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Introduction 

Slit and Robo regulate midline crossing and repulsion 

 As the nervous system develops in animal embryos, neuronal axons are guided to 

their synaptic targets by extracellular cues that signal through axon guidance receptors 

expressed on the surface of the axon (Battye et al., 1999). 

In animals with bilateral symmetry, one of the important 

decisions made by nearly every axon in the embryonic 

nervous system is whether to stay on its own side of the 

body, or to cross the midline and connect to cells on the 

opposite side. Failure of axons to properly cross the 

midline can result in severe defects. The Roundabout 

(Robo) family is an evolutionarily conserved group of axon 

guidance receptors that regulate midline crossing in a wide 

range of animal groups by signaling midline repulsion in 

response to their ligand Slit. Mutations in the Slit-Robo 

pathway has been identified in association with 

neurological diseases such as Parkinson’s Disease and 

Horizontal Gaze Palsy with Progressive Scoliosis (Engle, 

2010; Lin, 2009). 

 

 

 

 



4 
 

Slit-Robo mechanism in Drosophila 

 Robo is expressed on growth cones of commissural axons, along with other 

receptors that regulate midline crossing. The Slit ligand, located at the midline of the 

bilateral nerve cord, can bind the Ig1 domain of Robo1 in Drosophila, which induces 

midline repulsion in that particular axon. Previous studies show that Ig1 deletion prevents 

any Slit-Robo interaction, proving the integral role played by Slit in midline repulsion 

(Brown et al., 2015). In normal Drosophila embryos, the Comm receptor prevents excess 

midline repulsion by limiting Robo presence until necessary contralateral axons have 

crossed (Howard et al., 2017). 
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Gene duplications and conserved Robo structure 

 The last common ancestor of insects and vertebrates possessed one ancestral Robo 

gene that was integral to midline repulsion. As the evolutionary paths diverged, the Robo 

gene was duplicated twice in the lineage that led to Drosophila, while three duplications 

occurred in the mammalian lineage. The duplicated Robo receptors in Drosophila, Robo2 

and Robo3, play minor roles in midline repulsion. The mouse Robo2 receptor (mRobo2) 

is in many ways redundant to the properties of mRobo1, but it does play a 

complementary role in antagonizing post-midline crossing (Evans and Bashaw, 2010). 

The two isoforms of mRobo3 are identical except for an alternatively-spliced exon at the 

C-terminus in the fourth conserved cytoplasmic (CC) motif. mRobo3.1 in fact promotes 

initial midline crossing in the rostral direction of the nerve cord. mRobo3.2 complements 

mRobo3.1 by antagonizing secondary midline crossing, much like mRobo2. However, 

evidence from previous studies 

indicated that the two isoforms of 

mRobo3 most likely do not bind Slit 

(Chen et al., 2008; Zelina et al., 

2014). 
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 The Robo receptors in mice and Drosophila are remarkably similar, containing the 

same number and size of domains. Robo receptors in both species interact with the ligand 

Slit, although mRobo3 does not appear to bind. The function of midline crossing 

prevention when bound is conserved as well. (Reichert et al., 2016). 

 

The extent of conservation in the Robo mechanism from Drosophila to mice 

 Despite their strong evolutionary conservation, it is unknown if the mechanisms of 

Robo signaling are conserved across different species. Can Robo receptors from mice 

regulate axon guidance decisions in Drosophila embryos, or do species-specific 

differences exist in the cellular signaling mechanisms by which Slit and Robos regulate 

midline crossing? To investigate the evolutionary conservation of Robo signaling 

mechanisms, we used two techniques in Drosophila to express Robo receptors from mice 

in fly neurons during embryonic development: We used the GAL4/UAS system to 

express mouse Robos at high levels in all embryonic neurons, and we used a robo1 rescue 

transgene to express mouse Robos in a pattern that reproduces fly robo1’s normal 
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expression pattern and expression levels. We find that mouse Robo receptors are able to 

signal midline repulsion in Drosophila neurons when expressed at high levels, indicating 

that Robo signaling mechanisms are evolutionarily conserved. However, the mouse Robo 

receptors are not as effective at enacting midline repulsion as fly Robo1, suggesting some 

degree of evolutionary divergence between the receptors of the two species.  

