaccharide (LPS) (Salmonella typhimirium 0.7 ug/kg of body weight) 

intraperitoneally. Blood was collected using EDTA vacuum tubes and serum separator tubes 0, 3, 

6, 9, and 24 hours after LPS injection. The blood was analyzed for differential cell count on a 

Cell-Dyn 3500 (Abbott Diagnostics, Abbott Park, IL). Phase Haptoglobin Assay from Tridelta 

Development Ltd (Kit # TP 801) was used to determine Haptoglobin concentration. 

Concentration of the hormones prolactin, testosterone, insulin-like growth factor (IGF), and 

cortisol were quantified using validated radioimmunoassays (Hallford, New Mexico University).  

Semen was collected using electroejaculation with an Electroejac IV (Ideal 

Instruments/Neogen Corp., Lansing, MI) every month for five months. Sperm was analyzed for 

motility and morphology characteristics listed in Table 1 using Animal Motility Software, 

version 12.1, in 10 different fields to analyze sperm motility. An eosin-nigrosin-based live-dead 

stain (Jorvet Stain, Jorgensen Laboratories, Loveland, CO) was used to fix and evaluate sperm 

for morphology. Data was then analyzed using SAS procedures (SAS Inst., Inc., Cary, NC). 
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Time was treated as a repeated measure and bull was the subject in the analysis of variance. 

Stepwise regression was used to predict sperm characteristics.  

 Endocrine responses to stress and immune response had an effect on sperm 

characteristics. At weaning, certain endocrine levels and sperm characteristics were correlated. 

Progressive, rapid, live, dead, and live % were correlated (r > 0.51; P < 0.05) with the IGF-

1/cortisol ratio (IC). Number of sperm was correlated (r > 0.65; P < 0.01) with the IGF-

1/prolactin ratio (IP). Medium speed was correlated (r > 0.50; P < 0.05) with the 

cortisol/testosterone ratio (CT). Number of sperm was negatively correlated with prolactin (r < -

0.55; P < 0.05) and the prolactin/cortisol ratio (PC) (r < -0.53; P < 0.05).  

 When the immune challenge through LPS was administered, the immune response had an 

effect on sperm characteristics. Slow speed and area of sperm heads were correlated with total 

white blood cell count (WBC) (r > 0.50; P < 0.05). Slow speed was also correlated with 

neutrophil concentrations (r > 0.58; P < 0.05). Number of sperm was correlated (r > 0.51; P < 

0.05) with mean cell hemoglobin concentration (MCHC). Straightness was negatively correlated 

(r < -0.62; P < 0.01) with WBC and neutrophils. Linearity was negatively correlated (r < -0.53; P 

< 0.05) with WBC and lymphocytes. Straightness was also negatively correlated (r < -0.55; P < 

0.05) with lymphocytes.   

Using regression analysis we predicted what caused the variance for number of sperm, 

progressive, and path velocity (VAP). The following relationships were determined: number of 

sperm = 172.43 + 12.8 (IGF/prolactin), r2 = .43; progressive sperm = -1469.6 + 1.63 

(IGF/cortisol) + 14.41 (average temperature during immune challenge), r2 = .43; VAP = -337.52 

+ 0.846 (age)  - 0.41 (IGF, ng/mL) + 8.39 (cortisol, ng/mL) + 13.1 (IGF/cortisol) + 3.29 

(lymphocyte number x 1000), r2 = .84. 
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This study showed that endocrine response to stress and activation of the immune system 

caused differences in number of sperm, progressive sperm, amount of rapid, medium, and slow 

sperm, percentage of live and dead sperm, straightness and linearity of sperm, and area of sperm 

heads.  
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Introduction 

The Immune System 

 One of the most essential mechanisms in an animal’s body is the immune system, a 

defensive composition of cells that maintain health (Erich, 2015). It protects animals against 

foreign pathogens caused by parasites, bacteria and viruses (Lin et al., 2014). The immune 

response is divided into two categories: innate and adaptive immunity (Medzhitov and Janeway, 

1997). Innate immunity is nonspecific and is the body’s first line of defense (Akira et al., 2006). 

It is comprised of humoral components and various immune cells (Benito-Martin et al., 2015). 

The innate immune response defends the body by signaling phagocytosis, cell lysis, and 

secretion of signaling molecules (Giefing-Kroll et al., 2014). Adaptive immunity is a group of 

specialized cells used to prevent or restrict specific pathogens (Lin et al., 2014). The adaptive 

immune response defends the body using cytokines and antibodies (Giefing-Kroll et al., 2014). 

