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ABSTRACT: 

In randomized controlled trials, it is common for attrition rates to differ by lottery status, 

jeopardizing the identification of causal effects. Inverse probability weighting methods (Hirano 

et al, 2003; Busso et al., 2014) and estimation of informative bounds for the treatment effects 

(e.g. Lee, 2009; Angrist et al., 2006) have been used frequently to deal with differential attrition 

bias. This paper studies the performance of various methods by comparing the results using two 

datasets: a district-sourced dataset subject to considerable differential attrition, and an expanded 

state-sourced dataset with much less attrition, differential and overall. We compared the 

performance of different methods to correct for differential attrition in the district dataset, as well 

as we conducted simulation analyses to assess the sensitivity of bounding methods to their 

underlying assumptions. In our application, methods to correct differential attrition induced bias, 

whereas the unadjusted district level results were closer and more substantively similar to the 

estimated effects in the benchmark state dataset. Our simulation exercises showed that even 

small deviations from the underlying assumptions in bounding methods proposed by Angrist et 

al. (2006) increased bias in the estimates. In practice, researchers often do not have enough 

information to verify the extent to which these underlying assumptions are met, so we 

recommend using these methods with caution. 
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1. INTRODUCTION 

Since its introduction by Angrist (1990) to evaluate the impact of military service on 

earnings, a growing literature has made use of lottery-based randomization to arise at causal 

effects of educational programs (see, e.g. Rouse (1998); Angrist, Bettinger, Bloom, Kremer, & 

King (2002); Hoxby & Rockoff (2004); Cullen, Jacob, & Levitt (2006); Abdulkadiroglu et al. 

(2009); Hoxby & Murarka (2009); Dobbie & Fryer (2009), Deming, Hastings, Kane, & Staiger 

(2014); Engberg, Epple, Imbrogno, Sieg, & Zimmer (2014) among others). 

In education, it is common for school districts around the country to use lotteries to 

determine access to oversubscribed educational programs. Then, those winning the lottery have 

the possibility of enrolling in the specific program while those non-placed would not have the 

option to participate but would have multiple other outside options. By comparing average 

outcomes of lottery winners with average outcomes of those non-placed, the hope is to arise at 

causal effects not affected by bias due to selection into the program. 

However, it is not uncommon that students who are not placed by the lottery seek 

alternative options outside the district, e.g. by choosing a charter school, choosing a private 

school, or moving to a different school district instead. For those who leave the school district, it 

is uncommon to have data of those students and this creates a missing data problem. In 

particular, if attrition rates differ considerably depending on the lottery status, this creates a 

differential attrition bias problem, jeopardizing the identification of causal effects trough the 

randomization induced by the lottery. This differential attrition problem is quite common. In a 

review of development economics studies published between 2009 and the first quarter of 2015, 

Molina & Macours (2015) find that of the 68 RCTs, about 19 percent had differential attrition, 
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and in many cases, authors simply restrict the analysis to a subsample in which attrition was 

balanced. (Molina & Macours, 2015).  

Removing all the bias induced by selective attrition would be possible if either all 

covariates determining the outcome are known (Steyer, Gabler, von Davier, & Nachtigall, 2000); 

or if the selection process is completely known (Cook, 2008; Goldberger, 1972; Shadish, Cook, 

& Campbell, 2002). Often, however, researchers are not fully able to directly observe these 

covariates or accurately model the selection process, and selection bias due to attrition continues 

to be a potential issue. A common approach among researchers in education, as well as other 

fields, aimed at minimizing the bias due to differential attrition or differential nonresponse, has 

been the use of inverse probability weighting1. In this case, observations in the treatment and 

control group are reweighted to remain comparable in important observed characteristics. The 

success of this method, however, relies on the availability of enough information to control for 

the key differences between treatment and controls induced from attrition bias. Alternatively, 

researchers have used various bounding methods to arrive at estimates of the possible range of 

estimated effects under different attrition scenarios. Molina and Macours (2015) find that 

bounding methods were used in almost 15 percent of the 68 studies included in their review.  

In our review of the literature on the use of bounding methods, focusing primarily on 

studies in the field of education, we find that the most popular bounding method used is that 

proposed by Lee (2009).2 Another approach sometimes used, similar to Lee (2009), is Manski’s 

worst-case scenario bounds (Manski, 1990; Manski, 1995; Horowitz & Manski, 1998; Horowitz 

                                                           
1 See for example: Imbens & Wooldridge, 2009; Reynold, Temple, Ou, Arteaga, & White, 2011; Bailey, Hopkins, & 

Rogers, 2016; Muralidharan & Sundararaman, 2013; Frölich & Huber, 2014; Molina & Macours, 2015. 
2 See for example: DiNardo, McCrary, & Sanbonmatsu, 2006; Kremer, Miguel, & Thornton, 2009; Glewwe, Illias, & 