        

Methods 

Gain-of-function mouse Robo expression 

 We crossed flies expressing elav-GAL4 with four lines of flies expressing mRobo1, 

mRobo2, mRobo3.1, and mRobo3.2. We placed the male and female flies together in a 

cage. Their offspring were collected in the embryonic stage of development every 

twenty-four hours, fixed in formaldehyde, and stored in methanol. These embryos were 

stained with primary antibodies m1D4 (dilution ratio 1:100) and goat anti-HRP FITC 

(1:100), as well as secondary antibody goat anti-mouse cy3 (1:1000). Anti-HRP 

antibodies label all axons in the ventral nerve cord, and m1D4 recognizes FasII proteins 

that are expressed in a subset of longitudinal axon pathways. 

 We also crossed flies carrying the eg-GAL4 gene and UAS-TMG transgenes with 

those carrying UAS-mRobo1, UAS-mRobo2, UAS-mRobo3.1, and UAS-mRobo3.2. We 

caged these crosses in a similar manner, allowing them to mate and produce embryos. 

These embryos were collected, fixed, and stained with primary antibodies mouse anti-HA 

(1:1000), Rb anti-GFP (1:500), and goat anti-HRP 647 (1:100). Secondary antibodies 

used were goat anti-mouse cy3 (1:1000) and goat anti-Rb 488 (1:500). The nerve cords of 

these eg-GAL4/UAS-TMG flies, when dissected, allowed for quantification of ectopic 
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crossing, which was performed under a confocal microscope. 

 

Mouse Robo rescue of robo1 mutants 

 We then performed a rescue of flies with mutated robo receptors by crossing them 

with flies expressing the elav-GAL4/UAS transgene. We made four crosses, one for each 

type of mouse Robo, and we made a positive control rescue, using elav-GAL4/UAS to 

express Drosophila Robo1 in all neurons of flies with robo1 mutations. 

 We caged these crosses to reproduce for embryo collection. The embryos were 

collected, stained, and scored in a similar manner. Primary antibodies used were 1D4 

(dilution 1:100), βgal (1:150), and goat anti-HRP FITC (1:100). The secondary antibody 

used was goat anti-mouse cy3 (1:1000). 

 

Replacement of mRobo Ig1 domains with Drosophila Robo1 Ig1 

 Furthermore, we created chimeric Robo receptors, combining the Slit-binding 

domain, Ig1, of Drosophila Robo1 with mRobo receptors 1, 2, and 3.2. The fragments of 

Drosophila Robo and mouse Robo DNA were generated via PCR reaction and assembled 

via Gibson reaction with a pAW vector backbone. These chimeric plasmids were 

transformed into competent E. coli cells and grown into cultures. Sequences were verified 

by Simple Sequence with the corresponding primers. 

 The effectiveness of the chimeric receptor was tested in another Drosophila robo1 

rescue. Offspring from these rescues were again caged for embryo collection and stained 

with primary antibodies 1D4 (dilution 1:100), βgal (1:150), goat anti-HRP 488 (1:200), 

and secondary antibody goat anti-mouse cy3 (1:500). 
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Results 

Mouse Robo1 and 2 receptors can signal midline repulsion when expressed in all 

neurons 

 The elav-GAL4 transgene is used to express Robo receptors in all neurons, instead 

of just normal levels of expression. When elav-GAL4 is present and active, it activates 

upstream activation sequence (UAS) genes, in this case mouse Robo genes. (Berger et al., 

2007) We assume that elav-GAL4 expression of Robo overrides regulation by Comm. 

 We crossed two fly lines, one with the elav-GAL4 transgene, the other line 

containing UAS-mRobo transgenes. Their offspring expressed mRobo receptors in all 

neurons. This cross was repeated three times in order to include all three mouse Robo 

gene duplications, mRobo1, 

mRobo2, and the two 

isoforms mRobo3.1 and 

mRobo3.2.  