The most important difference between innate and adaptive immunity is that adaptive immunity 

has a memory, meaning, upon secondary exposure to a pathogen, the body will have a better 

immune response (Lin et al., 2014).  

Signaling molecules released to aid in communication during the immune response are 

called cytokines (Belardelli, 1995; Rothwell, 1997). Cytokines control the immune response 

based on the duration and intensity of exposure to a specific pathogen. There are two categories 

of cytokines: pro-inflammatory and anti-inflammatory (Banks et al., 1994; Navikas and Link, 

1996).  Anti-inflammatory cytokines return our bodies to normal while pro-inflammatory 

cytokines respond to infection and cause inflammation (Erich, 2015; Vels et al., 2009). Three 

pro-inflammatory classes of cytokines are tumor necrosis factors (TNF), interleukins (IL), and 

interferons.  The function of TNFs is to destroy abnormal cells, activate other cytokines, promote 
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movement of lymphocytes to site of infection, and promote swelling and pain (Erich, 2015; 

Medzhitov et al., 1997). There are two responsibilities of ILs: to limit the spread of infection by 

causing a fever, and to encourage inflammation, thereby drawing specialized immune cells to the 

infection site (Erich, 2015). Interferons signal nearby tissue to be defensive and engage killer 

cells (Erich, 2015). Another cytokine involved in the immune response are chemokines. 

Chemokines are small cytokines that signal lymphocyte movement from the bloodstream to the 

inflammation site (Nibbs and Graham, 2013). Cytokines play a very important role in 

maintaining the health of an animal because they signal different immune responses.  

There are various immune cells that make up the immune response. Immune cells have 

different types of receptors that recognize infection and respond with cytokine release (Asea et 

al., 2002). White blood cells, also referred to as leukocytes, are the primary immune cells. 

Leukocytosis can be an indicator that an animal has a disease, an infection, or cancer (Carroll 

and Burdick Sanchez, 2014).  

Types of leukocytes are lymphocytes, neutrophils, basophils, eosinophils, and monocytes. 

Leukocytes have various functions, including: phagocytosis, inflammation, and regulation of 

adaptive immunity. Neutrophils are phagocytic, meaning they invade and digest foreign invaders 

(Shannon et al., 2015). Basophils, eosinophils, macrophages, and mast cells are responsible for 

inflammation (Benito-Martin et al., 2015). Eosinophils function in allergy, cytotoxicity, and 

regulate adaptive immunity (Benito-Martin et al., 2015). Lymphocytes are only present in the 

adaptive immune response and are differentiated into either T or B cells (Russel et al., 1988). 

They are antigen specific and are directed by cytokines to the infection site (Medzhitov et al., 

1997). Once at the infection site, T and B cells control cell-mediated and humoral immunity 
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through different functions. Antibodies are produced by B cells while helper T cells secrete IL 

that activates natural killer cells, monocytes, and other T and B cells (Ohtsuka et al., 2011).  

Other important immune cells include mast cells and macrophages. The innate immune 

response depends on basophils, mast cells, neutrophils, and macrophages (Benito-Martin et al., 

2015). Macrophages serve an important function in both the innate and adaptive immune 

response. There are two forms of macrophages: M1 macrophages, which inhibit, and M2 

macrophages that heal (Mills, 2012). In the innate immune response, M1 and M2 macrophages 

are important in signaling and directing immune responses (Mills et al., 2015). The role of M1 

and M2 in adaptive immunity is the direction of T and B cell responses (Mills, 2012).  

 

Lipopolysaccharide and Salmonella typhimurium 

In this study, we injected Brahman-influenced bulls with Salmonella typhimurium 

lipopolysaccharide (LPS). Lipopolysaccharide is a gram-negative bacteria that signals 

inflammation and destruction of tissues (Gao et al., 2015). The body interprets LPS as a 

microorganism invasion so the neutrophils move to tissues or lymph nodes (Carroll and Burdick 

Sanchez, 2014). To limit inflammation, phagocytosis by neutrophils occurs within 24 hours after 

infection (Savill et al., 1989). Toll-like receptors, which induce a proinflammatory signal, 

recognize LPS (Asea et al., 2002, Vabulas et al., 2002).  Salmonella is a species of bacteria that 

goes to the intestinal tract and then reach macrophages on the lining of mucosal epithelium 

