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ABSTRACT 

In prestressed members, self-consolidating concrete (SCC) has in some cases exhibited 

lower shear capacity than conventional concrete, which has been attributed to decreased 

aggregate interlock. However, little data is currently available to assess whether use of 

lightweight aggregate in prestressed SCC beams has further impact on aggregate interlock and 

shear strength. This study measured the shear capacity of six prestressed beams made from three 

different concrete mixtures: lightweight self-consolidating concrete (LWSCC) with expanded 

shale aggregate, LWSCC with expanded clay aggregate, and control normal weight SCC with 

limestone aggregate. Predicted shear capacities were determined based on current ACI Building 

Code and compared with measured shear strengths. ACI predictions underestimated shear 

capacity for all tests and were more conservative for the control normal weight SCC beams than 

for the LWSCC beams. 
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INTRODUCTION 

Presented in this paper are the results of a research project that examined the use of 

lightweight self-consolidating concrete (LWSCC) in prestressed beams. Lightweight concrete by 

definition has a lower unit weight than that of conventional concrete, which reduces dead load 

and thereby decreases overall material requirements. Self-consolidating concrete (SCC) was 

developed in response to a need for improved construction and products. The use of SCC 

eliminates the need for vibration during placement, which is achieved through both a high 

deformability and a resistance to segregation when in its fresh state. These advantages compared 

to conventional concrete have been the major driving factor for the prestressed concrete research 

that has focused on LWSCC and SCC. However, there is currently little data on the shear 

strength of prestressed LWSCC beams, and likewise there is little understanding regarding their 

mechanical properties. This experimental study was conducted to determine the shear capacity of 

prestressed LWSCC beams and to compare these values both to the predicted shear capacity 

obtained using current ACI Building Code (ACI Committee 318, 2011), referred to hereafter as 

ACI 318, and to the results for control normal weight SCC beams.   

BACKGROUND 

The shear strength of prestressed concrete members cast with normal weight self-

consolidating concrete (SCC) has been studied on multiple occasions, but the conclusions vary 

regarding whether or not SCC has lower shear strength than conventional concrete (CC). 

Multiple studies have displayed similar shear strengths for both SCC and CC in prestressed 

beams (Burgueño and Bendert 2007; Hamilton and Labonte 2005; Naito et al. 2006), while 

others have shown slightly lower shear strengths for SCC compared to CC (Hegger et al. 2007; 

Hassan et al. 2010). Aggregate interlock has long been known as a significant contributing factor 
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to shear strength (Taylor 1970). Khayat and Mitchell (2009) concluded that an observed decrease 

in shear strength of SCC relative to CC is likely the result of reduced aggregate interlock in SCC 

because of its lower coarse aggregate content. In addition, aggregate type also affects aggregate 

interlock in both SCC and CC mixtures, though the effects of aggregate type on shear strength 

and on other mixture properties of SCC are still not fully understood (Kim et al. 2010).  

ACI 318 design provisions use a modification factor (λ) when calculating shear strength 

to account for the decreased mechanical properties of lightweight concrete (LWC) relative to 

normal weight mixtures of similar compressive strength. Yang and Ashour (2011) assessed the 

aggregate interlock properties of LWC in deep beams, which either have an overall span-to-

depth ratio equal to or less than 4.0 or have a concentrated load placed within a distance of two 

times the overall height from the face of a support. Their study determined that the ACI 

modification factor for LWC led to conservative shear capacity predictions for some but not all 

concrete mix designs. Dymond et al. (2010) determined the shear strength of a single prestressed 

LWSCC bridge girder and compared this to the predicted strength from the AASHTO general 

method (2002), which was found to be conservative. The AASHTO (2002) method analyzed for 

their study differs from the ACI 318 detailed method only by minor variations in the application 

of the LWC modification factor. Though cases of decreased shear strength for both LWC and 

SCC have been demonstrated, little data is available other than that provided by Dymond et al. 

(2010) to assess the shear capacity of prestressed LWSCC members.  

MATERIALS AND METHODS 

Test Specimens 

 Six rectangular beams with dimensions of 6.5 in. x 12 in. x 18 ft. were cast for the non-

destructive study of prestress losses at the University of Arkansas (Bymaster 2012). These beams 
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were later used for this study of shear strength. The sample set consisted of two beams made 

from each of three mixture designs: LWSCC with expanded clay aggregate, LWSCC with 

expanded shale aggregate, and control normal weight SCC with limestone aggregate. Table 1 

gives the nominal maximum size, the specific gravity (SG) and the absorption capacity (AC) for 

each of the coarse aggregate types. The concrete mixture proportions are given in Table 2 and 

were developed during another previous research project at the University of Arkansas (Floyd 

2012). Two Grade 270 low-relaxation prestressing steel strands of 0.6 in. diameter were placed 

at 10 in. of depth from the top fiber of each beam. Additional Grade 60 steel reinforcement 

included two ¾ in. (No. 6) bars placed 2 in. from the top fiber and ¼ in. (No. 2) smooth rebar 

shear stirrups. Spacing of the steel reinforcement in the beam design is shown in Figure 1.  