Kremer, 2010; Hastings, Neilson, & Zimmerman, 2012; Karlan, Fairlie, & Zinman, 2012; Aron-Dine, Einav, & 

Finkelstein, 2013; Bold, Kimenyi, Mwabu, Ng’ang’a, & Sandefur, 2013; Muralidharan & Sundararaman, 2013; Boo, 

Palloni, & Urzua, 2014; Engberg et al., 2014; Molina & Macours, 2015; Aker & Ksoll, 2015. 
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& Manski, 2000, Imbens & Manski, 2004)3. Both these bounding methods obtain bounds for 

extreme case scenarios under relatively weak assumptions on the type of respondents that are 

attriting. As a result of their weak assumptions on the attrition process, these methods tend to 

provide wide bounds that in occasions result uninformative. 

Still other researchers have proposed bounding the estimates based on certain 

assumptions about the type of respondents attriting from the sample. These include the 

parametric and non-parametric bounding approaches proposed by Angrist et al. (2006), used for 

example in Barrow, Richburg-Hayes, Rouse, and Brock (2014), as well as other extensions and 

modifications of these bounding methods (e.g., Huber & Mellace, 2013; Engberg et al., 2014; 

Zhang and Rubin, 2003; Grilli and Mealli, 2008; Zhang, Rubin, and Mealli, 2008; and Lechner 

and Melly, 2010).  

With the exception of the bounding method proposed by Lee (2009) and Manski’s worst-

case scenario bounds, all these other alternative bounding approaches make restrictive 

assumptions about the type of respondents that are attriting from the sample. For example, 

Angrist et al. (2006)’s bounding approach assumes that those attriting come from only one side 

of the outcome distribution. Similarly, Huber and Mellace (2013) derive bounds under the 

assumption of stochastic dominance. The authors describe stochastic dominance as the 

assumption that “the potential outcome among the always observed at any rank of the outcome 

distribution and in any treatment state is at least as high as that of the compliers or the defiers” 

(p. 17).  This assumption, which is not imposed by Lee (2009), has also been imposed in other 

bounding approaches like for example, Grilli and Mealli (2008) and Lechner and Melly (2010). 

                                                           
3 See for example: DiNardo, McCrary, & Sanbonmatsu, 2006; Holm & Jaeger, 2009; Lechner & Melly, 2010; Karlan, 

Fairlie, & Zinman, 2012; Aron-Dine et al., 2013; Bailey, Hopkins, & Rogers, 2013; Ksoll, Aker, Miller, Perez-

Mendoza, & Smalley, 2014. 
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In another paper, Engberg et al. (2014) estimate informative bounds around the treatment effects 

in a magnet program using an approach based on the “worst-case” scenarios from Manski (1990) 

and Horowitz and Manski (2000), assuming that “the support of the outcome variable is bounded 

to deal with nonrandom attrition” (p. 29). Building on this approach, they use known quantiles of 

the outcome distribution in constructing the bounds, similar to the approaches in Angrist et al. 

(2006). By imposing assumptions on the attrition process, these bounding approaches tend to 

provide tighter and more informative bounds than those provided by more relaxed approaches 

like Lee (2009). However, we often lack a clear understanding of the type of respondents that 

attrited from the sample, and to our knowledge there is no prior research on the consequences for 

the estimated effects of imposing these restrictive assumptions on the attrition process if they 

turn out no to be true. 

In this paper, we study the performance of inverse probability weighting methods 

(Hirano, Imbens, & Ridder, 2003; Busso, DiNardo, & McCrary, 2014) and two common 

approaches for the estimation of informative bounds for the treatment effects (Angrist et al., 

2006 and Lee, 2009). We use administrative data for seven cohorts of lottery applicants to dual-

language immersion programs (DLI) in Portland Public Schools (PPS), a large urban school 

district. A unique feature of our study is that we are able to complement a district–sourced 

student-level dataset, which suffers from differential attrition, with state of Oregon 

administrative data, provided by the Oregon Department of Education (ODE), which presents 

much lower rates of overall and differential attrition. This provides us with the unique 

opportunity of comparing the performance of different approaches to correct for differential 

attrition in the estimation of the effect of attending dual language immersion on student 
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achievement using the district level data set, and having the more complete state level data set as 

a benchmark for the desired estimates. 

The use of a benchmark to test the relative performance of correction methods is not new 

(LaLonde, 1986; Heckman, Ichimura, Smith, & Todd, 1998; Dehejia & Wahba, 1999; Smith & 

Todd, 2005; Cook, Steiner, & Pohl, 2009; Steiner, Cook, Shadish, & Clark, 2010; Garlick & 

Hyman, 2016), however, there have been several studies that have lacked an experimental or 

quasi-experimental benchmark against which correction models could be evaluated (Mroz, 1987; 

Newey, Powell, & Walker, 1990; Melenberg & van Soest, 1996; Clark, Rothstein, & 

Schanzenbach, 2009). While we do not claim to be the first to use a benchmark to test the 

performance of various correction methods, we do add simulation analyses that alter the degree 

to which the assumptions for various methods are met, and then quantitatively assess at what 

point the methods become unable to correctly estimate the parameters. 

