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Abstract 

Nitric oxide (NO) is inactivated in the human body when exposed to superoxide (O2
-
). This 

reaction forms peroxynitrite (ONOO
-
). Superoxide is produced in the cardiac system by several 

different ways, including NAD(P)H oxidase.  Superoxide dismutase (SOD) breaks down 

superoxide  into oxygen and hydrogen peroxide. This prevents superoxide from reacting with 

nitric oxide and allows normal function to take place. Superoxide and peroxynitrite are main 

contributors to vascular disease in the human body, in particular hypertension. Experiments have 

shown that there was an increase of superoxide production in spontaneously hypertensive rats 

(SHR) vs. age-matched Wistar Kyoto rats (WKY) that were normotensive. The increase in 

superoxide production intensified in the presence of scavenger DETCA Cu
2+

/Zn
2+

. A 

mathematical model has been developed by Kavdia and Popel to calculate concentrations of NO, 

ONOO
-
, and O2

-
 in the arterial and venule pair. Using this model we calculated the arterial and 

venule NO, ONOO
-
, and O2

- 
concentration profiles for normotension, hypertension, SOD 

inactivation, and NAD(P)H stimulated cases, and analyzed which specific regions showed 

amplification or reductions in concentrations. The inactivation of SOD allowed O2
- 
concentration 

to significantly increase by 10-fold under basal conditions in hypertensive mice, while reducing 

the NO concentration in the model. Basilar arteries from hypertensive rats showed an increase of 

4.1-fold in Nox4 compared to normotensive rats. The results suggest that the increase in 

superoxide in hypertensive rats is in correlation with the increase of NAD(P)H oxidase in these 

rats. The trends in superoxide production in this paper can help understand hypertension and 

vascular disease more thoroughly. Further, the increase of Nox1 and Nox4 expression suggested, 

for future research, the specific regions where O2
- 
will be high and needs to be evaluated. 
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Introduction 

Cardiovascular disease is the leading cause of death in the United States. According to the 

American Heart Association, this disease was responsible for taking over 870,000 lives in 2005 

in the United States. Increased vascular production of reactive oxygen species (ROS) is a 

common characteristic of cardiovascular disease
5
. There are several factors that increase the risk 

of cardiovascular disease including hypertension, hypercholesterolemia, and diabetes mellitus
6
. 

In the United States, hypertension affects approximately 58 million Americans. 

Vascular and cardiac tissues are rich sources of ROS, including superoxide (O2
-
), 

hydrogen peroxide (H2O2), and peroxynitrite (ONOO
-
) 

7
. Reactive oxygen species are the by-

products of oxygen metabolism and are normally present in low levels of concentration inside 

the cells
8
. ROS are needed in aiding the signaling processes within the cells, and also in 

regulating vascular smooth muscle cell contraction and relaxation. Increasing amounts of O2
-
 is 

the most common trend in vascular diseases, such as hypertension, because it causes oxidative 

stress in the vascular tissue
9
. One of the mechanisms for controlling oxidative stress in the 

vascular system is superoxide dismutase. Superoxide dismutase consumes O2
-
, and then converts 

it into less harmful compounds
10

. 

The major sources of vascular superoxide include xanthine oxidase, nitric oxide 

synthases, mitochondrial oxidases, or NAD(P)H oxidases
11

. Each of these sources generates 

superoxide in a different mannerism in the human body. 

Xanthine oxidase (XO) is a iron sulfur flavoprotein that is found in high concentrations in 

the endothelial cells and plasma, but not in smooth muscle cells
12

. Xanthine generates the 

superoxide by catalyzing hypoanthine and xanthine to form uric acid. 
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Nitric oxidase synthases (NOS), found predominantly in the endothelial cell region, play 

a major role in vascular diseases.  Endothelial nitric oxidase synthases (eNOS) requires 

tetrahydrobiopterin (BH4) for the transfer of electrons to the nitrone of the L-arginine
12

. This 

reaction under normal conditions forms nitric oxide in the vessels. But, when BH4 is not present, 

eNOS generates O2
- 
and H2O2. 