(Vazquez-Torres and Fang, 2001). In defense against the Salmonella, active macrophages make 

bacterial substances and produce parts of the pathogen on their surface (Braukmann et al., 2015). 
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Endocrine Responses to Stress 

Research by Carroll and Burdick Sanchez (2014) has demonstrated that stress is a 

common problem in modern livestock production. During stressful times, it is very important for 

the animal to maintain homeostasis using the stress axis. Physiologically, there is a direct 

relationship between the body’s response to stress and its response to immune challenge. In the 

past, many believe there was a negative relationship between stress hormones and immune 

response. However, this idea is being rejected more and more as research is reported showing 

stress hormones are not immunosuppressive. In fact, many believe it is possible to use stress 

hormones to positively affect immune response in animals.  

The stress axis can be both beneficial and harmful depending on the duration and 

frequency of stress (Carroll and Burdick Sanchez, 2014). Response of the stress axis depends on 

whether the stimulus is an acute or chronic stress. Acute stress causes energy to navigate towards 

organs and tissues needed for stress and preparing the immune system for secondary infections 

(Carroll and Burdick Sanchez, 2014). Chronic stress causes complete suppression of the immune 

system (Carroll and Burdick Sanchez, 2014), making an animal more prone to disease.  

The stress and immune response have many common physiological consequences 

(Carroll and Burdick Sanchez, 2014). According to Apanius (1998) and Moberg (2000), body 

temperature, blood flow, digestive capabilities, respiration and heart rates are all involved in the 

stress and immune response. The primary reason for this is that endocrine responses to stress 

have an effect on immune cells. For example, castrated bulls had increased cortisol and white 

blood cell counts after surgery was performed (Chase et al., 1995).  

Cortisol is considered the primary stress steroid hormone and it is released from the 

adrenal cortex in response to environmental stress (Carroll and Burdick Sanchez, 2014; Hopster 
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et al., 2002). Increase in cortisol levels and white blood cell count is an acute stress response 

(Chase et al., 1995). During an infection, white blood cell count increases along with cortisol 

levels (Chase et al., 1995). Cortisol also has a large effect on the immune system by preparing 

the body for secondary infection (Carroll and Burdick Sanchez, 2014). 

Insulin-like growth factor (IGF) is a hormone primarily involved in growth and 

development. Insulin-like growth factor is released by the liver under the direction of growth 

hormone (GH), which also plays a large role in protein synthesis (Mitra et al., 1972). Secretion 

of IGF varies depending on many factors, including age and stress. In bulls, it is at its highest at 

birth, and decreases as the bull gets older (Purchas et al., 1970; Trenkle, 1971). During stress or 

immune challenge, GH is released, causing IGF to increase (Bernton et al., 1987). Along with 

stress, IGF increases during sexual stimulation (Borg et al., 1991). Spermatogonial DNA is 

synthesized in response to IGF-1; therefore, increases in IGF positively affect fertility (Hansson 

et al., 1989).  

Testosterone is a sex steroid hormone that is immunosuppressive (Bernin and Lotter, 

2014). The primary effect of testosterone and other sex hormones is the reduction of immature T 

lymphocytes (Giefing-Kroll et al., 2014). Sex steroids also suppress B cells in the bone marrow 

(Giefing-Kroll et al., 2014). Fimmel and Zouboulis (2005) suggest there is also an inverse 

relationship between testosterone and wound healing.  

Prolactin is a hormone that decreases during stress or immune system activation (Bernton 

et al., 1987). It serves an important role in immunity as well as fertility. Prolactin increases the 

expression of natural killer cells and has an important role in lymphocyte function by controlling 

the development of T and B lymphocytes (Mavoungou et al., 2004; Russel et al., 1988). If an 
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animal exhibits overproduction of prolactin, it is said to have hyperprolactinemia. 

Hyperprolactinemia is a cause of infertility (Grattan et al., 2007).  