The differential attrition bias-correction methods we study in this paper differ in the 

assumptions they use to estimate causal effects. Inverse probability weighting methods assume 

that we have enough observable information to model the decision to attrite from the sample. 

The idea is to weight observations so that the average characteristics of treated and control 

students remaining in the district sample look alike in key observable characteristics. On the 

other hand, bound estimation approaches (Angrist et al., 2006; Lee, 2009) relax the assumption 

that we have information on key variables driving attrition decisions and offer the estimate of 

potential bounds for the treatment effect under alternative assumptions about who attrites (e.g., 

students leaving the district are those with potentially higher outcomes if they were to stay in the 

district). Specifically, the main research questions in our paper are: 
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1. Do various correction methods (inverse probability weighting or estimation of 

informative bounds) adequately compensate for differential attrition in a random assignment 

evaluation? 

2. How do various assumptions within these methods affect our results? 

We begin by comparing the results of various correction methods to the benchmark, 

state-level dataset, but since the performance of these methods also relies on various assumptions 

being met, we go a step further to also compare the accuracy of the bounding methods proposed 

by Angrist et al. (2006) on data with artificially simulated attrition. Our results using the true 

scenario (non-simulated data) show that, despite differential attrition rates, estimates of the effect 

of attending DLI on student achievement using PPS district data were very similar to those using 

the more complete ODE dataset. In fact, the different methods we tried to correct for attrition did 

not seem to lead to less biased estimates of the effect of dual language immersion on student 

achievement. Therefore, it appears that some of the assumptions that differential attrition 

correction methods are based on might not be satisfied in our specific application. Therefore, we 

turn to our simulation analysis and find that the parametric and non-parametric bounding 

methods proposed by Angrist et al. (2006) work quite well at recovering the parameters in the 

benchmark case, even if the assumptions are not perfectly met. These Angrist methods require 

attrition that is highly correlated with potential test scores, and we find that even when attrition is 

based in part on random error or unobservable characteristics, as long as it is primarily based on 

test scores, these methods often still provide more accurate estimates than an uncorrected model. 

These results highlight the fact that a variety of different types of correction methods 

work well if there are not big deviations from their underlying assumptions. However, our results 

show the importance of being aware of the assumptions that different methods are imposing on 
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the attrition process and of having the ability to observe important covariates or have a good 

understanding on what might be driving the selection or differential attrition problem. Our results 

are aligned with those of other studies that have also evaluated these methods. Many find that, 

for successful bias reduction, the selection of covariates is much more important than selection 

of a particular method (Cook et al., 2009; Steiner et al., 2010; Garlick & Hyman, 2016).  

The rest of the paper proceeds as follows. Section 2 describes the data and sample for the 

analysis of performance of methods to correct for differential attrition. Section 3 describes the 

empirical methods studied in this paper. Finally, section 4 presents the results of the analysis 

using the non-simulated data and section 5 describes our simulation analysis. Finally, section 6 

outlines our main conclusions. 

2. DATA AND SAMPLE 

This study utilizes data of seven cohorts of students who applied to attend a language 

immersion program in pre-k or kindergarten for the fall terms of 2004 through 2010 in Portland 

Public Schools (PPS) in Portland, Oregon. Slots to language immersion were assigned through a 

lottery system. PPS serves about 47,000 students and is among the largest two public school 

districts in the Pacific Northwest4. Outcome data were measured through the 2013-14 academic 

year, so the oldest cohort can be tracked through ninth grade, and include reading test scores 

from the state of Oregon administered tests in grades 3 to 9.5 

In the spring prior to their child’s pre-k or kindergarten year, families were able to apply 

to up to three school programs (including immersion or other programs types). Many of these 

                                                           
4 For more details on the lottery process or the language immersion programs in PPS see Steele et al., forthcoming. 
5 Math test scores in grades 3 through 9 were also available, but we focus on the reading test scores in the current 

study, as there was only one grade level of significant treatment effects on math test scores. For the simulation 

analyses, we focus only on grade 3 outcomes, although these models could theoretically be extended to future 

grades as well. 
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programs established multiple preference categories (e.g. for native speakers of the partner 

language, students who live in the school’s catchment neighborhood, or students living in other 

neighborhoods). Within each lottery round, slots in a given school and preference category are 

first filled by students with siblings currently attending the school, then applicants who reside 

within the school district, then applicants from outside the school district. A randomization 

lottery only occurs for one of these three categories (but most occurred within the in-district, no 

sibling category). Our (non-simulation) analysis focuses only on applicants whose first choice 

was an immersion program, and who were participants in a binding lottery. Lotteries were 

considered binding only if there are winners and not placed students within a given lottery 

category and subcategory in a given year6. The lottery applicants sample includes 3,457 students, 

1,946 (56.3%) of which participated in binding lotteries. Of the 1,946 that participated in binding 

lotteries, 864 (44.4%) won immersion slots and 1,082 (55.6%) did not.  