Mitochondrial oxidases involve the uncoupling of oxygen during mitochondrial oxidative 

phosphorylation during the production of ATP to synthesize O2
-
. The superoxide produced 

during lesion development in the arteries come primarily from the mitochondrial oxidase
12

.   

In particular, we will analyze more closely the NAD(P)H oxidase as a source of vascular 

superoxide. NAD(P)H oxidases are present in endothelial cells, fibroblasts, smooth muscle cells, 

neutrophils, and phagocytic mononuclear cells
2
.  The study of NAD(P)H will start at the 

biochemical reaction of the compound in the cardiovascular system. NAD(P)H is a multi-subunit 

enzyme that catalyzes O2
- 

production by reducing oxygen by one electron and using the 

NAD(P)H as the electron donor
7
. 

NAD(P)H + 2O2 → NAD(P)
+
 + H

+ 
+ 2O2

-     
(1) 

One of the major sources of ROS formation is from the NAD(P)H oxidases. Endothelial cells 

and fibroblasts express both NAD(P)H oxidase 2 (Nox2) and NAD(P)H oxidase 4 (Nox4). 

Vascular smooth muscle cells express Nox1 and Nox4
4
.  
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In addition, nitric oxide released by endothelial cells is a key chemical that regulates 

blood flow. In oxidative 

stress conditions the 

availability of nitric oxides is 

reduced in vascular tissues, 

which is known as 

endothelial cell dysfunction. 

Figure 1 outlines the 

dysfunction in endothelial cell
4
.  

 

With this dysfunction comes the natural response of the human body to overcome this 

production of superoxide. Superoxide is neutralized by a group of antioxidant enzymes. These 

enzymes include SOD, CAT, GPx, and thiol-disulfide oxidoreductases
12

. 

This thesis will deal primarily with SOD as the main antioxidant enzyme. There have 

been three isoforms of SOD identified: mitochondrial manganese-containing SOD (MnSOD, 

SOD2), the cytosolic copper/zinc-containing SOD (CuZnSOD, SOD1) and the extracellular SOD 

(eSOD, SOD3)
13

.  SOD dismutase superoxide to from hydrogen peroxide and oxygen. 

Loss of endothelial NO available to endothelial cells is caused by the reaction with O2
-
. 

This reaction forms ONOO
-
, which is a key component in many cardiovascular diseases such as 

hypertension, diabetes, and atherosclerosis. Understanding the levels of nitric oxide, superoxide, 

and peroxynitrite will cause a better understanding of the diseases and the oxidative stress state 

of the vascular system. 

Figure 1: Dysfunction in Endothelial Cell. 

The following diagram demonstrates how 

NAD(P)H  catalyzes superoxide production by 

becoming the electron receptor for Oxygen
4
. 
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A mathematical model was created by Kavdia and Popel in 2004, that created the 

concentration profiles for NO, ONOO
-
, and O2

- 
for an arterial and venule pair during 

microcirculation
1
. This model defines the geometry of the arterial and venule vessels parallel to 

each other, while using diffusion rates and chemical reaction rates to calculate the concentration 

profiles. 

The objective of this thesis is to predict NO, ONOO
-
, and O2

- 
concentration profiles for 

three different cases: 1) Basal conditions compared to NAD(P)H stimulated conditions (2) Basal 

conditions in normotensive and hypertensive rats with inactivation of SOD by DETCA (3) 

NAD(P)H stimulation in normotensive and hypertensive rats with inactivation of SOD by 

DETCA . For this purpose, we used data from Tamara Paravicini’s “Increased NADPH-Oxidase 

Activity and Nox4 Expression during Chronic Hypertension is Associated with Enhanced 

Cerebral Vasodilatation to NADPH In Vivo” 
3
.  In this article the arteries from Wistar-Kyoto rats 

(WKY) were compared to spontaneously hypertensive rats (SHR). The O2
-
 production in these 

arteries was measured by 5 µmol/L lucigenin-enhanced chemiluminescence under various 

conditions. The results from Paravicini’s experiment are in Figure 2. The trends in this data were 

applied to the Kavdia and Popel model for the purpose of my thesis. 
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Figure 2. Effect of NADPH on O2
-·
 production in basilar arteries from WKY and SHR in the absence 