 

Acute Phase Response 

Acute phase response plays an important role in the immune and stress response. During 

infection, it is responsible for inflammation, fever, and leukocyte mobilization (Vels et al., 

2009). Cytokines, IL-6, and TNF are part of the acute phase response (Vels et al., 2009). Acute 

phase proteins are important regulators of the immune system because they participate in tissue 

repair and remodeling (Carroll and Burdick Sanchez, 2014). One of the major acute phase 

proteins is haptoglobin, which is secreted in the liver when activated by IL-6 and TNF (Vels et 

al., 2009). Haptoglobin prevents oxidative damage to organs because it binds to free hemoglobin 

instead of leaving it free for bacteria to use (Carroll and Burdick Sanchez, 2014). Increases in 

haptoglobin are directly related to increases in pro-inflammatory cytokines (Carroll and Burdick 

Sanchez, 2014). In cattle, an acute inflammation can be detected by the presence of pro-

inflammatory cytokines like TNF and IL-6, as well as increases in haptoglobin secretion from 

the liver (Carroll et al., 2009b; Vels et al., 2009). According to Connor et al. (1988) and 

Arthington et al. (2003), haptoglobin indicated stress in cattle when they were transported, co-

mingling and weaning. In one study, cows were exposed to corticotropin-releasing hormone and 

LPS to induce stress and immune responses and in both cases, serum concentrations of 

haptoglobin increased (Carroll et al., 2009a).  
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Sperm Characteristics 

 There are many traits that contribute to a bull’s overall fertility including sperm 

characteristics. Table 1 presents the sperm characteristics we focused on along with their 

definitions. Scrotal circumference, sperm motility, and sperm morphology all largely affect a 

bull’s reproductive capability (Sylla et al., 2007). Scrotal circumference has a positive 

relationship with sperm quality in beef cattle (Lunstra et al., 1978). Quality sperm is important in 

order to fertilize an egg. In one study, for instance, researchers found that percentage of normal 

spermatozoa had the greatest influence on the calf crop percentage (Fitzpatrick et al., 2002). 

Motility is also important because in mammals, sperm cannot reach the egg in order to fertilize it 

unless they achieve hyperactivated motility (Yanagimachi, 1994). Farmers use a breeding 

soundness exam to evaluate these characteristics in order to assess bull fertility (Irons et al., 

2007). A breeding soundness exam includes a general physical exam of internal and external 

reproductive organs, scrotal circumference measurement, and collection and evaluation of a 

semen sample (Spitzer and Chenoweth, 2000; Chenoweth et al., 1992).  

 

Cow’s Immune System 

Just like all animals, cows depend on their immune response in order to survive. The 

typical immune response in bulls causes an increase in immune cells, pro-inflammatory 

cytokines, acute-phase proteins, and endocrine levels.  

In one study, LPS was injected intravenously into beef steers. One hour after the 

injection, there was a decrease in circulating leukocytes, lymphocytes, and neutrophils (Burdick 

Sanchez et al., 2014). This occurred because the leukocytes, lymphocytes and neutrophils were 

migrating to infected tissues to find the foreign organism and out of the blood stream. There are 
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various endocrine responses to pathogens in cattle. For example, when beef steers were exposed 

to LPS, cortisol levels increased (Burdick et al., 2012) and cortisol responded to LPS-induced 

stress to prepare the cattle’s body for secondary infection.  

An immune response in bulls can negatively affect their fertility. An increase in 

leukocytes damaged sperm (Jones et al., 1976) through reactive oxygen species (ROS) that 

inhibit ATP production (Villegas et al., 2005; De Lamirande and Gagnon, 1992). When ATP 

production is decreased, sperm function and motility are affected negatively, resulting in 

infertility (Pentyala et al., 2007).  

 

Significance and Objectives 

This project is significant because production animals, like bulls, in addition to 

experiencing considerable amounts of stress from the environment, experience stress internally 

due to infections that can negatively or positively affect their fertility. If bulls have reduced 

fertility, this negatively affects their reproductive value and production value. Economic strain is 

being placed on farmers when stressful production processes cause fertility problems in their 

livestock. In order to improve our production and selection processes, we need to have a better 

understanding of the relationships between immune response, endocrine levels, and fertility in 

bulls.  

The objective of this project was to use weaning and immune response characteristics as 

predictors of sperm motility characteristics in bulls.  
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Materials and Methods 

Description of Animals. The committee for animal welfare at the USDA-ARS, Dale 

Bumpers Small Farms Research Center in Booneville, Ark., and the University of Arkansas 

IACUC approved the animal procedures used in this study. Seventeen Brahman-influenced bulls 

were kept near Booneville, Ark. at The Dale Bumpers Small Farms Research Center. They had a 

mean age of 1.1 ±�0.1 year and a mean body weight (BW) of 478 ±�34 kg at the time of immune 

challenge.  