Attrition 

This current paper is motivated by an issue of differential attrition from PPS between the 

treatment and control groups. Of the 864 students in bounding lottery categories who were 

originally assigned a spot in a DLI program, only 684 treatment students were enrolled in PPS in 

kindergarten (attrition rate of 20.8%). Of the 1,082 lottery applicants originally not assigned a 

spot in a DLI program, only 728 students were enrolled in PPS in kindergarten (attrition of 

32.7%), yielding differential attrition of nearly 12 percentage points. See Table 1 for enrollment 

rates by grade.  Using a student-level longitudinal dataset provided by PPS, the outcomes of 

these students are lost to attrition. However, using a supplemental dataset provided by ODE, we 

observe 752 treatment students and 873 control students, reducing attrition to 13% in the 

                                                           
6 We classified the lottery-winning status of pre-k applicants based on their first application. Steele et al. 

(forthcoming) showed that results were not sensitive to this decision. 
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treatment group and 19% in the control group, for a differential of only 6 percentage points. For 

purposes of this analysis, we treat this state-sourced data as the benchmark dataset whose 

estimates we seek to replicate with weighting and bounding methods in the district-sourced data. 

To better understand what types of students either leave or remain in PPS, we estimated 

probit models to predict whether a student is enrolled in PPS and has an observed reading test 

score in a given grade. Table 2 presents the results for the combined sample of treated and 

control students. The propensity to be initially enrolled in PPS in kindergarten is also provided in 

the first column, although the condition of having a test score observation was not included at 

this grade level. Indicators for winning the lottery were the most significant predictor of 

enrollment in PPS, consistent with the differential attrition rates described above. Females were 

more likely to be observed than males in grades six and eight. If a student was missing a race 

indicator due to missing data issues, this negatively predicted whether at student was observed in 

PPS in kindergarten, third grade, and fifth grade. Students eligible for free- and reduced-price 

lunch were more likely to be enrolled in PPS in kindergarten, but less likely to be enrolled in 

PPS in eighth grade. Students with special needs at the time of application were more likely to be 

observed in PPS in kindergarten as well as in grades four and five. Students whose first language 

was not English were less likely to be observed in PPS in kindergarten and grade three, and 

marginally less likely to be observed in PPS in grades 4 and 5. In only one grade (fifth) was a 

lagged test score predictive of observation in PPS. Students with higher fourth grade test scores 

were more likely to be observed in PPS in fifth grade. In summary, while the only consistent 

predictor of enrolling and having a reading test score in PPS was winning the lottery, there is not 

a clear indication that either the most advantaged or least advantaged students tend to enroll in 

PPS in the later grades. The probit analysis for kindergarten does indicate, however, that those 
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who leave the district might be relatively well off (non-FRPL, non-special needs). On the other 

hand, we also observe that those who leave PPS tend to be non-English speakers and for fifth 

grade, the leavers also tend to be lower performers in the previous year. It is then unclear based 

on Table 2 whether it is the top performing or bottom performing students (or a mix of both) that 

tend to leave Portland Public Schools. Next, to further analyze what could be driving differential 

attrition, we run similar probit models for the treatment and control groups, separately.  

 Table 3 shows the results of probit models predicting enrollment in PPS in kindergarten, 

and having a reading test score observed in PPS in grades three through nine, for those in the 

treatment group. Students in the treatment group, i.e. won a spot in a DLI program, were more 

likely to enroll in PPS in kindergarten if they had special needs in kindergarten. Students whose 

first language was not English were less likely to enroll in PPS in third grade, and marginally 

less likely to enroll in kindergarten as well.7 If a student was missing a race indicator due to 

missing data issues, this negatively predicted whether at student was observed in PPS in 

kindergarten (as well as third grade). In addition, free- and reduced-price lunch eligibility also is 

associated with a decrease in the propensity to enroll in PPS in grade 4, and a marginally 

significant association with a decrease in the propensity to enroll in PPS in grade 3. Overall this 

tends to indicate that for the students who won the lottery, the ones who do decide to enroll in the 

district are relatively more advantaged.  

Table 4 shows the results of similar probit models for students that were not placed in a 

DLI program, i.e. the control group. Students in the control group were more likely to enroll in 

PPS in kindergarten if they were eligible for free-and reduced-price lunch in kindergarten. 

Having a first language other than English negatively predicted enrollment in PPS in grade three 

                                                           
7 Analysis of retention by language immersion program type indicated that Spanish program winners, in particular, 

were less likely to be retained in PPS, while Mandarin program winners were more likely to be retained. 