(a) and presence (b) of DETCA (3 mmol/L) to inactivate Cu
2+

/Zn
2+

-SOD. Vascular O2
-·
 was measured 

with the use of lucigenin-enhanced chemiluminescence; values are expressed as 10
3
 counts per 

second per milligram dry tissue weight. *P<0.05 vs similarly treated WKY rings
3
. 
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Methods 

Model Geometry: 

A previous model by Kavdia and Popel is used to simulate arteriole/venule during 

microcirculation. This model contains six different regions in the vessels: red blood cell rich 

(CR), red blood cell free (CF), endothelium (E), interstitial space (IS), smooth muscle (SM),  and 

a nonperfused parenchymal tissue (NPT). The parenchymal tissue (PT) is the region around the 

arteriole and venule pair. 

Figure 3 shows the arterial 

and venule vessel next to 

each other. The regions have 

increasing diameters for 

each separate layer. Nitric 

Oxide (NO) is produced at 

the luminal and abluminal 

surfaces of the endothelium
10

.  

 

The steady-state mass transport equation (cylindrical conditions) can be used to solve for the NO 

mass transport because of the convective transport of NO can be neglected and the NO profiles 

reach steady state within milliseconds
10

. 

 

∑ =±∇ 0,

2

ijjj RCD         (2) 

 

Figure 3: Model Geometry of the arterial and venule vessel from 

Kavdia and Popel
1
. 
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Where j represents the particular model of interest; Cj is the concentration; Dj is the diffusivity; 

and Rj,i stands for the production and consumption of the species due to chemical reactions. 

 

Boundary Conditions:   

Specific boundary conditions will need to be set to model this geometry and diffusion rates. At 

the outer edge of the PT, a zero-flux boundary condition was fixed, and at the interfaces with the 

endothelium, the release of NO and O2
-
 were given by the following equations respectfully

10
. 
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We will obtain NO and O2
-
 concentration profiles in the vascular tissue from these equations. 

Chemical Reactions:  

The chemical reactions that are involved in the different layers of the arterial and venule are a 

mixture of first and second order reactions. Each region is discusses in further detail in Kavdia’s 

“Venular endothelium-derived NO can affect paired arteriole: a computational model”
14

. The 

areas that are rich in red blood cells contain high levels of hemoglobin. This hemoglobin reacts 

at a high rate with the NO in the region. 

RNO,CR = KCRCNO        (5) 

Where kCR is the effective NO reaction rate constant. All these values can be found in Table 1. 
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In the CF region the chemical reactions are first order reactions because the hematocrit in this 

region is assumed to be zero
10

.  

RNO,CR = kCFCNO        (6) 

In the remaining of the regions E, IS, and NPT the NO reaction is a second order reaction
10

. 

RNO, I = ko2C
2

NOCO2        (7) 

Vascular smooth muscle sGC consumes the NO for the smooth muscle region (SM)
10

 . Therefore 

the second-order reaction is: 

RNO = kSM C
2

NO        (8) 

For the capillary-perfused PT region, the endothelial cells of the capillaries produce NO.  For 

this region the reaction rate will have to take in account the amount of nitric oxide that is 

released by the capillary endothelial cell. 

RNO = kcapCNO-Qcap         (9) 

Each region is different, so each individual chemical reaction must be considered when deriving 

the model. 

 

Parameter Values:  

All parameters that were defined in the previous equations used in the model can be found in 

Table 1. The geometry of the arterial and venule vessels was discussed in previous reports
1
. The 

venule is assumed to be twice the size of the arteriole. The arteriole is 25 µm and the venule is 50 
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µm in diameter.  This ratio was assumed due to the reported distance between the arteriole and 

venule vessels
15

.  The diffusivity rates of NO, O2
-
, and peroxynitrite are assumed to be constant 

across the geometry and equal 3.3 x 10
-5

, 2.8 x 10
-5

, and 2.6x 10
-5

 cm
2
/s respectively according to 

Table 1. To determine the consumption of NO in CR region, Kavdia and Popel used a hematocrit 

of 0.45 in the region
1
. The reaction rate for the consumption of NO is 1,270 s

-1
 in the region

9
. 