 The flies from the elav-

GAL4/UAS-mRobo crosses 

expressed mouse Robo 
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receptors in all neurons. Those that expressed mRobo1 and mRobo2 exhibited high levels 

of midline repulsion, similar to a positive control cross in which the elav-GAL4/UAS 

system was utilized to express Drosophila Robo1 in all neurons. However, although 

mRobo3.1 and mRobo3.2 were also expressed in all neurons, midline crossing was 

normal. The nerve cords in these lines more closely resembled those of flies with wild-

type Robo1 receptors. This suggests that the two isoforms of mRobo3 do not effect 

midline repulsion, most likely because they do not bind Slit.  

 Simultaneously, we crossed a line of flies containing the eg-GAL4 and UAS-TMG 

transgenes with four lines with UAS-mRobo, expression of which allows for antibody 

highlighting of a specific subset of neurons (EW). The offspring from this cross allowed 

for antibody staining and quantification. When scored, we found that mRobo1 and 

mRobo2 were about 15% less effective in enacting midline repulsion than Drosophila 

Robo1 expressed at the same level. Again, we found mRobo3.1 and mRobo3.2 to exhibit 

100% ectopic crossing, indicating that the presence of these mouse Robo genes are 

ineffectual in midline repulsion, even when expressed in all neurons via the elav-
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GAL4/UAS genes.  

mRobo2 can partially rescue midline repulsion in robo1 mutants 

 We performed four rescue crosses of mutated Drosophila Robo receptors (robo1) 

using elav-GAL4/UAS to express mouse Robo1, 2, 3.1, and 3.2 in all neurons. In 

addition, we performed a rescue of robo1 mutants with Drosophila Robo1 expressed via 

the elav-GAL4/UAS system. Offspring from these crosses produced embryos for 

collection, staining, and scoring. The UAS-Robo1 positive control cross produced 

embryos with 0% ectopic crossing and visibly extreme midline repulsion, indicating a 

successful rescue. We then found that of the four mouse Robo crosses, mRobo2 was the 

most successful in rescuing for mutated Drosophila receptors; however, embryos from 

the mRobo2 rescue still exhibited approximately 40% ectopic crossing, so the rescue 
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could only be deemed partial.  

 We found that mRobo1 was less successful in rescuing, with embryos from this 

cross displaying over 90% ectopic crossing. Nonetheless, the effects of mRobo1 were 

visibly present. In contrast, robo1 mutant embryos rescued with either mRobo3.1 or 

mRobo3.2 displayed 100% ectopic crossing. The nerve cords in these crosses most 

closely resembled those of robo1 mutants with no rescue. This supports our earlier 

findings that mRobo3.1 and mRobo3.2 cannot successfully effect midline repulsion in 
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Drosophila. 

 

Mouse Robos cannot rescue robo1 mutants in same expression pattern as fly Robo1 

 A parallel series of experiments expressed the four mouse Robos via a rescue 

construct that regulated expression in the same pattern as endogenous robo1. When 

expressed at the same level as fly Robo1, none of the mRobo receptors were able to 

rescue for robo1. This indicated a difference in rescue ability between mouse and fly 

Robos. 

 

Mouse and Drosophila difference in rescue ability does not depend on Slit-binding 

domain 

 We created chimeric 

receptor genomes combining 

the Ig1 domain of Drosophila 

Robo1 with all other domains 

of mouse Robo 1, 2, and 3.2. 

Once their sequences were 

confirmed, each of the three 

chimeric receptors were inserted into a line of flies and crossed with roboGA285 mutants to 

test their effectiveness as a rescue. 

 This rescue was conducted by crossing flies carrying the chimeric transgene with 

flies carrying a roboGA285 mutation. Meiotic recombination ensured that the offspring 

used for embryo collection and staining carried both the robo mutation and the 
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transgenes. All three chimeric genomes exhibited ectopic crossing in 100% of embryonic 

segments, indicating an unsuccessful rescue. However, embryos expressing mRobo2 with 

a Drosophila Ig1 domain exhibited a qualitative difference in the extremity of ectopic 

crossing. Mouse Robo2 embryos had noticeably less intense crossing, which might 

indicate low levels of midline repulsion effected by the chimeric receptor. Overall, we 

found the mRoboR1Ig1 chimeras to be unsuccessful in rescuing Drosophila robo1 mutants. 