13 

 

and negatively, but only marginally, predicted enrollment in PPS in kindergarten. If a student 

was missing a race indicator due to missing data issues, this negatively predicted whether that 

student was observed in PPS in kindergarten (as well as grades three and five, and marginally in 

grade four). Control group students who had special needs in kindergarten were more likely to 

enroll in PPS (an increase in likelihood of about 14% to 19% in grades three through six). In fact, 

out of the 28 special needs students in the control group, all enrolled in PPS in kindergarten. 

In summary, separating these probit analyses into treatment and control groups, we see a 

clearer, yet not definitive, picture of the types of students that are leaving PPS at higher rates. For 

the control group (who are the students more likely to leave the district, and therefore the ones of 

primary interest), the leavers tend to be a relatively advantaged group (non-FRPL and non-

special needs in kindergarten). For the treatment group, however, it seems that the less-

advantaged students are leaving with higher probability. 

3. EMPIRICAL METHODS 

Following Steele et al. (forthcoming) our main specification for estimating the effect of 

attending a DLI program on student academic performance is the following: 

                  1 2 3 4( )kg

it o i it it i i ity DLI G G l Xβ β β β β ε= + + + + +                             (1) 

Where ity  represents test scores in reading for student i at time t. itG  is a vector of grade-

level fixed effects and il  denotes lottery strata fixed effects. The key variables of interest are 

kg

i itDLI G and denote being placed in an immersion program in kindergarten interacted with grade 

level. iX  denotes time-invariant student demographic characteristics observed in kindergarten, 

including the child’s race or ethnicity, gender, free or reduced price lunch status, whether the 
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child’s first language is English, and whether the child is classified in kindergarten as needing 

special education services.   

To be able to apply all model corrections for differential attrition to the same model 

specification, we obtain estimates of the model in (1) using pooled ordinary least squares and 

obtained clustered-robust standard errors at the student level.8 Estimates using this model will 

represent the average intent-to-treat parameter of attending DLI on student achievement, which 

we consider our parameter of interest when exploring the performance of different methods to 

correct for selection attrition. 

Our benchmark estimates are obtained by estimating model (1) on the most complete 

state-sourced dataset (ODE). In the other extreme, estimates of equation (1) restricting the 

sample to those who enrolled in PPS would provide us with the estimated ITT effects affected by 

differential attrition. The main empirical challenge when differential attrition is present in a 

lottery analysis like the one considered here comes from the potential of selection bias in the 

estimated treatment effect. This is so because, among lottery applicants, information is only 

available from school district records if they decide to enroll in the district after the lottery results 

are known. If, as it is usually the case, lottery status affects the decision to finally enroll in the 

district, then even the randomization induced from the lottery cannot guarantee that lottery 

winners and lottery losers are comparable in the observed dataset of those who enrolled in the 

district. 

There are several methods that have been proposed in the literature to address issues of 

differential attrition that we study in this paper. Under the strong assumptions of selection on 

observables, or conditional independence, and common support between treated and controls, 

                                                           
8 Note that Steele et al. (forthcoming) estimated a student random effects model instead. Using this more efficient 

estimation approach lead to slightly more significant effects of attending DLI in several grades. 
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one could reweight the observations of treated and controls so they remain comparable in a set of 

observed characteristics. We define ∏(��)�  as the estimated probability of being in the treatment 

group among binding lottery participants that decide to enroll in PPS as a function of observed 

characteristics. We then define weights as	
�

∏(	
)�  for lottery winners enrolled in PPS and 
�

��∏(	
)�  

for not placed students. We then use weighted least squares to obtain estimates of the average 

ITT effect of attending the DLI program. We compute separate weights for each grade and so 

treated and controls remain comparable within grades in terms of their demographic 

characteristics: child’s race or ethnicity, gender, free or reduced price lunch status, whether the 

child’s first language is English, and whether the child is classified in kindergarten as needing 

special education services.  

Although relatively easy to compute, the inverse probability weighting approach relies on 

the strong assumption that we have enough information about the characteristics of treated and 

controls so that, by controlling for these observable characteristics, we can guarantee that treated 

and controls are also comparable on other unobserved characteristics. This is with no doubt a 

strong assumption, given the limited demographic information that is usually available from 

education records. Two approaches have been proposed in the literature to relax the assumption 

of selection on observables: Parametric selection model corrections (Heckman (1979)) and 

bounding analysis. Despite relaxing the assumption of selection on observables, parametric 

methods like Heckman’s (1979) selection model often require an exclusion restriction for 

identification. That is, one would need to find a variable that affects the decision of enrolling in 

the district but that does not affect student achievement directly. Given the limited family 

background information available in administrative records, it is difficult to find such an 
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exclusion restriction in our case. Therefore, we only study the performance of bounding 

approaches. 