The NO that is released by the capillary endothelial cell, kcap can be determined using a 

hematocrit of 0.3 and a capillary volume of 0.0146 cm
3 

for the model
 10

 . The kcap calculated was 

12.4 s
-1 

for this case
16

.  

Numerical Solutions: 

Flex PDE 3.0 software  was used for modeling the arteriolar and venular endothelial NO, O2
-
, 

and ONOO
-
 concentrations. Flex PDE 3.0 is computer software that can be used for modeling 

and solving numerical problems. 

Simulations:  

Tamara M. Paravicini’s article “Increased NADPH-Oxidase Activity and Nox4 Expression 

during Chronic Hypertension is Associated with Enhanced Cerebral Vasodilatation to NADPH 

In Vivo” showed us experimental trends in the production of superoxide (O2
-
) in Wistar-Kyoto 

rats (WKY) and Spontaneously Hypertensive rats (SHR).  This data was assumed for a model of 

the human arterial/venule microcirculation during normotension and hypertension. For the base 

case we used the whole tissue superoxide production as fraction c = 0.2 of NO production and 

used 10 µM of SOD. 

The first simulation involved an increase of O2
-
 production by 22-fold due to the NADPH 

stimulation of the arteriolar and venule. For this case the new whole tissue superoxide production 
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fraction of NO production was c = 4.4   The SOD remained at 10µM. The results of both the 

normotensive and hypertensive were compared for basal and NADPH stimulated vessels. 

The second simulation compared the three different basal conditions with a difference in the 

level of SOD. We used a condition with SOD of 10µM and a superoxide production fraction c = 

0.2 and compare it to the normotensive and hypertensive basal condition with an inactivation of 

SOD. The experiment used Cu
2+

 chelating agent diethyldithiocarbamic acid trihydrate   

(DETCA) to inactive the Cu
2+

/Zn
2+

 SOD. We assumed that SOD was reduced and the level was 

assumed to change from 10µM to 1µM. In normotensive basal condition with reduction of SOD 

the superoxide production fraction remained at c = 0.2, but for hypertensive basal conditions the 

superoxide production fraction was c = 2 due to a 10-fold increase in superoxide production. 

The third simulation compared the NAD(P)H stimulated hypertensive/normotensive vessels with 

the change in SOD. With SOD of 10 µM, the normotensive and hypertensive vessels both had a 

superoxide production fraction of c = 4.4, which are 22-fold greater than the basal conditions. 

With DETCA reduction of SOD to 1 µM, the normotensive vessels had a superoxide production 

fraction of c = 8, which was a 40-fold increase from the basal conditions. With DETCA 

reduction of SOD to 1 µM, the hypertensive vessels had a superoxide production fraction of c = 

18.4, which was 2.3-fold greater than the normotensive NADPH stimulated conditions. 
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Results 

Normotensive and Hypertensive Cases (Basal and NADPH excited) with SOD of 10µM: Profiles 

for the reactive oxidative species were generated according to the concentration values along the 

horizontal center axis of the geometry, as seen in Figure 3. The very first vertical line on the 

graph at 0.975 cm represented the middle of the arterial vessel. The endothelial cell region was 5 

µm, therefore the second line was hard to distinguish from the first because it was at 0.9775 cm 

on the graph. The third vertical line represented the smooth muscle cell region in the arterial 

vessel. The fourth vertical line represented the middle of the venule vessel at 0.105 cm on the 

graph.  For the base case, we used normal parameters as described in the methods section.  The 

plots of NO, O2
-
, and ONOO

-
 concentrations for the base case are displayed in Figures 4, 5 and 

6, respectively. As you can see in Figure 4, the NO production of the Basal hypertensive and 

Basal normotensive with SOD of 10 µM is the same. This simulation of basal hypertensive and 

normostenive with SOD of 10 µM had the highest NO concentration and the lowest O2
- 

concentration. The NAD(P)H stimulated hypertensive and normotensive with SOD of 10 µM 

were equal to each other. The NO concentration in the lumen of the CR region of both the 

arterial and venule was zero. As the NO profile approached the EN region the concentration 

reaches 100 nM. From that region, the NO concentration profile decreased back to 0 nM in the 

lumen of the venule vessel. The NAD(P)H stimulation during this case only caused a noticeable 

change in the NO profile in the PT region surrounding the arterial and venule pair. 
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Figure 4:Nitric oxide (NO) concentration profile shown for a 50 µm diameter arteriole and a 100 

µm diameter venule. This graph represents the NO for normotensive and hypertensive vessels 

under Basal and NADPH stimulated conditions with an SOD level of 10µM. The concentration 

profile is modeled about the horizontal axis in Figure 3. 

