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Abstract 

Darters are small, benthic fishes that live in freshwater rivers and streams and belong to 

the family Percidae. Pleistocene glaciations fragmented many darter species, resulting in 

speciation, but new species are often hard to detect if they are morphologically identical to pre-

existing species. Intraspecific hybridization and resulting introgression, which occur frequently 

in glaciated areas, further complicate identification by introducing heterospecific genomes into 

mitochondrial DNA, making it difficult to accurately resolve phylogenetic relationships. The 

results of Bossu and Near’s 2009 study highlight this issue, showing a large degree of 

incongruence between mitochondrial and nuclear gene trees. 

 This study analyzed samples from 50 collection sites along the White River Drainages in 

the Ozark Highlands region of Arkansas, and area that is high in both species richness and 

habitat diversity. SVDQuartets analysis genrerating bootstap values for 1000 iterations recovered 

12 species of Etheostoma, including 3 from the E. spectabile species complex, which was 

surprisingly non-monophyletic for the represented taxa. However, the relationships shown in the 

tree are consistent with previous studies which concluded that heterospecific DNA is being 

introgressed into the E. spectabile complex, although the sister-species relationships recovered 

differ from those found in Bossu and Near. The relationships displayed in this tree reveal the 

tendency for hybridization and introgression to occur between members of E. spectabile and 

other Etheostoma, however, sampling size and sampling area are both small, and further analysis 

is needed that includes more individuals and a broader sampling across a wide range of darter 

habitats to determine if these relationships are representative of the clade as a whole. 
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Literature Review 

Species complexes: A look into species concepts, molecular biology, and species 

conservation. 

Introduction 

In this review, I will be providing an overview of the concepts and research methods 

essential to the study of species complexes. First, I will discuss the development of several 

concepts that are used to delimitate species: the ecological species concept, biological species 

concept, and phylogenetic species concept. Afterwards I will explain several factors that studies 

show have substantial influence over the formation of species complexes and describe the 

various methods that are used to study them. Finally, I will emphasize the importance of 

studying and identifying species complexes in regard to how species are protected and 

conserved. 

 

Species Concepts 

In the 19th and early 20th century, many theorists still believed that all species arrived on 

Earth instantaneously. This idea, which Darwin referred to as “immutable production,” alleged 

that variations of those species could arise due to natural selection, but those variant individuals 

did not have the ability to become a distinct species (Darwin 1859). The major alternative to this 

theory followed the idea that new species develop through gradual modification of pre-existing 

species via natural selection (Rabosky 2009). Darwin, through studying separate populations of a 

single species that had become geographically isolated from each other, helped fully develop the 

idea of “descent with modification” that we now consider so fundamental to our understanding 

of species formation (Darwin 1859). He found that the adaptations developed by each population 
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over time in response to their separate environments created morphological and ecological 

differences that resulted in a level of divergence beyond what one would observe within a single 

species (Darwin 1859).  

Darwin’s theories align with what is now known as the ecological species concept, which 

defines a species as all conspecific individuals occupying the same niche within an environment 

(Schluter 2001; de Queiroz 2007). It recognizes that species diverge when populations become 

environmentally isolated from one another, ultimately resulting in reproductive isolation as each 

population develops adaptations suited for their particular environment that may not be viable in 

the environment of other sub-populations (Brown and Wilson 1956; Schluter 2001; de Queiroz 

2007; Moritz et al. 2017). There are two ways that environmental isolation can occur. Species 

that diverge in complete isolation are said to undergo allopatric speciation (Schluter 2001; 

Bickford et al. 2007; Weber and Strauss 2016; Moritz et al. 2017). Over time, these diverged 

populations may be reintroduced, especially in cases where community dispersal rates are high 

(Weber and Strauss 2016). For these species to successfully coexist they must often develop 

distinct ecological niches to minimize competition. Sympatric speciation will occur when these 

populations that have overlapping ranges reach reproductive isolation from one another. 