The first bounding analysis that we test in this paper is the method proposed by Lee 

(2009). The idea behind Lee’s (2009) approach is to identify the “excess” number of students 

who are induced to enroll in the district because of winning the lottery and then “trim” the upper 

and lower tails of the observed test score distribution by this number. In this way, one would 

have bounds for the average ITT effect of DLI assuming either that the best students in terms of 

test scores are the ones deciding not to enroll in the district or that the worst students in terms of 

test scores are the ones deciding not to enroll. 

As it is also the case in Heckman’s (1979) selection model, this approach is based on the 

following assumptions: 

1) The regressor of interest (treatment variable) is independent of the errors in the 

outcome and selection equation. This is guaranteed through the randomization induced by the 

lottery in our case. 

2) The selection equation can be written as a standard latent variable binary choice 

model. This implies that we have to assume that treatment assignment only affects enrollment in 

the district in one direction (i.e. we rule out heterogeneous effects of winning the lottery on 

enrolling in the district). Winning has to either make everybody more probable to enroll in the 

district or less probable. Following our estimates presented in Tables 2 through 4, we assume 

that it increases the likelihood for all students to enroll in the district. 

Note, however, that in contrast with Heckman (1979), Lee’s (2009) bounding analysis 

does not require exclusion restrictions for identification. In theory, Heckman’s (1979) selection 
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model does not require these either but in practice the method does not usually work well if they 

are not imposed. 

Specifically, Lee’s (2009) bounding method works as follows. Assuming a standard 

latent variable sample selection model and assuming that winning the lottery induces students to 

enroll in the district, we know that the observed distribution of test scores for those who win the 

lottery is a mixture of two distributions: 1) the distribution for those who would have decided to 

enroll in the district irrespective of the lottery outcome and 2) the distribution of those induced 

into enrolling in the district because of winning the lottery. Comparing the proportion of lottery 

winners that enroll in the district with the proportion of not placed students that do so, we can 

estimate the proportion of lottery winners that were induced to enroll in the district because of 

winning the lottery in the following way: 

Pr( _ | 1) Pr( _ | 0)

Pr( _ | 1)

enrolled PPS Win enrolled PPS Win
p

enrolled PPS Win

= − =
=

=
                     (2) 

Where each of the probabilities in (2) is estimated from the data. As in most cases, when 

only district data are available, it is not possible to know the characteristics of those induced to 

enroll in the district because of winning the lottery. This method proposes to construct extreme-

case scenarios by assuming that they are either the very best students in terms of test scores or 

the very worst. Thus, trimming the data for lottery winners by the estimated proportion of excess 

students (p), estimated following equation (2), in the top and the bottom of the distribution of test 

scores, will provide us with bounds for the average ITT effect of those who would enroll in PPS 

irrespective of the treatment (“always enrollees.”) 

Lee’s (2009) bounding approach has the advantage of relying on very few assumptions 

for identification. In practice, however, it can lead to bounds that are too wide and that turn out 

to be uninformative. In this respect, the original Lee (2009) approach did not consider covariates, 
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but covariates could be included in the analysis and could help estimate tighter bounds 

(Tauchmann, 2013; Ksoll et al., 2014). In the case of Lee (2009) bounds including covariates, 

one would choose discrete variables that have explanatory power for the probability of enrolling 

in the district. Then, one would split the sample into cells defined by these variables and compute 

separate bounds for each cell. A weighted average of the computed bounds, weighting by the 

proportion of the sample in each cell, would provide us with an estimate of the average ITT 

effect among “always enrollees.” In this line, Behaghel, Crépon, Gurgand, and Le Barbanchon 

(2015) suggested to incorporate information about how difficult to reach a respondent is in a 

bounding approach similar to Lee’s (2009). Information about difficulty to reach a respondent 

was based on the number of attempts that were made to reach a respondent. These type of 

paradata information is not observable in our administrative dataset, however. 

The final two bounding methods that we study in this paper are the parametric and non-

parametric bounding approaches proposed by Angrist et al., (2006). The nonparametric method 

(Angrist et al., 2006) generally leads to tighter bounds than Lee’s (2009) approach, but at the 

cost of making the additional assumption that selection bias only affects one part of the test score 

distribution, either those not enrolling in the district are the highest performing students or the 

lowest performing students. As in Lee (2009), this method also requires the assumption that 

winning the lottery affects enrollment in the district only in one direction, i.e. we assume it 

makes all students more likely to enroll in the district. Finally, we also need to assume that 

treatment affects test scores positively. With these assumptions, we then define �
(�) as the 

value in the test score distribution corresponding to the � quantile for those who lost the lottery. 