 

The ONOO
-
 concentration profile showed a visible change in Figure 5 throughout the arterial 

and venule pair due to the NAD(P)H stimulation. This stimulation caused a 20-fold increase in 

the ONOO
-
 concentration. In the SM region, the ONOO

- 
concentration increased from 1 nM to 

2.5 nM due to the NAD(P)H stimulation. The perioxynitrite concentration was 0 nM in the 

lumen of the venule vessel. 
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Figure 5: Peroxynitrite [ONOO
-
] concentration profile shown for a 50 µm diameter arteriole and 

100 µm diameter venule vessel. This graph represents the ONOO
-
 for normotensive and 

hypertensive vessels under Basal and NADPH stimulated conditions with an SOD level of 

10µM. The concentration profile is modeled about the horizontal axis in Figure 3. 

 

The O2
- 
concentration profile is in Figure 6. This concentration profile shows that there was an 

increase in superoxide production in both the arterial and venule EN region. The O2
-

concentration had a peak at 0.433 nM and 2.29 nM in the arterial EN and venule EN, 

respectively.  
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Figure 6: Superoxide (O2
-
) concentration profile shown for a 50 µm diameter arteriole and 100 

µm diameter venule vessel. This graph represents the O2
-
 for normotensive and hypertensive 

vessels under Basal and NADPH stimulated conditions with an SOD level of 10µM. The 

concentration profile is modeled about the horizontal axis in Figure 3. 

 

Normotensive and Hypertensive Cases (Basal Only) with SOD  being inactivated from 10 µM to 

1 µM: We modeled the concentration profile of NO, ONOO
-
, and O2

-
 for the basal case only of 

normotensive and hypertensive cases, but the SOD was reduced from 10µM to 1 µM with 

DETCA Cu
2+

/Zn
2+

.  The nitric oxide production in the reduced SOD was lower than that of the 

10 µM SOD cases. Also the NO level for hypertensive case with SOD of 1 µM was much lower 

than the normotensive case with SOD of 1µM under basal conditions. Figure 7 shows the highest 

concentrations of the NO was 102.3 nM, 96.1nM, and 89.05 nM for Normotensive/Hypertensive 
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basal case with SOD to 10 µM, Normotensive basal case SOD to 1 µM, and Hypertensive basal 

case with SOD to 1 µM, respectively in the EN arterial regions. The hypertensive basal case with 

SOD to 1 µM shows a NO concentration that was 20 nM less in the PT surrounding region of the 

arterial/venule pair compared to normotensive vessels in the same case. 

 

Figure 7: Nitric oxide (NO) concentration profile shown for a 50 µm diameter arteriole and 100 

µm diameter venule vessel. This graph represents the NO concentrations for normotensive and 

hypertensive vessels under Basal conditions with an SOD level changing from 10µM to 1µM. 

The concentration profile is modeled about the horizontal axis in Figure 3. 
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The peroxynitrite concentration profile is shown in Figure 8. The hypertensive vessel with SOD 

reduction to 1 µM had the highest levels of ONOO
-
. This corresponds to the same case having 

the lowest levels of NO. The peak in the arterial vessel was in the EN and SM region. The 

concentration levels were 6.56 nM, 4.25 nM, and 0.647 nM in hypertensive basal case with SOD 

to 1 µM, normotensive basal case with SOD to 1 µM, and normotensive/hypertensive basal case 

with SOD to 10 µM, respectively. The peaks for the venule EN and SM region were 17.8 nM, 

15.6 nM, and 2.36 nM, respectively.    