Developing changes in body size in order to take advantage of different resources as well as 

minimize shared predation is a common mechanism of selection that leads to divergent 

populations within the same region (Schluter 2001; Moritz 2017).  

Dispersal rates dictate both how quickly these processes will occur and to what degree. 

High dispersal rates will initiate secondary contact after a shorter amount of time, and as a result 

gene flow and hybridization will occur more frequently than in populations that remain separated 

for a greater amount of time (Schluter 2001; Weber and Strauss 2016). Consequently, speciation 
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will occur at a much slower rate and coexistence of recently diverged populations will suffer due 

to the persistent overlap in niche (Schluter 2001; Weber and Strauss 2016). However, when 

populations remain separated for a greater amount of time it allows for adaptations within sub-

populations to accumulate, resulting in greater distinction between populations upon secondary 

contact (Brown and Wilson 1956; Vallin 2010; Weber and Strauss 2016). In this scenario, 

decreased gene flow due to increased prezygotic isolation causes speciation to occur more 

rapidly (Coyne and Orr 1988; Schluter 2001; Weber and Strauss 2016). Dobzhansky theorized 

that increased prezygotic isolation in cases of overlapping ranges was a result of selection acting 

against reduced hybrid fitness and hybrid inviability by reinforcing reproductive barriers 

(Dobzhansky 1937). 

The biological species concept is arguably the most widely accepted concept and defines 

a species as a group of interbreeding populations that do not breed with members of other groups 

(de Quiroz 2007). Ernst Mayr and Theodosius Dobzhansky, who both produced landmark works 

in the world of evolutionary biology, developed and supported this concept throughout their 

careers. Mayr first proposed the concept in 1942, claiming that reproductive isolation was the 

most important factor that determined a species (Mayr 1942). Dobzhansky supported this idea, 

who in his first solo publication had cited mutation and genetic drift occurring through sexual 

selection as factors that could lead to the reproductive isolation of a population (Dobzhansky 

1937). As our ability to understand the influence of genetics on speciation continues to increase, 

we are beginning to discover how changes in the genome of individuals can lead to the 

divergence of a population regardless of whether that change is favorable regarding selection 

(Orr et al. 2007; Schluter 2009). Research has shown that postzygotic isolation due to genetic 

mutations, specifically on sex chromosomes, can lead to the reproductive isolation of populations 
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separated from one another by allopatric speciation (Schluter 2009). When the two populations 

develop sex-linked mutations independently of one another, it is possible that intraspecific 

mating between those two populations upon secondary contact results in either hybrid sterility or 

hybrid inviability (Orr et al. 2007). As a result, the two populations are then considered to be 

reproductively isolated from each other (Orr et al. 2007).  

The phylogenetic species concept focuses on identifying populations that share a 

common ancestor and the traits derived from that ancestor (de Queiroz 2007). Brent Mishler and 

Michael Donoghue have developed this concept based on the idea of pluralism. They reject the 

notion that a single universal method for identifying species exists and instead encourage a more 

open-minded approach to species delimitation (Mishler and Donoghue 1982). They propose to 

distinguish species based on evidence of monophyly by identifying the smallest and least 

inclusive group of organisms based on fixed character-state differences between populations 

(Donoghue 1985; Mishler and Brandon 1987; Davis and Nixon 1992). Phylogenetic trees have 

become increasingly useful to ecologists and systematists because they can more accurately 

determine divergence time compared to other methods (Barraclough and Nee 2001; Rabosky and 

McCune 2009; Weber and Strauss 2016). Furthermore, recent advances in molecular genetics 

provide a promising avenue for more quickly and accurately identifying members of a clade and 

calculating species richness (Donoghue 1985; Barraclough and Nee 2001, Rabosky and McCune 

2009).  