Similarly, ��(�) is the value in the test score distribution corresponding to the � quantile for 

those who won the lottery. Note that under the assumption that attending the DLI program has 
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positive effects, ��(�)>	�
(�). Thus, Angrist et al. (2006) showed that non-parametric bounds 

can be obtained as follows: 

Upper-bound: The Average ITT effect estimated when the distribution of test scores for treated 

students is smaller than q�(θ) and the distribution of test scores for students who lost the lottery 

is smaller than q�(θ). 

 Lower-bound: Estimated average effect when the distribution of test scores of both treated and 

controls is conditioned to be lower than	q�(θ).  

Bounds are obtained using linear regression models, so including covariates to tighten the 

bounds is easy. 

Under the additional assumption that test scores are normally distributed, Angrist et al. 

(2006) also propose a parametric approach to correct for attrition in the estimated effects. In this 

case, if we assume that those who decide not to enroll in the district are those with higher 

potential test scores, the idea of this approach is to censor the observed distribution of outcomes 

at a given quantile (q1). Under the normal distribution of test scores, one could then recover the 

effect of treatment using a Tobit regression. This method requires the assumption that those not 

observed in PPS would not have scored below the chosen censoring point (q1). For robustness 

one could choose different censoring points, and they should lead to similar estimates of the 

effect of the program. 

4. RESULTS 

4.1 Inverse Probability Weighting 

The inverse probability weights for this analysis were created using predicted 

probabilities of the probit model estimates presented in Table 5. Out of the subsample of students 

that remained in PPS, the treatment group is generally more likely to be Asian (grades three 
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through six) and marginally less likely to be female (grades five and six). Students that remained 

in PPS in sixth grade were also marginally less likely to be of another race, and students that 

remained in eighth grade were marginally less likely to be Hispanic. 

Table 6 compares the readings results for three models: the benchmark ODE model, an 

unweighted PPS model, and an inverse probability weighted PPS model. The benchmark ITT 

effect in the benchmark ODE sample was positive and significant in grade 5 (0.150 standard 

deviations) and grade 8 (0.232 standard deviations). Interestingly, we see significant and positive 

effects in these two grades in the unweighted (uncorrected) PPS sample, indicating that even 

without weighting, treatment effects estimated using the PPS sample are at least somewhat 

similar to those estimated using the benchmark ODE sample. In five out of seven grades, the 

unweighted PPS results were negatively biased, and in two out of seven grades, the unweighted 

PPS results were positively biased.  

Turning next to the inverse probability weighted reading results, we see the grade five 

treatment effect estimate is very close to the unweighted PPS, and now only marginally 

significant, perhaps indicating that we would have been about as well off, even without 

weighting. The grade eight treatment effect estimate is between the benchmark ODE estimate 

and the unweighted PPS estimate, indicating that at least in one case, inverse probability 

weighting produces estimates that are closer to the benchmark results. The last column of Table 

6 lists the change in absolute value of bias. The magnitude of the bias only went down in two 

cases out of seven (grade 3 and grade 8), indicating that IPW is getting us further from the ODE 

benchmark results, in five out of seven cases. In ninth grade in particular, in which there are 

fewer observations, the inverse probability weighted result includes a considerable amount of 

bias and becomes particularly noisy. 
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4.2 Lee (2009) Bounds 

Next, we discuss the results of the Lee (2009) bounding method. First, we report the 

estimated proportion of the sample of lottery winners to be trimmed following equation (2), 

representing the percent of lottery winners who were induced to enroll in PPS by winning the 

lottery. Depending on the grade level, the proportion to be trimmed ranged from about 15.7% to 

about 21.9% (see Table 7). These percentages indicate the proportion of observations trimmed 

from the upper and lower tails of the test score distribution to create the Lee (2009) bounds. 

Our results following Lee’s (2009) bounding approach,9 however, lead to large and 

uninformative bounds. In all cases, including those in which covariates were used to tighten the 

bounds, the bounds included zero. The key covariates that we attempted to use to tighten the 

bounds were the covariates that predicted enrollment into PPS (Ksoll et al., 2014), yet their 

predictive value is quite weak, as indicated in Tables 2-4, so the bounds remain wide and 

uninformative.  Wide, uninformative bounds are a common practical issue with this method 

(Tauchmann, 2014). To illustrate, Table 8 provides the bounds for the reading impacts. Even 

when the bounds are tightened using FRPL-eligibility and first language not English-status, the 

bounds tend to range from about -0.25 to about 0.3, and all include zero.10 Part of the issue here, 

is that we lack variables that highly predict enrollment in a district. If there was a more apparent 

relationship between observable characteristics of students and enrollment status, the bounds 

could theoretically be tightened (Ksoll et al., 2014), but unlike the case of survey non-response 

illustrated in Behaghel et al.’s (2015) work for example, we do not have a highly predictive 

                                                           
9 Lee bounds were estimated using the command “leebounds” in Stata (Tauchmann, 2014). 
10 We attempted to tighten bounds using every available combination of variables that were significantly 

predicting enrollment status as indicated in Tables 2-4, but in no cases did the bounds exclude zero. 
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variable such as the number of times that a call to a survey respondent was made before 

obtaining a response. 