Blood Collection and Immune Challenge.  Salmonella typhimirium (LPS; 0.7 µg/kg of 

body weight) was administered intraperitoneally. The vaccination was given in front of the right 

hip bone, pointed posterior and ventral. Blood was collected 0, 3, 6, 9, and 24 hours after LPS 

vaccination using EDTA vacuum tubes and serum separator tubes.  

Assays. The whole blood sample was analyzed for a differential cell count on a Cell-Dyn 

3500 (Abbott Diagnostics, Abbott Park, IL). Phase Haptoglobin Assay from Tridelta 

Development Ltd (Kit # TP 801) was used to determine haptoglobin concentrations. 

Concentration of the hormones prolactin, testosterone, insulin-like growth factor (IGF), and 

cortisol were quantified using validated radioimmunoassays (Hallford, New Mexico St.  Univ.).  

Sperm Collection and Evaluation Semen was collected using electroejaculation with an 

Electroejac IV (Ideal Instruments/Neogen Corp., Lansing, MI) every month beginning in 

February when the bulls were yearlings. Ejaculates were placed in a water bath maintained at 

35.5° C in 15-mL conical centrifuge tubes. Before evaluation, samples were diluted 20:1 in 

Dulbecco’s Phosphate-Buffered Saline then evaluated no more than 30 minutes after collection. 

Evaluation was performed using Hamilton Thorne IVOS computerized sperm analysis system 

(Hamilton-Thorne Biosciences, Beverly, MA). We evaluated motility and morphology 
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characteristics listed in Table 1 using Animal Motility Software, version 12.1 in 10 different 

fields to determine averages for sperm characteristics. Thirty video frames were captured within 

each field in order to analyze sperm motility. An eosin-nigrosin-based live-dead stain (Jorvet 

Stain, Jorgensen Laboratories, Lovelend, CO) was used to fix and evaluate semen for 

morphology. Each slide had approximately 100 spermatozoa and analyzed for percentage live 

(dye exclusion) and dead.  

Statistical Analysis. Data was analyzed using SAS procedures (SAS Inst., Inc., Cary, 

NC). Time was treated as a repeated measure and bull was the subject in the analysis of variance. 

Stepwise regression was used to determine the relationship between and among different 

measures of immune function and hormone concentrations on sperm characteristics. 

 

Results  

Immune Challenge Time Effects 

 Time after LPS injection had an effect (P < 0.05) on the immune response. Figures 1- 

Figure 6 present the effects of time after LPS on immune response. White blood cells (WBC), 

neutrophils, lymphocytes, the neutrophil-lymphocyte ratio, monocytes, eosinophils, basophils, 

red blood cells (RBC), hemoglobin, hematocrit, mean cell volume (MCV), mean cell 

hemoglobin (MCH), mean cell hemoglobin concentration (MCHC), red blood cell distribution 

width (RDW), platelet, and mean platelet volume (MPV) were affected (P < 0.05) by time after 

LPS (0, 3, 6, 9, and 24).  
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Sperm Characteristics  

 Table 1 gives the definitions of sperm characteristics and table 2 shows the effects of 

time on sperm characteristics. As bulls aged, sperm production and the percentage of live sperm 

increased (P < 0.001) and ALH tended to increase (P  < 0.07). However, area decreased as the 

bulls aged (P < 0.001).   

 

Weaning Physiology and Sperm Characteristics  

 Table 4 presents the correlation between traits collected at weaning and their relationship 

with average sperm characteristics. Progressive, rapid, live, dead, and live % were correlated (r ≥ 

0.51; P < 0.05) with IC. Number of sperm was correlated positively (r > 0.65; P < 0.01) with IP 

and negatively (r ≥ -0.53; P < 0.05) with prolactin (ng/mL) and PC.  

