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Introduction 

 Production of beef cattle represents a $60 billion industry in the United States (USDA, 

2015).  The American beef cattle industry loses an estimated $370 million annually due to heat 

stress (St-Pierre, 2003). As of 2003, this was equal to nearly 99 million pounds of beef lost 

(USDA, 2015). The average American consumed roughly 65 pounds of beef in 2003; this means 

that the 99 million pounds of beef lost to heat stress would have been enough to feed 

approximately 1.5 million Americans for an entire year (Barclay, 2012). 

 The stress response axis adjusts the physiology of the body in order to maintain 

homeostasis in the presence of stressors of any kind (Tsigos, 2002). One of the main components 

of the stress response axis is corticotropin-releasing hormone (CRH). CRH increases 

thermogenesis and inhibits appetite as well as inhibiting growth hormone (GH), thyrotropin-

releasing hormone (TRH), and thyroid stimulating hormone (TSH) via somatostatin. 

Glucocorticoids also play an important role in stress response. Increases in glucocorticoids such 

as cortisol decrease the productivity of beef cattle by decreasing growth hormone release, 



decreasing gonadotropin-releasing hormone (GnRH) secretion, decreasing reproductive 

hormones such as luteinizing hormone (LH) and follicle stimulating hormone (FSH), and 

decreasing sex steroids. 

 All animals respond to heat stress stimuli by increasing production of a large family of 

proteins called heat-shock proteins (HSPs) (Lindquist, 1988). HSPs help protect cells from the 

negative effects of heat and other stresses. They are typically classified by molecular weight: 

HSP10, HSP60, HSP90, etc. Many HSPs act as molecular chaperones and play vital roles in 

transporting proteins, protecting cells from apoptosis due to stress, and folding and unfolding of 

proteins. HSP 90 is highly conserved and has been found and sequenced from many diverse 

species including insects, mammals, birds, and bacteria.  

Problem Statement  

HSP90 has been discovered in beef cattle, but a gap in the research exists with this 

particular protein. This leads to the problem statement of this research project: Environmental 

stressors, heat stress in particular, can reduce livestock productivity by millions of dollars 

annually. Research is needed to help understand the relationship between polymorphisms of the 

genetic sequence that codes for HSP90, and the productivity of these animals.  

Limitations 

Possible limitations to this study include the fact that results determined for HSP90 may 

not be generalizable to other members of the HSP family. Uncontrollable environmental changes 

may also present threats to this study. 

Literature Review 



American Beef Cattle Industry 

The United States is home to the largest fed-cattle industry in the world (USDA, n.d.a). 

Feed lots and cow-calf operations in the U.S. contribute over 23 billion pounds of beef annually 

to the production industry, making the U.S. the leading beef producer (USDA, n.d.a; USDA, 

2015).  

Profitability 

As with any industry, a great concern of beef producers is profitability (Archer et al., 

1999). Profitability in the beef cattle industry relies heavily on the efficient provision of feed 

(Nkrumah et al., 2006). Because the cost of feed is so great, cattle farmers are concerned with 

ensuring that their cattle receive the most productive rations of feed possible so that no 

unnecessary excess is given. However, cattle farmers still need to simultaneously provide cattle 

with the necessary nutrition needed to develop. 

Cow-Calf Enterprise 

The cow-calf industry consists of both seedstock operations and commercial operations 

(Kahn, 2014). Seedstock operations are primarily concerned with producing breeding stock, 

whereas commercial operations produce cattle for slaughter, although seedstock operations 

occasionally raise additional commercial cattle. The majority of the beef produced in the United 

States comes from commercial cow-calf operations. These operations raise cross-bred cattle, and 

greatly outnumber purebred seedstock enterprises. Commercial cow-calf operations usually run 

on land appropriate for foraging, making it possible to raise cattle with lower feed costs (USDA, 

n.d.a). If environmental and weather conditions support the growth of forages, the cattle can be 

fed on forages all year. American cow-calf operations average 40 head of cattle per operation. 



These operations are usually an extension of larger farms, or are small-scale operations used to 

supplement other income. However, 51% of U.S. beef cattle inventory consists of cattle raised on 

cow-calf operations of 100+ head. These farms account for 9% of U.S. beef operations. Because 

cattle on cow-calf operations may remain part of the stock for generations, it is possible for the 

herd to develop and produce cattle who have genetically adapted to environmental changes 

(Siegel & Gross, 2000). 