 

Species Complexes 

In addition to being familiar with the different concepts used to classify a species, there 

are several principles that one must understand to be able to study a species complex: character 
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displacement, limiting similarity, and cryptic species. Character displacement describes the 

phenomenon where closely related species show divergence and displace one another where their 

ranges overlap but show convergence and are difficult to distinguish in places where only one or 

the other is found (Brown and Wilson 1956). When populations of a single species diverge 

through allopatric speciation but occupy similar environments it is likely that the populations 

will develop similar adaptations and converge over time (Brown and Wilson 1956). However, 

when two populations overlap and face competition they are more likely to diverge through 

sympatric speciation, each developing distinct characteristics in order to evolve in separate 

ecological niches (Brown and Wilson 1956).  

It is believed that displacement occurs partly due to limiting similarity, or the maximum 

number of species that can successfully coexist (Macarthur and Levins 1976). Macarthur and 

Levins define limiting similarity as “the total number of species proportional to the total range of 

the environment divided by the niche breadth of the species (Macarthur and Levins 1976). 

Character displacement can make identifying all taxa within a species complex extremely 

difficult because it may be impossible to discern whether an allopatric population has diverged to 

the point of speciation or belongs to a species that has already been identified (Brown and 

Wilson 1956; Weber and Strauss 2016).  

When two or more species are so morphologically identical that they cannot be defined 

by their phenotypic traits they are considered to be cryptic species (Bickford et al. 2007; Moritz 

2017). Cryptic species are common among species complexes and present a challenge to 

researchers when trying to fill in gaps in evolutionary history (Bickford et al. 2007). Because all 

member of a species complex are closely related and morphologically similar, they are 

represented by a single, well defined species within the group (Moritz 2017).  
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Methods for Studying Species Complexes 

 One of the most common methods for studying a species complex is to study and 

compare the morphological traits of species within the complex. When a new morphological 

structure develops it allows a species to invade new adaptive zones and gives the species a 

chance to diversify in its new environment (Simpson 1953). Identifying morphological “key 

innovations” can help researchers understand how diversification of species within a clade 

develops over time (Heard and Hauser 1995). However, many species complexes contain species 

that are morphologically identical and make identification based on character traits alone 

impossible, prompting the need for more precise methods (Weber and Strauss 2016; Moritz 

2017). 

Using molecular methods to study evolutionary relationships has resulted in major 

advancements in the world of evolutionary biology. Coyne and Orr produced a landmark paper 

in 1988 by measuring codon differences using electrophoretic magnetic distancing to calculate 

divergence time between species of Drosophila (Coyne and Orr 1988).  Today, one of the most 

effective ways to study geographic distribution as well as evolutionary history is to analyze 

genetic markers found in mitochondrial DNA. Unlike nuclear DNA, mtDNA is haploid, does not 

recombine, and can accumulate mutations more rapidly, making it useful for clearing up 

discrepancies within nuclear gene trees (Wallis et al. 2017). However, analyzing mtDNA alone 

does not take into account cases of introgression, hybridization, and lineage sorting that can be 

found by analyzing multiple nuclear genes and identifying the differences between samples 

(Wallis et al. 2017). A recent study that analyzed 48 individual published works found that there 

was only a 43.9% concordance between nuclear and mitochondrial gene trees in freshwater 

fishes (Wallis et al. 2017). Still, mtDNA analysis can be rather useful when trying to uncover 
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cryptic species (Moritz 2017). Molecular phylogenies can reveal a much greater level of 

diversity and species richness within a clade compared to morphological data alone (Rabosky 

and McCune 2009). When this molecular data is then combined with data collected on 

morphology and ecology of a species it can more accurately portray how environmental factors 

have influenced divergence rates of species clades (Rabosky and McCune 2009).  