 

Immune Challenge and Sperm Characteristics  

 Table 5 presents the correlation between immune response and their relationship with 

average sperm characteristics. Slow speed was correlated positively (r ≥ 0.50; P < 0.05) with 

WBC and neutrophils, and area of sperm heads was correlated positively (r = 0.51; P < 0.05) 

with WBC. Number of sperm was correlated positively (r > 0.51; P < 0.05) with mean cell 

hemoglobin concentration (MCHC). Straightness was correlated negatively (r ≤ -0.55; P  < 0.05) 

with WBC, neutrophils and lymphocytes. Linearity was negatively correlated (r ≤ -0.53; P < 

0.05) with WBC and lymphocytes.  
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Predictions 

 Using step-wise regression analysis we predicted the variance for number of sperm, 

progressive, and path velocity (VAP). The following relationships were determined: number of 

sperm = 172.43 + 12.8 (IGF/prolactin), r2 = .43; progressive sperm = -1469.6 + 1.63 

(IGF/cortisol) + 14.41 (average temperature during immune challenge), r2 = .43; VAP = -337.52 

+ 0.846 (age, days at weaning)  - 0.41 (IGF, ng/mL) + 8.39 (cortisol, ng/mL) + 13.1 

(IGF/cortisol) + 3.29 (lymphocyte number x 1000), r2 = .84.  

 

Discussion 

 Previously reported research using endocrine and immune responses to predict future 

sperm motility in bulls is limited. Time, endocrine levels, and immune response affected multiple 

sperm characteristics. In our research, prolactin alone had a negative relationship on sperm 

numbers. This coincides with research reporting that hyperprolactenemia caused infertility 

(Grattan et al., 2007). Our study showed IGF had a positive effect on sperm characteristics. This 

corresponds with past research that states IGF, which produces spermatogonial DNA, increases 

in response to stress and as a bull matures (Hansson et al., 1989; Purchas et al., 1970; Trenkle, 

1971; Bernton et al., 1987). This study showed that changes in endocrine levels caused 

differences in the number of sperm, progressive sperm, amount of rapid and medium sperm, and 

percentage of live and dead sperm. 

When an immune response was elicited, an increase in neutrophils and white blood cells 

had a negative effect on sperm characteristics. This coincides with research showing that 

leukocytes cause damage to sperm through oxidative stress (Jones et al., 1976). Mean cell 

hemoglobin concentration (MCHC) caused an increase in sperm and positively affected fertility. 
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Research connecting MCHC with fertility is very limited. It is known that hemoglobin prevents 

oxidative damage, which damages sperm (Carroll et al., 2014). Therefore, an increase in MCHC 

should have a positive effect on fertility. This study showed that different measures of immune 

response caused differences in number of sperm, amount of slow sperm, straightness and 

linearity of sperm, and area of sperm heads.  
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Tables 

Table 1 Sperm variables measured by the Hamilton-Thorne Sperm Analyzer (Hamilton-Thorne 
Biosciences, Beverly, MA) 
Variable  Description 
Motile % of total sperm moving at path velocity ≥30 µm/sec and progressive 

velocity ≥15 µm/sec 
Progressive  % of total sperm moving at path velocity ≥50 µm/sec and straightness 

≥70% 
Rapid  Progressive % with path velocity >50 µm/sec 
Medium  Progressive % with path velocity <50 µm/sec but >30 µm/sec 
Slow  % of total sperm moving at path velocity <30 µm/sec and progressive 

velocity <15 µm/sec 
Static  Sperm not moving at all 
Path velocity (VAP)  Average velocity of the smoothed cell path (µm/sec) 
Progressive velocity 
(VSL)  

Average velocity measured in a straight line from the beginning to the end 
of track 

Track speed (VCL) Average velocity measured over the actual point-to-point track 
Lateral amplitude 
(ALH) 

Mean width of the head oscillation as the sperm swims 

Beat frequency 
(BCF) 

Frequency of sperm head crossing the sperm average path in either 
direction 

Straightness Measures departure of average sperm path from straight line (ratio of 
VSL/VAP) 

Linearity  Measures departure of actual sperm track from straight line (ratio of 
VSL/VCL) 

Elongation  Ratio (%) of head width to head length 
Area  Average size in square microns of all sperm heads 
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Table 2 Effects of time on sperm characteristics   

 Month   
Item1 February March April May June SE1 Prob. < 
Sperm 229.9b 127.7b 171.7b 562.5a 609.5a 98.9 0.001 
VAP 100.6 102.5 111.9 119.5 116.7 6.2 0.13 
ALH 5.8 5.7 5.9 6.5 6.7 0.3 0.07 
Area 5.2a 4.7b 4.8b 4.7b 4.7b 0.08 0.001 
Live, % 38.3a 63.3b 62.2b 74.2bc 80.8c 4.9 0.001 
1 Sperm= # of sperm (n/mL); VAP=Path velocity (µm/sec); ALH=Lateral amplitude; Area=size 
of sperm heads 
2 SE= mean of standard errors  
 