Efficiency 

Reproduction, a vital component of cow-calf operations, can be greatly affected by heat 

stress (Hansen, 2009). Heat stress can have negative effects on oocyte development and 

maturation, spermatogenesis, embryonic development, and foetal and placental growth, as well 

as lactation. There are two basic ways that heat stress can affect reproduction. Reproductive 

functions can be effected by changes in body temperature due to homeokinetic functions (i.e. 

blood is sent outward from the body core in order to dissipate more heat.) When cattle are heat 

stressed they consume less feed, lessening their production of metabolic heat. The decreased feed 

intake can also cause a disruption in the animal’s energy balance and nutritional stability, which 

in turn can negatively affect fetal development, cyclicity, and conception rates. Heat stress can 

also cause homeokinetic systems to malfunction in the regulation of reproduction. The functions 

of germ cells, the developing embryo, and possibly other reproductive cells can be disrupted 

when the temperature of the animal increases above its regulated set point. Fetuses may 

experience reduced growth when the gestating animal is experiencing heat stress. Heat stress can 

also reduce the necessary nutritional intake of a fetus due to reduced nutritive intake of the 

gestating animal. 

Physiology 



In vertebrates, external stressors ignite a chain reaction of responses to deal with the 

stressor and to reestablish homeostasis (Boonstra, 2004; Sapolsky, et al., 2000). The sympathetic 

nervous system (SNS) prompts the adrenal medulla to release catecholamines (norepinephrine 

and epinephrine) within seconds of a stressor. These hormones enter into the general circulation, 

and the paraventricular nucleus (PVN) of the hypothalamus releases corticotropic releasing 

hormone (CRH) and arginine vasopressin (AVP) (Boonstra, 2004). This causes the anterior 

pituitary to secrete adrenocorticotropic hormone (ACTH) into the bloodstream. The adrenal 

cortex then secretes glucocorticoids (GCs) in response to the release of ACTH within minutes of 

ACTH entering the bloodstream. The primary GC in birds and small mammals such as mice and 

bats is corticosterone. In mammals such as primates and ungulates, the primary GC is cortisol. 

This response causes the mobilization of ATP to muscle cells by stimulating hepatic 

gluconeogenesis. This response also results in the shunting of energy away from the peripheral 

tissues that are unnecessary for short-term survival. Appetite and feeding decreases, cognition 

sharpens, reproductive physiology is suppressed, inflammatory response decreases, immune 

function increases, and cardiovascular tone is enhanced. 

Chronic Stressors 

When environmental stressors become chronic (time frame of days to months), the 

resulting impacts of inhibition can impact long-term survival by causing an inability of the 

immune system to fight off disease, reductions in growth, and infertility (Boonstra, 2004). In 

response to chronic stressors, animals can have long-term effects that cause them to produce 

abnormally high levels of GC as a response to the presence of ACTH. Through harmful feedback 

regulation the hippocampus disturbs the response of the hypothalamic-pituitary-adrenal axis 

(HPA). However, this regulation can be reduced by chronic stress, which causes a down 



regulation of GC receptors in the hippocampus thereby increasing GC concentrations. Chronic 

stressors can also cause an increase in the production of GC by causing adrenal hypertrophy, 

which enlarges the cells and increases the capacity to produce GC by the adrenocortical tissue. 

HSP Family 

An increase in the synthesis of certain proteins after cells were exposed to stressors such 

as heat shock was first discovered in drosophila cells in 1974, and the wide range of organisms 

that share this response was discovered soon after (Schlesinger, 1990). In more recent years 

scientists in this field have focused on the role of heat shock proteins as “molecular chaperones” 

(Schlesinger, 1990). Molecular chaperones are required for the folding of many proteins. They 

prevent protein structures that are malformed from occurring both in homeostatic conditions as 

well as when cells are exposed to stressors such as heat shock (Hartl, 1996). “Protein folding is 

the process by which the linear information contained in the amino-acid sequence of a 

polypeptide gives rise to the well-defined three-dimensional conformation of the functional 

protein.” Many HSPs are part of protein families that are typically present and essential for 

normal cellular function (Schlesinger, 1990). Some of the most studied HSPs that increase in 

expression under stressful conditions are HSP27, HSP70 and HSP90. These three HSPs in 

particular are found in unusually high quantities in cancer cells and are increased even more after 

cells are exposed to a variety of death stimuli (Jego et al., 2013; Garrido et al., 2006; Wang, 

2014). These proteins are very efficient at preventing apoptosis and thus blocking the cell death 

process (Joly et al., 2010; Wang, 2014). Research has shown that abnormally high expression of 

these HSPs escalates tumor growth, increases the chance that tumors will metastasize, and 

increases resistance to chemotherapy in tests on rodent specimens. As a result, inhibition of 

HSP27, HSP70 and HSP90 is being studied as a potential approach to cancer treatment.  