The methods for sequencing DNA are constantly evolving, with each procedure having 

its own strengths and weaknesses. The use of amplified fragment length polymorphisms 

(AFLPs) has recently replaced previously common approaches such as restriction fragment 

length polymorphisms (RFLPs) and randomly amplifies polymorphic DNAs (RAPDs) (Douglas 

and Douglas 2010). AFLPs can produce higher yields of data using a smaller amount of DNA 

than other methods (Savelkoul et al. 1999). They are useful for measuring variation at more 

immediate levels of divergence such as between individuals or populations, but become less 

effective when analyzing larger taxonomic groups (Savelkoul et al. 1999; Douglas and Douglas 

2010). Another technique, and the one used for this study, provides a cheaper and more precise 

alternative to the RADseq method, which uses a restriction enzyme as well as random 

fragmentation to create segments of DNA (Peterson et al. 2012). Double digest RAD sequencing 

(ddRAD) instead uses two enzymes and precise selection of fragments resulting in more uniform 

sets of information and increased ability to compare across multiple individuals (Peterson et al. 

2012). In addition to more advanced sequencing techniques, DNA barcoding, which identifies 

short genetic sequences unique to a particular species, has dramatically improved the process of 

species identification using genomic data (Herbert and Gregory 2005). Although it is not full 

proof, some studies have estimated that this system can accurately identify species up to 97% 

(Herbert and Gregory 2005).  
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Conservation of Species Complexes 

 Studying species complexes and understanding how they interact with their environment 

is vital to species conservation. When cryptic species remain undiscovered, data that is important 

to creating and implementing a conservation plan such as species richness and number of 

invasive species can be inaccurate and lead to further mismanagement (Bickford et al. 2007). 

Recognizing that species identification cannot always keep up with the need for conservative 

action, biologists have tried to implement a protocol for identifying genetically important 

populations even if their taxonomic status is still up for debate (Ryder 1986; Taylor 1999; Fraser 

and Bernatchez 2001). The development of the evolutionarily significant unit (ESU) serves to 

determine which populations and sub-species are significant in terms of both genetic 

preservation and continued variation within a species (Ryder 1986). While the boundaries that 

determine an ESU are still being debated, this approach has the potential to be an effective guide 

for conservation efforts when discrepancies in phylogeny within species complex are evident 

(Fraser and Bernatchez 2001).  

 A species cannot be saved if its existence is unknown, and with recent climate change 

expected to cause widespread extinction events and changes in niche for many species, it has 

become imperative that our knowledge of speciation and how it is affected by the environment 

be as accurate as possible (Bickford et al. 2007, Vallin et al 2010). Cryptic species consistently 

complicate conservation efforts by distorting estimates of biodiversity (Angulo and Icochea 

2010). What is thought to be one species may actually contain several cryptic species, each with 

varying levels of endangerment (Bickford et al. 2007, Angulo and Icochea 2010). Gaining 

support for management and protection of undescribed species is incredibly difficult because 

they often lack official assessment from entities such as the IUCN, who have a major influence 
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over conservation efforts that are mandated by the Endangered Species Act (Frasier and 

Bernatchez 2001; Angulo and Icochea 2010).   

 Constant manipulation and degradation of the natural environment by humans over an 

extended amount of time has made habitat loss the number one threat to biodiversity (Bickford et 

al. 2007). Accurately defining a species’ range has become an important focus of molecular 

genetics, as cryptic species are often revealed when sampling across the perceived range for a 

known species (Stuart et al. 2006; Bossu and Near 2009). Conservation efforts must be adapted 

when it is revealed that resource depletion is affecting a cryptic species with a restricted range 

rather than a sub-population of a species that was thought to have a wider range (Bickford et al. 

2007). 

Understanding how species have evolved up to this point could provide valuable insight 

as to how species will evolve in the future, which would help conservationists take preventative 

measures to insure the highest rates of species survival (Heard and Hauser 1995; Bickford et al. 

2007; de Queiroz 2007). Molecular studies have shown success at resolving phylogenies across 

multiple levels of divergence (Mendelson and Wong 2010). These phylogenies, when cross-

referenced with studies of morphology and ecology, could reveal how some species became 

extinct while others persisted. 