Table 1. Aggregate Properties 

Aggregate Type Limestone Clay Shale 

Nom. Max. Size (in.)  3/8 1/2 3/4 

SG (ASTM C127) 2.68 1.24 1.40 

SG (ACI 211.2) NA 1.25 1.41 

AC (ASTM C127) (%) 0.38 16.3 15.0 

AC (ACI 211.2) (%) NA 15.0 12.9 

Table 2. Concrete Mixture Proportions 

Material Clay  Shale  Limestone 

Cement a. (lb/yd3) 808 832 825 

Fly Ash (lb/yd3) 142 147 0 

Coarse Aggregate (lb/yd3) 649 703 1392 

Fine Aggregate (lb/yd3) 1242 1270 1403 

Water (lb/yd3) 333 333 330 

w/cm 0.35 0.34 0.40 

HRWR ADVA 575             

(fl oz/cwt) 
9.5 - 11 8 - 10 5 - 6 

HRWR ADVA 405 or 408 

(fl oz/cwt) 
26 25 15 

Calculated unit wt. (lb/ft3) 117.6 121.7 146.3 
a. Lightweight aggregate mixes used Type III cement; normal weight used Type I 
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Figure 1. Beam Reinforcement Design 

 For the study of prestress losses, each beam was loaded approximately five months after 

casting with about 65 lb./ft. of load (Bymaster 2012). This load met the ACI 318 design 

requirements of a Class T beam, which has tensile stress in the extreme fiber that is between 7.5 

and 12 times the square root of the compressive strength. Class T beam loading is common in 

bridge girders and did not affect the shear capacity of the beams. These loads were left in place 

on each beam for a minimum of six months and were removed before shear testing. The average 

compressive strengths of each beam were obtained from companion cylinders at the time of 

shear testing and are given in Table 3.  
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Table 3. Average Compressive Strengths 

Beam ID Compressive Strength (psi) 

Shale 1 7,950 

Shale 2 7,420 

Clay 3  8,670 

Clay 4 7,500 

Limestone 1 12,070 

Limestone 2 12,090 

Experimental Setup and Procedure 

 Each beam end was tested using a simply supported setup with a 7 ft. span between the 

pin and the roller. The beam was loaded at a single point, the configuration for which is shown in 

Figure 2. The test ends of each beam are identified as either the live end (end nearest the 

prestress strand tensioning apparatus) or the dead end (end opposite the prestress strand 

tensioning apparatus). Floyd (2012) measured transfer lengths for each of these concrete 

mixtures, none of which exceeded 26 in. by 28 days of age; in addition, it was noted that the 

transfer length readings had stabilized by approximately 14 days. Therefore, the pin was set no 

closer than 30 in. from the beam end to ensure that shearing occurred after the transfer length. 

For the LWSCC tests, the pin was located 30 in. from the test end and the load was an additional 

18 in. from the pin, or 48 in. from the beam end. For the normal weight SCC tests, the pin was 

located 33 in. from the test end and the load was an additional 15 in. from the pin, or 48 in. from 

the beam end. All tests had approximately 9.5 ft. of overhang past the roller to ensure that testing 

on one end would not affect the shear capacity of the other. Because of these loading 

configurations, all tests are considered deep beams, as defined previously.  

 Load was applied to each beam by a manual hydraulic jack that was attached to an 

anchored load frame. Load was transferred from the jack onto the beam by a 6 in. steel block that 

was modeled as a point load. Loading was conducted in 5,000 lb. increments until cracking was 
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observed. Once cracking occurred, 2,500 lb. load increments were used until failure. At each 

load increment, shear and tension cracks were marked (if necessary) and manual deflection 

readings were taken.  

During testing, two linear voltage differential transformers (LVDTs) were attached to the 

prestressing strands on the beam end being tested. These LVDTs monitored strand movement 

during loading. Additionally, a linear encoder was used to measure deflection at the point load 

location throughout testing. Load, strand slip and deflection data were obtained via 

instrumentation and data points were taken and recorded continuously by a computer program. 

For the limestone beams, which failed at higher point loads, the recording capacity of the 

programmed load variable was exceeded at approximately 86,000 lbs. and manual load readings 

were taken from the hydraulic jack pressure gauge at loads exceeding this capacity. Figure 2 

displays the testing setup with instrumentation in place.  