In another research study conducted by Florence Favatier, Liza Bornman, Lawrence E. 

Hightower, Eberhard Gunther, and Barbara S. Polla, polymorphisms of HSP70-1 in humans was 

analyzed to determine if there were differences in expression when comparing cell lines with C 

or A alleles (Favatier, 1997). In this study HSP70-1 expression was analyzed after heat shock in 

peripheral blood cells that were mononuclear from people with different HSP70-1 genotypes. No 

difference in expression was found. However, whether or not different polymorphisms of HSP70 

make certain people less susceptible to disease remains an open issue. According to these 

researchers, only a limited amount of these HSP polymorphisms have yet to be discovered, and 

single nucleotide or amino acid changes might only be detected by sequencing, which was not 

utilized in this study. They also agree that further studies of polymorphisms (HSP90 in 

particular) should prove to show significant differences. In our study, we analyzed HSP90 

through the use of genetic sequencing, as was suggested by this team of researchers. 

Transcription Factors 

When abundant stress is experienced, HSPs are promptly induced (Shamovsky & Nudler, 

2008; Wang, 2014). This is a phenomenon known as the heat shock response (HSR). Heat shock 

transcription factors (HSFs), the upstream transcriptional controllers of HSPs, mediate the HSR 

at the transcriptional level. HSF1-4 and HSFY have been identified as vertebrate HSFs, and each 

of these “exhibit a similar structure with a highly conserved amino-terminal helix-turn-helix 

DNA-binding domain and a carboxy-terminal transactivation domain” (Green et al., 1995; Nakai 

et al., 1997; Sistonen et al., 1994; Wang, 2014). The chief transcription factor for the HSR is 

HSF1 (Åkerfelt et al., 2010; Wang, 2014; Whitesell & Lindquist, 2009). HSF1 coordinates the 

continued existence of cells in response to different forms of cellular stress and normalizes the 

expression of HSPs (Åkerfelt et al., 2007; Whitesell & Lindquist, 2009).  



HSF1 serves as a sedentary monomer in physiological conditions (Wang, 2014; 

Westerheide et al., 2006;). HSF1 can be bound to the HSP70 and HSP90 sequence when not 

under stress to cancel the transcription function. It can also separate itself from the HSP sequence 

during cellular stress to activate transcription of the HSP. HSF1 then is phosphorylated and 

moves to the nucleus of the cell. HSF1 attaches to DNA elements that are present in the genes 

that code for heat shock proteins. These cis-acting DNA elements are called heat shock elements 

(HSEs). They begin the transcription process of the genes that code for HSPs such as HSP27, 

HSP70 and HSP90 (Wang, 2014; Xia et al., 2012). Therefore, inhibiting the production of 

HSP90 will initiate HSF1 with the amplified expression of HSP27 and HSP90 (Wang, 2014; 

Westerheide et al., 2006). 

HSP90 

 HSP90 is a ubiquitous protein chaperone produced by all eukaryotic cells (Krause et al., 

2004). It has been repeatedly found to be highly conserved throughout evolution and makes up 

1% of all cellular protein (Wang, 2014). HSP90 is a molecular chaperone that requires ATP. 

Several isoforms have been found in humans, the most studied being the constitutive form 

HSP90β, and the inducible form HSP90α (Subbarao et al., 2004; Wang, 2014). HSP90β is 

expressed at high levels and is slightly induced following heat stress. HSP90α, however, has 

been proven to be expressed at much lower levels than HSP90β under homeostatic conditions, 

but highly induced under conditions of heat stress.  

HSP90 is a homodimer consisting of three distinguishable parts (Hartl et al., 2011; 

Taipale et al., 2010; Wang, 2014). First, the ATPase activity of HSP90 is controlled by the ATP-

binding and hydrolyzing pocket of the amino (N)-terminal domain. Second is the middle region 

which is charged and is responsible for the recognition and binding of the protein target that is to 



be chaperoned. Third is the carboxy (C)-terminal dimerization domain. This domain directs 

HSP90 dimerization (Wang, 2014). 