 

Discussion 

 We found that mouse Robo receptors 1 and 2, when expressed in all neurons, can 

repel axons from the midline in Drosophila embryos. This suggests that the mechanisms 

by which Drosophila Robo receptors signal midline repulsion are conserved in mouse 

Robo receptors. However, the two isoforms of mouse Robo3, mRobo3.1 and mRobo3.2, 

are ineffective in Drosophila midline repulsion. These findings are corroborated by 

earlier studies that suggest that mRobo3.1 and 3.2 do not bind Slit, therefore nullifying 

their role in midline repulsion. This supports the previously studied conclusion that the 
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mechanism of midline repulsion was lost with the gene duplications that created 

mRobo3.1 and 3.2, although it remains to some extent in mRobo1 and 2. 

 We also found that mRobo2, when expressed in all neurons and without the 

presence of functional Robo1, can partially rescue midline repulsion in robo1 mutants. 

Although the mRobo2 rescue was not as successful as the Robo1 rescue, there was a 

marked difference between the effectiveness of the mRobo2 rescue and that of mRobo1, 

3.1, and 3.2. This suggests that the mRobo2 gene has the most evolutionary conservation 

of the midline repulsion mechanism of Drosophila. The mechanism is only partially 

conserved, since Drosophila Robo1 rescues robo1 mutants 60% more effectively 

accuracy than mRobo2. 

 Again, the lack of midline repulsion in the mRobo3.1 and 3.2 rescues supports the 

hypothesis that these two isoforms of mRobo3 do not bind Slit and the evolutionary 

mechanism of midline repulsion has been lost. And while the mRobo1 rescue embryos 

exhibit nearly 100% ectopic crossing, there is a stark qualitative difference in the axons 

of these embryos and those without rescue. The evolutionary mechanism has been 

somewhat conserved in mRobo1, but it is not enough to rescue Robo1 mutants. 

 The three chimeric receptors, mRobo1, 2, and 3.2, each with the Ig1 domain of 

Drosophila Robo1, further support these conclusions. Even when expressed in all 

neurons, the mRobo1 and mRobo3.2 chimeras cannot rescue robo1 mutants. Although 

the mRobo2 chimera also exhibits 100% ectopic crossing, images of the nerve cords of 

the embryos from this rescue reveal slightly less extreme crossing. This suggests that the 

mRobo2 chimeric receptor does exhibit a weak level of midline repulsion, again 

supporting the conclusion that the evolutionary mechanisms of the Robo gene is most 
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strongly conserved in mouse Robo2.  

 We also conclude that replacing the Ig1 domain of the mRobo receptors with the 

Drosophila Robo1 Ig1 domain does not increase mRobo receptors’ ability to effect 

midline repulsion. Therefore the partial loss of evolutionary conservation does not lie in 

the Slit-binding domain of the mouse Robo receptors. 

 

Conclusion 

 From these discussions we can conclude that while the mechanism of midline 

repulsion is somewhat conserved from flies to mice, the ability of mouse Robo receptors 

to effect midline repulsion in Drosophila is significantly diminished. If the structure of 

mouse Robo1 and 2 is so strikingly similar to that of Drosophila Robo, yet mRobo 

receptors are significantly less effective in Drosophila, then perhaps the structure of 

Robo receptors, most importantly the Ig1 domain, is not the most significant effector of 

midline repulsion. 

 We must consider in the implications of these results that there may be more 

complexity to the Slit-Robo mechanism than previously thought. We must also take into 

consideration the potential difficulty of mouse Robo receptors to bind Slit ligands 

endogenous to flies. In the future, we may investigate other aspects of midline repulsion 

as effected by Drosophila Robo receptors, discovering some other factor than Slit-

binding that is not present in mouse Robo receptors. 
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