 

Figure 2. Beam Test Setup  
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RESULTS  

 Two modes of shear failure were observed: web-shear failure and flexure-shear failure. 

Web-shear cracking is characterized by diagonal cracking within the web of a beam and is the 

result of a shear induced principal tension force. Web-shear cracks occurred suddenly between 

the pin and the load for all tests, though not always before flexural cracks. All beams that failed 

in web-shear did so along this initial observed web-shear crack. Flexure-shear cracking results 

from a combination of shear and moment. The beams that failed in flexure-shear did so as a 

result of flexure cracks that began in the longer shear span for the loading condition (between the 

load and the roller) and then turned to diagonal shear cracks that angled toward the load. 

Flexure-shear failures were also characterized by some amount of moment induced crushing in 

the top fiber, but web-shear failures did not exhibit this crushing. Figure 3 shows the Clay 4 dead 

end test, which displays a typical web-shear failure observed in this study. Figure 4 shows the 

Limestone 1 live end test, which is a typical flexure-shear failure that exhibits crushing in the top 

fiber.  

 

Figure 3. Clay 4 Dead End Test – Typical Web-Shear Failure 
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Figure 4. Limestone 1 Live End Test – Typical Flexure-Shear Failure 

 No significant strand slip was measured during any tests and only one notable slip 

occurred, which was measured at 0.05 in. during the Limestone 1 dead end test. This indicates 

that the loading had no overall effect on the strand bond within the transfer zone. Load-versus-

deflection graphs were created for all the LWSCC beam tests. Since the capacities of the normal 

weight SCC beams exceeded the capacity of the program, there are no load versus deflection 

graphs for these beams. These graphs confirmed shear failure because minimal deflection was 

experienced after the peak load and before failure. Flexure-shear failure generally exhibits 

slightly more deflection at a constant load before failure than web-shear failure does, which was 

reflected in these graphs. The load versus deflection graph for the Shale 1 live end test is a 

representative sample for all LWSCC beam tests and is given in Figure 5.  
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Figure 5. Shale 1 Live End Test – Load-vs.-Deflection 

 Table 4 outlines the pertinent data for all tests, including the shear span-to-depth ratio 

(a/d). Laskar et al. (2010) investigated the a/d ratio for over a hundred prestressed girders 

available in literature and concluded that this ratio had a direct affect on the concrete 

contribution to shear strength. For the normal weight SCC beams, the load was shifted closer to 

the pin support to ensure failure for these relatively stronger beams. This yielded a slightly 

smaller a/d ratio for these tests.  
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Table 4. Test Data 

Beam Test 

Identification 
Max Load (lb.)  Max Deflection (in.) a/d Failure Type 

Shale 1 – D 79,300 1.3 1.8 Flexure-Shear 

Shale 1 – L 79,700 1.1 1.8 Web-Shear 

Shale 2 – D 75,700 0.9 1.8 Web-Shear 

Shale 2 – L 78,800 1.2 1.8 Web-Shear 

Clay 3 – D 75,300 0.8 1.8 Flexure-Shear 

Clay 3 – L 77,200 1.9 1.8 Flexure-Shear 

Clay 4 – D 72,600 0.9 1.8 Web-Shear 

Clay 4 – L 77,200 1.0 1.8 Web-Shear 

Limestone 1 – D 100,000 0.9 1.5 Flexure-Shear 

Limestone 1 – L 113,000 1.0 1.5 Flexure-Shear 

Limestone 2 – D 111,000 1.0 1.5 Web-Shear 

Limestone 2 – L 110,000 1.1 1.5 Web-Shear 

Note: D = dead end of specimen; L = live end of specimen 

Shear Capacity Comparison 

 The maximum point load for each beam was used to determine the maximum shear stress 

that occurred. These values were compared with the predicted shear capacity computed from 

ACI 318 provisions, which is based on the shear resistance contributions of both the concrete and 

the steel shear reinforcement as given by:  

Vn =Vc +Vs         Equation 1 

 where: 

Vn = nominal shear strength (lb.)  

 Vc = nominal shear strength provided by concrete (lb.)  

 Vs = nominal shear strength provided by shear reinforcement (lb.) 