Polymorphisms of HSP90 

The presence of intrinsically expressed genetic polymorphisms, as well as acquired 

resistance to HSP90 inhibitors, has been recognized in humans (Duerfelt, 2010). DT-diaphorase 

and cytochrome P450 3A4 (CYP3A4) are included in these polymorphisms. There is concern 

over similar difficulties arising in the future with other HSP90 inhibitors, making it increasingly 

relevant to study these polymorphisms. Several polymorphisms of HSP90 have been shown to 

result in reduced HSP90 activity. 

Objectives of this Study 

  To my knowledge, no data has been shown to prove the existence of polymorphisms in 

the genetic sequence that codes for HSP90 in cattle. This study intends to determine if 

polymorphisms of HSP90 exist in beef cattle, and to determine if these polymorphisms can be 

reliably used to determine beef cattle productivity, and thus, profitability. 

Methods 

Purpose and Objectives 

The overall purpose of this experiment is to improve the beef cattle industry by 

developing a better understanding of beef cattle genetics. To meet this purpose, the following 

objectives were created: 

1. Determine if polymorphisms exist in HSP90 genes of cattle. 

2. Determine if these polymorphisms relate to beef cattle efficiency. 



Design 

The design of this experiment was a randomized incomplete block. It was random 

because the genetic sequence of the cattle is unique to each cow and cannot be selected by the 

experimenter, incomplete because every cow was not represented in every year, and blocked by 

year. The genotype was the independent variable of this experiment.  

Participants and Sampling 

 For this experiment DNA was extracted from white blood cells of Angus crossbred beef 

cows (n=26; University of Arkansas IACUC approved protocol #13062) that were grazed on 

endophyte-infected tall fescue and common Bermuda grass. Cattle had unlimited access to water 

and trace mineral supplements. For this study, 26 cows were used because this was the number 

of cows available for research at the University of Arkansas farm. For each cow we have at least 

3 years of production data such as Julian calving date, calf birth weight, and weaning weights of 

the cows and their calves. In addition, we have hair coat scores for those same cows during 

spring and summer months of those same years. 

 Blood from the cattle was collected with EDTA treated tubes by jugular venipuncture. 

Samples were cooled on ice once collected. The samples were then centrifuged at 2,500 g at 5℃ 

for 25 minutes. The plasma was decanted and the buffy coats were collected and placed in 1.5 

mL tubes and stored at -80℃ until they were further analyzed. 

 DNeasy® Blood and Tissue Kit protocol was used to isolate DNA from the buffy coats. 

A C1000 Touch™ thermal cycler was used to amplify DNA segments via polymerase chain 

reaction (PCR). 

Data Collection 



The first denaturation process was administered at 94 ℃ for 2 minutes for each 

amplification protocol, followed by 35 cycles for 30 seconds at 94℃, 55℃ for 1 minute, and at 

68℃ for 1 minute. The last step, which completed the process, lasted for 10 minutes at 68℃ and 

was cooled to 8℃. The amplification reactions each included 2.5µL of DNA (20ng/µL), 1.25 µL 

of forward primer, 1.25 µL of reverse primer, and 45 µL of Platinum PCR Supermix. 10µL of 

amplification products and 100 bp DNA ladder were inserted into individual 1.2% agarose wells. 

These samples were then separated using electrophoresis (TBE buffer; 30 minutes at 130 volts). 

The samples were then stained with ethidium bromide and visualized by using a UVP Epi Chemi 

II Darkroom. The DNA ladder was then used to compare the expected amplicon size. Samples 

were then purified with GenScript QuickClean II PCR Extraction Kit after being confirmed as 

the accurate amplicon size. After the purification process was complete, a Qubit® Flurometer 

was used to quantify the purified product. 

The amplification products were sequenced in forward and reverse directions for each 

animal. The PCR product (8 µL) and the Primer mix (4µL) were sent for sequencing at Eurofins 

SimpleSeq in Louisville, KY. The program Clustal Omega 

(HTTP://www.ebi.ac.uk/Tools/msa/clustalo/) was used to compare the genetic sequences. Each 

single nucleotide polymorphism (SNP) was identified after multiple alignments were conducted 

by Clustal Omega. The SNP site of each sample was named according to the distance from the 

first base in the forward primer of the SNP. The primary allele is indicated by the first letter in 

the name of the SNP site, and the second letter represents the minor allele. Homozygous and 

heterozygous genotypes were both identified using Mega and sequence chromatograms. 