 

 Figure 8: Peroxynitrite [ONOO
-
] concentration profile shown for a 50 µm diameter arteriole 

and 100 µm diameter venule vessel. This graph represents the ONOO
-
 concentrations for 

normotensive and hypertensive vessels under Basal conditions with an SOD level changing from 

10µM to 1µM. The concentration profile is modeled about the horizontal axis in Figure 3. 
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The superoxide concentration profiles for these specific cases are in Figure 9. This profile shows 

us that the SOD reduction caused an increase of superoxide in the vessels by 10-fold in 

hypertensive vessels compared to the cases with SOD of 10 µM. In the hypertensive basal case 

with SOD reduced, the superoxide concentration was 1.81 nM and 13.3 nM in arterial and venule 

EN region, respectively. In comparison the arterial and venule EN region of normotensive basal 

with an SOD level of 1 µM had peaks of 1.54 nM and 12.83 nM, respectively.   

 

Figure 9: Superoxide (O2
-
) concentration profile shown for a 50 µm diameter arteriole and 100 

µm diameter venule vessel. This graph represents the O2
-
 concentrations for normotensive and 

hypertensive vessels under Basal conditions with an SOD level changing from 10µM to 1µM. 

The concentration profile is modeled about the horizontal axis in Figure 3. 
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Normotensive and Hypertensive Cases (NADPH excited) with SOD being inactivated from 10 

µM to 1 µM: Finally the profile for the NO, ONOO
-
, and O2

-
 for normotensive and hypertensive 

vessels under NAD(P)H excited conditions with SOD reduced from 10 µM to 1µM. The 

hypertensive NAD(P)H excited vessels with an SOD of 1 µM had  the lowest concentration of 

nitric oxide. These results are shown in Figure 10. The endothelial region of the arterial vessel 

had the highest concentration of NO during microcirculation. During normotensive/hypertensive 

vessels with NAD(P)H stimulation and with SOD of 10 µM, the concentration was 99.6 nM. But 

when SOD is reduced to 1 µM, the NO concentration in normotensive was75.6 nM and in 

hypertensive was 65.2 nM. The lumen of both the arterial/venule pair was reduced to 0 nM in all 

three cases. 
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Figure 10: Nitric oxide (NO) concentration profile shown for a 50 µm diameter arteriole and 100 

µm diameter venule vessel. This graph represents the NO concentrations for normotensive and 

hypertensive vessels under NAD(P)H stimulated conditions with an SOD level changing from 

10µM to 1µM. The concentration profile is modeled about the horizontal axis in Figure 3. 

 

The ONOO
- 
concentration profile for the NAD(P)H cases with SOD reduction are presented in 

Figure 11. The reduced SOD, hypertensive vessels had the highest ONOO
- 
concentrations. The 

lowest concentrations of perioxynitrite were in the lumen of the venule. The highest 

concentrations of the ONOO- were in the EN and SM region of the venule vessel. The 

concentrations were 29.4 nM, 23.3 nM, and 3.45 nM for the reduced SOD hypertensive, reduced 

SOD normotensive, and the 10 µM SOD normotensive/hypertensive, respectively. 
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Figure 11: Peroxynitrite [ONOO
-
] concentration profile shown for a 50 µm diameter arteriole 

and 100 µm diameter venule vessel. This graph represents the ONOO
-
 concentrations for 

normotensive and hypertensive vessels under NAD(P)H stimulated conditions with an SOD level 

changing from 10µM to 1µM.  The concentration profile is modeled about the horizontal axis in 

Figure 3. 

 

The superoxide concentration profile for the NAD(P)H cases is shown in Figure 12. This profile 

shows that when the SOD was reduced in the hypertensive vessels the O2
- 
concentration peaks in 

the EN and SM of both the arterial and venule vessels. The arterial EN concentration level was 

lower than that of the venule because in the arterial the superoxide levels dropped dramatically 

before these regions. In hypertensive vessels with SOD reduction, the arterial EN superoxide 

concentration was 4.4 nM and in the venule EN superoxide concentration was 17.5 nM. In 

normotensive vessels with SOD reduction, the arterial EN superoxide concentration was 2.9 nM 

and in the venule EN superoxide concentration was 14.9 nM. 
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Figure 12: Superoxide (O2
-
) concentration profile shown for a 50 µm diameter arteriole and 100 