ACI 318 provides both a general method and a detailed method for computing the concrete 

contribution to shear capacity in prestressed members. The general method computes the 

nominal shear strength of concrete (Vc), while the detailed method states that the lesser of the 

nominal concrete flexure-shear strength (Vci) and the nominal concrete web-shear strength (Vcw) 

should be taken. The design method employed to create these beams for the study of prestress 
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losses did not require either a factored moment (Mu or Mmax) or a factored shear force (Vu or Vi), 

which are two necessary components for computing the general concrete shear strength and the 

flexure-shear strength discussed above. Thus, this study was limited to use of the web-shear 

strength (Vcw) to calculate the concrete contribution to shear strength as given by: 

  ppwpcccw VdbffV  3.05.3 '      Equation 2 

 

where: 

 Vcw = nominal shear strength provided by concrete when diagonal cracking results from  

high principal tensile stress in web (lb.) 

λ = modification factor reflecting the reduced mechanical properties of lightweight 

concrete 

√𝑓𝑐′ = square root of specified compressive strength of concrete 

fpc = compressive stress in concrete (after allowance for all prestress losses) at centroid of 

cross section resisting externally applied loads (psi) 

bw = web width (in.) 

dp = distance from extreme compression fiber to centroid of prestressing steel (in.) 

Vp = vertical component of effective prestress force at section (lb.) (ACI Committee 318 

2011) 

The steel contribution to overall shear capacity is given by:  

Vs = Av fytd s         Equation 3 

 

where: 

Vs = nominal shear strength provided by shear reinforcement (lb.) 

Av = area of shear reinforcement within spacing s (in.2) 

fyt = specified yield strength fy of transverse reinforcement (psi) 

d = distance from extreme compression fiber to centroid of longitudinal tension 

reinforcement (in.)  

s = center-to-center spacing of transverse reinforcement (in.) (ACI Committee 318 2011) 

The calculated web-shear strengths were compared with the maximum and minimum 

concrete shear strengths outlined in the ACI 318 general method, which are given by dbf wc

'5  

and dbf wc

'2 , respectively. After this analysis, it was determined that the calculated values for 

Vcw exceeded the maximum concrete contribution in all cases. While this maximum value gives 

the true prediction of concrete shear strength according to ACI 318 provisions, the overall shear 
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capacity was also calculated using Vcw to assess the accuracy of this equation. A comparison of 

the measured and calculated shear capacities is given in Table 5.  

Table 5. Shear Capacity Comparison 

Beam Test 

Identification 

ACI Shear 

Capacity (From 

Vcw) (lb.) 

ACI Shear 

Capacity (From 

Max Vc) (lb.) 

Measured 

Shear 

Strength (lb.) 

Vtest/Vcode 

(From 

Vcw)  

Vtest/Vcode 

(From 

Max Vc)  

Shale 1 – D 
55,100 44,600 

62,100 1.13 1.39 

Shale 1 – L 62,500 1.13 1.40 

Shale 2 – D 
54,600 43,800 

59,300 1.09 1.35 

Shale 2 – L 61,700 1.13 1.41 

Clay 3 – D 
55,900 45,700 

59,000 1.05 1.29 

Clay 3 – L 60,500 1.08 1.32 

Clay 4 – D 
54,600 43,900 

56,900 1.04 1.30 

Clay 4 – L 60,500 1.11 1.38 

Limestone 1 – D 
62,900 55,700 

82,000 1.30 1.47 

Limestone 1 – L 92,700 1.47 1.66 

Limestone 2 – D 
62,900 55,700 

91,000 1.45 1.63 

Limestone 2 – L 90,200 1.43 1.62 

Note: D = dead end of specimen; L = live end of specimen 

CONCLUSIONS 

 The goal of this study was to assess the shear capacity of prestressed LWSCC beams and 

compare the measured values with current ACI 318 provisions. The following conclusions and 

recommendations have been drawn from this research:  

 Conservative estimates of shear capacity were provided for the LWSCC beams with a 

29% - 41% margin of safety. Comparatively, conservative estimates were found for the 

control SCC beams with a 47% - 66% margin of safety.  

 For web-shear failures only, use of Vcw provided conservative estimates of shear capacity 

with a 4% - 13% margin of safety for the LWSCC beams and a 43% - 45% margin of 

safety for the control SCC beams. Inclusion of flexure-shear failures yielded a 4% - 13% 

margin of safety for the LWSCC beams and a 40% - 47% margin of safety for the control 

SCC beams.  
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 ACI 318 predictions of shear capacity were adequate for the prestressed LWSCC beams 

studied. Estimates for LWSCC beams were less conservative than those given for control 

SCC beams, though the change in shear span-to-depth ratio may have influenced this 

result.  

 Further research is needed to assess the accuracy of the ACI 318 general shear and 

flexure-shear equations to predict the nominal concrete shear strength in prestressed 

LWSCC beams. Additionally, investigation of aggregate interlock and its affect on the 

shear strength differences between LWSCC and normal weight SCC in prestressed beams 

is needed.  
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