Data Analysis 

http://www.ebi.ac.uk/Tools/msa/clustalo/


MIXED MODEL procedures of SAS were used to analyze quantitative data. This study 

utilized repeated measures analysis using the maximum likelihood method. The animal was the 

experimental unit. Tukey’s adjustment and multiple t-tests were performed when F-tests for main 

affects were significant (P < 0.05). 

Results 

A transition from adenine to guanine was detected at base 97 of the 283 base amplicon 

(Figure 1). In this population of 26 cows, 19 were homozygous for adenine, 7 were 

heterozygous, and 0 were homozygous for guanine, which resulted in a minor allele frequency of 

13.46%. Calving traits and cow weaning weight were not (P > 0.40) associated with genotype at 

A97G (Table 1). However, 205-day adjusted calf weight was associated (P = 0.0002) with A97G 

genotype (188 vs. 208.1 ± 7.1 kg; respectively AA and AG). This increased weaning weight 

resulted in a trend (P = 0.08) for increased cow efficiency for AG cows (Table 1). However, hair 

coat score for AG cows (1.6 ± 0.17) was lower (P < 0.03) in June than AA cows (2.2 ± 0.11; 

Figure 2). 

Conclusion 

 According to the results of this study, there is evidence to suggest a link between 

polymorphisms of HSP90 and 205-day adjusted calf weight, as well as cow efficiency. These 

factors directly impact beef cattle productivity, ultimately suggesting an association between 

polymorphisms of HSP90 and beef cattle productivity. This connection suggests that this gene 

could be used as a genetic marker for heat stress as well as productivity. Further study of SNPs 

of the HSP90 gene would allow beef cattle producers to be more informed and potentially allow 

for selection of cattle that are more tolerant to heat stress. 



 

 

Table 1. Effects of heat shock 
protein 90 genotype at single 
nucleotide polymorphism site A97G 
on cattle productivity traits. 

 

aSingle nucleotide polymorphism 
occurred at the 97th base of the 283 
base amplicon. Letters indicate the 
primary and minor alleles, 
respectively. 

bMean standard error of the least 
squares means. 

cF-test probability of main effects for 
A97G genotype. 

dBirth weight and 205-d weaning 
weights were adjusted as 
recommended by the Beef 
Federation (2010). 

eCow efficiency was calculated by 
dividing each calf's 205-day adjusted 
weaning weight by dam weight at 
weaning and expressed as a percent.  

 

 

 

 

 
A97G 

Genotypea 

 

Trait AA AG SEMb P-valuec 

Number of 
cows 

19 7 - - 

Calving 
 

Rate, % 89.5 89.5 - 1.0 

Julian, day 269.4 273.4 7.3 0.65 

Adj. birth 
weightd, kg 

33.8 35.8 2.0 0.40 

Weaning 
 

Cow weight, 
kg 

521.7 521.8 24.5 0.99 

Adj. 205-d 
calf weightd, 
kg 

188.0 208.1 7.1 0.0002 

Cow 
efficiencye,
% 

36.8 41.5 2.6 0.08 



GTGACGATCTCCAACAGGCTTGTGTCGTCACCCTGCTGCATCGTGACCAGCACCTA
CGGCTGGACCGCCAACATGGAGCGCATCATGAAAGCCCAG[A/G]CGCTTCGGGACA
ACTCGACCATGGGCTACATGATGGCCAAAAAGCATCTGGAGATCAACCCTGACCAC
CCCATCGTGGAGACCCTGCGGCAGAAGGCAGAGGCGGACAAAAACGACAAGGCCG
TCAAGGACCTGGTGGTGCTGCTGTTCGAAACTGCACTGCTCTCCTCTGGCTTCTCG
CTTGAGG 

Figure 1. Amplicon (283 bases) of bovine heat shock protein 90 (NCBI Reference Sequence: 
NM_001079637.1). Forward and reverse primer sequences are bold and in green, and single 
nucleotide polymorphism of interest (A97G) is bold in red.  

 

 

 

Figure 2. Resulting hair coat scores by month of AA and AG single nucleotide polymorphisms 

at base 97 of the 283 nucleotide amplicon. 
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