 

 

 

 



14 

PHYLOGENY OF THE ORANGETHROAT DARTER 

Introduction 

Darters (Teleostei: Percidae: Etheostoma) are small, benthic fishes representing the most 

diverse group of freshwater fishes in North America, consisting of an estimated 250 endemic 

species. (Sloss et al. 2004; Lang and Mayden 2007; Ray et al. 2008; Bossu and Near 2009; Near 

et al. 2011). While the monophyly of darters, recognized as the sub-family Etheostomatinae, has 

been consistently demonstrated for some time, phylogenetic resolution of the species 

relationships within the darter clade has proven challenging (Bailey and Gosline 1955; Sloss et 

al. 2004; Lang and Mayden 2007; Near et al. 2011). Difficulty in reaching a consensus within 

genera and subgenera can be demonstrated by efforts to establish the subgenus Oligocephalus as 

a monophyletic group (Bailey and Etnier 1988; Lang and Mayden 2007). While the inability to 

identify a unifying characteristic possessed by all species belonging to the subgenus strongly 

suggests that the group is non-monophyletic, subsequent grouping into well-defined species 

clades is an ongoing debate (Lang and Mayden 2007; Bossu and Near 2009).  

Tracing divergence through the evolutionary history of darters has been complicated by a 

series of recent events that resulted in rapid, large scale speciation in freshwater habitats (Bailey 

and Gosline 1955; Sloss et al. 2004; Near et al. 2011). Pleistocene glaciations caused 

fragmentation within many darter species and fragmented populations diverged in allopatry over 

time (Douglas and Douglas 2010). As a result, some extant species have a wide distribution, 

while others have been restricted to isolated drainages, making them vulnerable to extinction 

(Lang and Mayden 2007; Ray et al. 2008; Bossu and Near 2009). New species are difficult to 

detect if they display cryptic morphology, because species are primarily identified by phenotypic 

traits. Interspecific hybridization and resulting introgression further complicate the process of 

resolving species relationships by causing discordance between mitochondrial and nuclear gene 
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phylogenies. Mitochondrial DNA is haploid and nonrecombining, allowing it to accumulate 

mutations more quickly than nuclear DNA, making it useful when trying to resolve phylogenetic 

relationships between closely related species (Bossu and Near 2009; Near et al. 2011; Wallis et 

al. 2017). The problem with using mtDNA alone to generate species trees is that these factors, 

along with its sex-biased gene flow, also cause introgression of heterospecific genomes to occur 

much more frequently in mtDNA than in nuclear DNA (Bossu and Near 2009; Irwin et al. 2009). 

Consequently, mtDNA phylogenies can present an inaccurate representation of evolutionary 

history, making it necessary to cross reference with nuclear gene phylogenies.   

Darters are a species rich clade that occupy a wide range of habitats (Sloss et al. 2004; Near 

et al. 2011). Like many freshwater fishes, species within Etheostoma exhibit high levels of 

interspecific hybridization (Lang and Mayden 2007; Ray et al. 2008; Bossu and Near 2009; Near 

et al. 2011; Wallis et al. 2017). Freshwater habitats are rather diverse, ranging from small riffles, 

tributaries, and ponds to larger rivers and lakes, increasing the likeliness that allopatric speciation 

will occur after a population becomes isolated (Lang and Mayden 2007; Wallis et al. 2017). 

When climactic events or habitat modification results in the formation of new contact zones, the 

probability that sister and even non-sister species will hybridize is greater due to decreased 

prezygotic isolation (Ray et al. 2008; Wallis et al. 2017). Hybridization between E. uniporum 

and E. caeruleum and the resulting introgression of E. caeruleum haplotypes into the Etheostoma 

spectabile clade have been documented in multiple locations of sympatry across the Eastern 

United States (Distler 1968; Ray et al. 2008; Bossu and Near et al. 2009). In the river systems 

and drainages of the Ozark Highlands, where the two species’ ranges largely overlap, studies 

have found that the mitochondrial genome of E. uniporum has been almost entirely replaced by 

the genome of E. caeruleum (Ray et al. 2008) 
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 The Orangethroat Darter (Etheostoma spectabile) complex has been recognized as a species 

clade that contains eight known species as well as several that have not yet been described 

(Bossu and Near 2009). This study will evaluate the distribution of the E. spectabile complex as 

well as how members of the clade interact with other darter species that have overlapping ranges. 