µm diameter venule vessel. This graph represents the O2
-
 concentrations for normotensive and 

hypertensive vessels under NAD(P)H stimulated conditions with an SOD level changing from 

10µM to 1µM. The concentration profile is modeled about the horizontal axis in Figure 3. 
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Discussion 

Effects of SOD Inactivation: SOD inactivation can be shown to increase the superoxide 

production by 10-fold in Basal Hypertensive cases. This results in an increase in peroxynitrite 

but a decrease in the nitric oxide. SOD reduction with NAD(P)H stimulation caused an increase 

of 2.1-fold and 4.1-fold in superoxide production in normotensive and hypertensive vessels, 

respectively when compared to vessels with SOD of 10 µM. When SOD was activated, the 

superoxide production was the same in hypertensive and normotensive vessels. This shows that 

SOD is very important in controlling O2
-  

 production and also vascular disease. Without SOD, 

the level of superoxide may increase dramatically inducing vascular diseases  When SOD is 10 

µM, the vessels have a higher than normal level of H2O2 due to the dismutase of superoxide. This 

explains why the levels of H2O2 in plasma is higher than normotensive patients
3
.  This level of 

H2O2 which is a powerful vasodilator, may have important consequences in the vascular system 

3
. The current therapies for vascular disease, such as β-blockers, angiotensin antagonists, and 

angiotensin-converting enzyme inhibitors, act like antioxidants in some way
17

. New antioxidant 

therapies have the potential to be discovered to treat hypertension. 

Effects of Normotension vs. Hypertension: 

Spontaneous hyptertensive vessels can cause a 10-fold increase from normotensive vessels in 

basal conditions and a 2.3-fold increase from normotensive vessels in NAD(P)H stimulated 

vessels. This data shows that superoxide production is increased dramatically in hypertensive 

vessels. In hypertensive basilar vessels the Nox4 was 4.1-fold higher
3
. This shows that there is a 

direct correlation of the increase of NAD(P)H oxidase in regions with the increase of production 

with superoxide and vasodilation. In the area directly before the EN region the superoxide level 
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decreases dramatically.  But, it can be seen that in the endothelial region there is a large increase 

in superoxide production.  This can be explained because this is where Nox4 is found to be most 

prevalent. Nox4 mRNA is seen to be 125 -fold higher in endothelial cells than in smooth muscle 

cells 
2
.  

 

 

 

Also Nox4 and Nox1 mRNA levels are 2.5-fold and 10-fold greater in spontaneously 

hypertensive rats than in age-matched Wistar Kyoto rats, respectively 
18

. This data that was 

published and the results from this model, showed a direct corrlation between superoxide 

production and Nox expression. 

Effects of NAD(P)H stimulation: 

When NAD(P)H was used to stimulate the vessels, it increased superoxide in the cells because 

the NAD(P)H is reacted with the oxygen in the vessels. During this reaction, superoxide was 

produced, which significantly increased the levels of superoxide in the vessels. NAD(P)H 

stimulation increased the superoxide produce 22-fold compared to normal basal conditions when 

(x10^5/10^9  
copies 18S)

Gp91phox Nox4 Nox1 p22phox

Monocyte 6140 Undetectable 0.10 447

Endothelial 
cells

13.2 270.0 0.87 45.8

Smooth 
Muscle Cells

0.19 2.15 0.22 81.6

Fibroblasts 0.58 6.25 0.45 10.9

Table 2: Real-time PCR quantified the levels of RNA expression of Nox 

isoforms from cultured human cells. Values are expressed as copy 

numbers per 10
9
 copies of 18S measured in the same sample 

2
. 
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SOD was 10 µM. During NAD(P)H stimulation when SOD was reduced to 1 µM, the superoxide 

production was 40-fold higher and 92-fold higher of normotensive and hypertensive, respectively 

when compared to normal basal conditons. In human coronary arteries, NAD(P)H stimulation is 

the major source of superoxide production and in human coronary artery disease the NAD(P)H 

acivity is significantly increased
5
.  