 

Table 3 Weaning characteristics  

Weaning Variable Mean SD2 

Age, d 209 14.6 
Weight 293 33.8 
IGF1, ng/mL 287 100 
Cortisol, ng/mL 28.4 9.75 
Prolactin, ng/mL 23.1 16.2 
Testosterone, ng/mL 4.31 4.19 
IP1, ng/mL 22.5 24.6 
IC1, ng/mL 11.5 5.73 
CT1, ng/mL 53.5 187 
PC1, ng/mL 0.85 0.61 
1 IP= IGF1/prolactin; IC= IGF1/cortisol; CT= cortisol/testosterone; PC=prolactin/cortisol 
2 SD= Standard Deviation 
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Table 4 Correlations between weaning physiology and sperm characteristics  

  Sperm Characteristic 
  sperm # Progressive Rapid Medium Live Dead Live % 

Item Mean 448 44.7 50.6 5.54 72.3 27.5 0.72 
Prolactin, 
ng/mL 

23.1 -0.55* ----- ----- ----- ----- ----- ----- 

IP1,  22.5 0.65** ----- ----- ----- ----- ----- ----- 
PC1,  0.85 -0.53* ----- ------ ----- ----- ----- ----- 
IC1,  11.5 ----- 0.53* 0.51* ----- 0.53* -0.55* 0.54* 
CT1,  53.5 ----- ----- ----- 0.50* ----- ----- ----- 
* P  <0.05 
** P  <0.01 
1 IP= IGF1/prolactin; PC=prolactin/cortisol; IC= IGF1/cortisol; CT= cortisol/testosterone 
 

Table 5 Correlations between immune response and sperm characteristics  

  Sperm Characteristic 
  # of sperm Slow STR LIN Area 
Item Mean 448 10.4 87.3 60.7 4.75 
WBC1 9.35 ----- 0.50* -0.66** -0.53* 0.51* 
Neutrophil 4.52 ----- 0.58* -0.62** ----- ----- 
Lymphocyte 3.92 ----- ----- -0.55* -0.54* ----- 
MCHC1 35.1 0.51* ----- ----- ----- ----- 
* P  <0.05 
** P  <0.01 
1 WBC= white blood cell; MCHC= mean cell hemoglobin concentration 
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Figures 

  
Figure 1 Effect of lipopolysaccharide on number of circulating white blood cells over time. 
Time affected white blood cell concentration (P < 0.001). a,b,c:  P < 0.05. SE ± 1.06. 
 

  
Figure 2 Effect of lipopolysaccharide on neutrophil and lymphocyte concentrations and 
neutrophil-lymphocyte ratio over time. Time affected neutrophil and lymphocyte (P < 0.001). 
Time (3,6,9,24 hrs) affected neutrophil-lymphocyte (P < 0.05). a,b: P < 0.05. SE ± .728, SE ± 
.473, SE ± .515. 
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Figure 3 Effect of lipopolysaccharide on eosinophil, basophil, and monocyte concentrations over 
time. Time after lipopolysaccharide injection affected monocyte (P < 0.001). Time (3 hrs) 
affected monocyte (P < 0.05). Time (0,3,6,9 hrs) affected eosinophil (P < 0.001). Time (24 hrs) 
affected eosinophil (P < 0.05). Time affected basophil (P < 0.001). a,b,c: P  < 0.05. SE ± .0486, 
SE ± .0174, SE ± .0903. 
 

  
Figure 4 Effect of lipopolysaccharide on MCH, MCHC, MCV, and MPV concentrations over 
time. Time affected MCH, MCHC, MCV and MPV (P < 0.001). SE ± .233, SE ± .284, SE ± 
.585, SE ± .625. 
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Figure 5 Effect of lipopolysaccharide on RBC, Hemoglobin, Hematocrit, and RDW 
concentrations over time. Time affected RBC, Hemoglobin, Hematocrit, and RDW (P < 0.001). 
a,b: P < 0.05 SE ± .179, SE ± .331, SE ± .512, SE ± .53. 
 

  
Figure 6 Effect of lipopolysaccharide on platelet concentrations over time. Time affected 
Platelets (P < 0.001). a,b: P < 0.05. SE ± 42.3. 
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