The objective of this study is to determine which darter species are represented in the drainage 

systems of the Ozark Highlands, and how the presence of those species might alter the 

phylogenetic relationships within the E. spectabile clade.  
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Methods and Materials 

Collection 

Fish were collected by seine nets at 50 locations across the White River drainage, 

Arkansas, USA (Figure 1.) during the months of June and July 2017 after receiving IACUC 

approval and state permits. The specimens were anesthetized in MS-222 and preserved in 100% 

ethanol. Collections were then transported to the Conservation and Molecular Ecology 

Laboratory at the University of Arkansas where the species of each specimen was identified. The 

right pectoral fin and/or caudal fin and peduncle were taken from each individual as a tissue 

sample and stored in 100% ethanol at -20℃ prior to extraction. 

Sequencing 

DNA was extracted from the tissue samples of 96 individuals using a Qiagen Fast Kit, 

following the manufacturer protocols (Bossu and Near 2009). The DNA was then prepared for 

ddRAD (double digest restriction associated DNA) sequencing by digesting the DNA with the 

restriction enzymes Mspl and Pstl. Each individual was ligated with a unique barcode and given 

1 of 2 indices (48 individuals per index) so they could be pooled into a single lane for 

sequencing. Sequencing of the pooled DNA was conducted by the Genomics and Cell 

Characterization Core Facility at the University of Oregon. 

Analysis  

Sequence data was de-multiplexed, filtered, and aligned using Pyrad. Genomes were 

aligned at 8000 randomly selected loci with 100 base pairs each. Phylogenies were constructed 

using SVDQuartets analysis within the Paup program and nodal support was calculated by 

generating bootstrap values for 1000 iterations (Ray et al. 2008).  
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Results 

While previous nuclear gene phylogenies have resulted in the recovery of the E. 

spectabile species clade as a monophyletic group (Lang and Mayden 2007; Ray et al. 2008; 

Bossu and Near 2009), SVDQuartet analysis yielded a tree containing four major monophyletic, 

well supported clades that revealed non-monophyly between the E. spectabile species 

represented (Figure 2.). Clade 1 includes all sampled Etheostoma except for E. Caeruleum and 

E. fragi, who form monophyletic Clade 4 with strong bootstrap support at 83.5%.  

Clade 2 contains members of several subgenera including Etheostoma, Hololepis, 

Oligocephalus, and Ozarka (Near et al. 2011). Bootstrap supports for the monophyletic 

relationships within this clade remain high until bifurcation at the final node results in the 

monophyly of E. gracile and E. whipplei, which is only 51.8% supported. Clade 3 contains the 

remaining two sampled members of E. spectabile, as well as the recovery of a sister-species 

relationship between E. Euzonum and E. Uniporum with 100% bootstrap support at the 

corresponding node. The resolution of Clade 3, which includes E. spectabile and E. flabellare as 

well, is also strongly supported at 99%. 

Comparison with Bossu and Near’s 2009 tree that was calculated using minimized deep 

coalescences reveals several distinct differences. First is the failure of the SVDQuartet tree to 

establish monophyly within the E. spectabile clade, whereas E. uniporum, E. fragi, and E. 

spectabile were recovered by Bossu and Near as a monophyletic group with very strong 

bootstrap support (Bossu and Near 2009). Another is the recovery in 2009 of E. fragi and E. 

spectabile as sister taxa. This contradicts the SVDQuartet tree (Figure 2.), which shows a more 

distant relationship within Clade 1. The Bossu and Near tree also shows that out of all species 

sampled for this study, E. caeruleum is most closely related to E. whipplei, not E. fragi.  
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Discussion 

 SVDQuartet analysis of sampled DNA resulted in some interesting relationships between 

the species found in the Ozark Highlands of Arkansas, and raised some questions about the 

relationships that have been discovered in previous studies. The non-monophyly of the E. 