 

Importance and Conclusion: 

The importance of this model was to provide insight for oxidative stress in hypertension. During 

hypertension there is proven to be an increase in superoxide production is increased when SOD 

is decreased. The trends from the NO, ONOO
-
, and O2

-
 concentration profile show us which 

regions are affected by the disease and the physiological affects on the walls of the arteriole and 

venule. Also, the H2O2 generated during superoxide dismutase may have a signifcant correlation 

to the vasodilation during hypertension. The relevance of this thesis is underlined in the major 

role of oxidative stress in vascular diseases. The future of cardiovascular therapy is based on the 

balance between NO, ONOO
-
, and O2

- 
within the body

 19
. 

Future Work: 

The data from this thesis can be used to further progress the understanding of vascular diseases. 

Nox1 and Nox4 are highest in the endothelial and smooth muscle cell region. The NAD(P)H 

oxidases are also proven to be expressed more in hypertension during normotension. As 

previously stated the expression of Nox1 is 10-fold greater and Nox4 is 2.5-fold greater. Most 

recently, there have been papers published that treats the arterioles and veins with different 

medication. Very similar tests were done to measure superoxide production and Nox expression. 



Strobel Page 26 

 

In one particular experiment, the vessels were treated with different hypertension medications:  

1) high dose candesartan 2) low dose of candesartan  3) a dose of a combined hyralazine and 

hydrochlorothiazide 
18

.  All three treatments reduced the expression of Nox1 and Nox4. From the 

data from this experiment the reduction of Nox1 and Nox4 can also be hypothesized to reduce 

the superoxide levels produce in the arterial and venule flow. The data shows the strong 

correlation might suggest a stronger link between NAD(P)H  stimulation and the development of 

vascular diseases. In future research, we would model the concentration profiles of medically 

treated vessels. 
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Table 1. Model Parameters 

Parameter Value Units Reference 

Systemic hematocrit 45 % 
14

 

Capillary hematocrit 30 % 
14

 

Arteriole radius 25 µm 
14

 

RBC-free-layer 

thickness 

4.5 µm 
14

 

Endothelium 

thickness 

0.5 µm  

Interstitual Space 

thickness 

0.5 µm 
14

 

Smooth Muscle 

thickness 

6 µm 
20

 

NPT thickness 30 µm 
10

 

O2 concentration 27 µM 
21

 

SOD concentration 1 (0.1) µM 
22

 

CO2 concentration 1.14(0.114) mM  

Half NO release rate, 

QNO 

2.65 x 10
-12

 mol cm
-2

s
-1 23

 

Half O2
-
 release rate, 

Q02
- 

0.2 (2) x QNO mol cm
-2

s
-1

 
14

 

DNO 3.3 x 10
-5 

cm
2
s

-1 24
 

D02
-
 2.8 X 10

-5 
cm

2
s

-1
 

25
 

DONOO
- 

2.6 X 10
-5 

cm
2
s

-1
 

25
 

F(=CONOO
-
/CPer) in 

tissue 

0.640  
14

 

F(=CONOO
-
/CPer) in 

tissue 

0.817  
14

 

Reaction rates of NO with 

O2, -kO2CNO
2
CO2 9.6 x 10

6 
M

-2
s

-1 26
 

O2
-
, -kPerCNOCO2

- 
6.7 (16) x 10

9 
M

-1
s

-1 27
 

sGC, -ksmCNO
2 

5 x 10
4 

M
-1

s
-1

 
23

 

RBC 1.4 x 10
5 

M
-1

s
-1

 
28

 

RBC-rch core (CR), -

kCRCNO 

1,270 s
-1 14

 

Capillaries, -

kcapCNO+Qcap 

12.4 CNO - 8.6 x 10
-7 

s
-1 14

 

Reaction rates of O2
-
 with 

SOD, -kSODCO2
-
CSOD 1.6 x 10

9 
M

-1
s

-1 29
 

Reaction rates of ONOO
- 
 with 

CO2, -kCO2CCO2fCPer 5.6 x 10
4 

M
-1

s
-1 30

 

NO, -kNOCNOfCPer 9.1 x 10
4 

M
-1

s
-1 31
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