spectabile clade contradicts previous studies that have distinguished it as a monophyletic taxon 

using nuclear DNA (Ray et al. 2008; Bossu and Near 2009, Near et al. 2011). However, the 

resolution of sister species relationships between member of E. spectabile and other Etheostoma, 

though they may not be the same as those found in previous studies, is consistent with claims 

that large amounts of heterospecific DNA are being introgressed into the E. spectabile complex 

(Ray et al. 2008; Bossu and Near 2009, Near et al. 2011). It is also reveals how topography can 

shape species relationships and supports evidence that cases of hybridization and introgression 

are relatively high is relatively high in White River drainages, where habitat diversity has had a 

major influence on divergence patterns in the region (Distler 1968; Ray et al. 2008). 

 Despite the contrasts between the tree generated from this study and trees generated from 

previous studies like Bossu and Near, it is not meant to correct any previous findings, but rather 

to provide another perspective as to how closely related species might interact with one another 

in contact zones. This tree was generated by analyzing a total of only 96 samples, a much smaller 

data set than what was obtained by previous researchers (Ray et al. 2008; Bossu and Near 2009, 

Near et al. 2011). SVDQuartet analysis also uses randomly selected fragments of DNA, rather 

than targeting specific genes, and only nuclear DNA is analyzed, unlike other analyses like 

minimized deep coalescences, that compares the gene trees of several mitochondrial and nuclear 

genes to infer a single species tree (Bossu and Near 2009). It is also important to note that this 

study focuses on a single geographic region, while Bossu and Near gathered data from a much 
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broader range, focusing more on the Eastern Highlands than the drainage systems found in 

Arkansas (Bossu and Near 2009, Near et al. 2011). Therefore, the results of this study should not 

be used to make more general predictions of species distribution and behavior in parts of their 

range that were not sampled. 

 To further evaluate the accuracy of the results generated by this study, more trials are 

needed that include larger sampling sizes, analysis of multiple genetic markers on both 

mitochondrial and nuclear DNA, and the generation and comparison of species trees using more 

than one method. The Ozark Highlands are an important example of how habitat diversity and 

species diversity are directly related, and studying how species interact in species rich 

environments is extremely important when trying to manage these areas and conserve 

biodiversity.  
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Figures 

Figure 1. Map of the White River Drainage system in Missouri and Arkansas (grey). Red dots 

indicate the 50 locations where samples were collected in Arkansas.   
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Figure 2. Phylogeny generated from SVDQuartets analysis of 8000 nDNA loci with 100 base 

pairs per locus. Bootstrap values calculated for 1000 iterations are represented at the nodes. A 

total of 12 species of Etheostoma were recovered from 96 samples, including 3 from the E. 

spectabile complex, represented by an asterisks (*). Species codes are elaborated in Table 1.  
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Tables 

Table 1. Elaboration of species codes with corresponding scientific and common nomenclature. 

There are 12 species of Etheostoma represented as well as the outgroup Percina. 

SPECIES CODE SPECIES COMMON NAME  

ETHGRA Etheostoma gracile Slough darter 

 
ETHWHI Etheostoma whipplei Redfin darter 

 
ETHPUN Etheostoma 

punctulatum 
Strippled darter 

 
ETHZON Etheostoma zonale Banded darter 

 
ETHBLE Etheostoma 

blenniodes 
Greenside darter 

 
ETHJUL Etheostoma juliae Yoke darter 

 
ETHEUZ Etheostoma euzonum Arkansas saddled 

darter 

 
ETHUNI Etheostoma uniporum Current darter 

 
ETHFLA Etheostoma flabellare Fantail darter 

 
ETHSPE Etheostoma spectabile Orangethroat 

darter 
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SPECIES CODE SPECIES COMMON NAME  

ETHCAE Etheostoma caeruleum Rainbow darter 

 
ETHFRA Etheostoma fragi Strawberry darter 

 
PERCINA Percina caprodes Logperch 

 
Table 1. (Continued) 
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