4.3 Angrist, Bettinger, & Kremer (2006) Non-Parametric Bounds 

We next study the performance of Angrist et al.’s (2006) proposed non-parametric 

bounding strategy. As explained above, this approach aims to obtain tighter bounds that those of 

Lee (2009) by making the additional assumption that attrition only affects one side of the 

distribution of test scores. As we presented in Tables 2-4, we do not have strong evidence 

suggesting that, for the case of DLI immersion programs in PPS, those deciding to enroll in the 

district are either those with potentially higher test scores or those with lower test scores. Judging 

by special education and free-reduced lunch status the results suggest that those leaving the 

district, particularly from the control group, are more advantaged and potentially have higher test 

scores. Under this assumption, the unweighted PPS ITT estimates would be biased downward. 

While most of the unadjusted PPS estimates in Table 9 were biased downward, they were still 

biased upward in two out of seven cases (and one of the two grades in which there was a 

significant estimate defect of DLI in the unweighted case). Therefore, we recognize that the 

assumption that those who leave the district are from the top end of the potential test score 

distribution is not fully supported by our data. Still, we present the primary findings under this 

assumption. In fact, the results from Tables 2-4 suggest that the type of students leaving the 

treatment and control group might be different, more advantaged in the control group and less 

advantaged in the treatment group. Therefore, we caution that this assumption might not be 

satisfied in our case.11 

                                                           
11 Note that the reverse assumption, that the students leaving the district are those in the bottom tail of the test 

score distribution, is also not fully supported by our data. The estimates in Tables 2 and 3 do indicate that non-

English speakers and those with lower lagged test scores, in some grades, leave PPS with higher probability. In this 

case, the estimated ITT unweighted PPS effects would be downward biased and this seems to be the case for 2 out 
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Table 9 presents the reading results using the Angrist et al.’s (2006) non-parametric 

bounds. The results in Table 9 indicate that the non-parametric bounding method, including 

covariates, generally negatively biased results. In 22 out of 28 comparisons grade-bound 

combinations, the result was negatively biased, relative to the benchmark ODE results. In only 6 

out of 28 of these cases was there positive bias. Grade 8 results are in line with the benchmark 

ODE results, however, the bounding method would generally lead to a false negative in the grade 

5 results. For the grade 5 results, the negative bias has essentially pushed the estimated effect to 

zero. It should also be noted, that in some cases, the upper bounds were less than the 

corresponding lower bounds (same percentile and grade comparison). This again could indicate a 

misspecification issue. 

4.4 Angrist, Bettinger, & Kremer (2006) Parametric Bounds 

Angrist et al. (2006) suggest the use of a modified Tobit procedure to adjust for 

differential attrition bias. Following this method, a censored dataset was constructed by 

censoring the observed PPS scores at or above a particular value or quantile. Any PPS students 

scoring above this point, as well as the students in the ODE data who were not observed in PPS, 

were assigned the censoring point. Under the assumption of normality of the uncensored latent 

score distribution, as well as the assumption that we are only missing students from one 

particular tail of the distribution (upper), one could recover the censored portion using a Tobit 

regression model. 

As a first check of the normality assumption, we performed skewness and kurtosis tests. 

We reject the null hypothesis that the test score distribution is normally distributed. See Figure 1 

                                                           

of 3 of the significant estimated effects. To test whether this could be the case, we conducted the same non-

parametric bounding approach under the assumption that those who leave the district are actually the lowest 

performers. We find that the results do not improve, and in some cases there are large (0.3 standard deviation) 

biases. 
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for the reading test score distributions of the entire ODE benchmark sample. Skewness and 

kurtosis tests of each test score distribution by grade rejected normality for reading in grades 

three, four, five, and nine. 

As the normality assumption is not met, and we have concerns that not only students in 

one tail of the distribution are leaving the district, the results of the parametric bounds are not 

reported in detail here. However, if we use this method, against the failed normality assumption, 

we consistently obtain large, negative impacts of the treatment, which is inconsistent with the 

benchmark ODE estimates, a further indication that the assumptions have failed. 

5. SIMULATION ANALYSIS OF PERFORMNACE OF ANGRIST ET AL. (2006) 

BOUNDING APPROACHES 

As discussed in previous section, we worry that the assumptions behind Angrist et al. 

(2206) bounding methods are not satisfied in our case. Thus, we wonder to what extend our 

results of bias when using these methods are driven but the fact that the underlying assumptions 

are not satisfied. To better understand the practicality and performance of these correction 

methods under various situations on the degree their underlying assumptions are met, we also 

performed analyses using real test score data from PPS, but simulating artificial assignment of 

treatment status and simulating attrition under various assumptions. First, we created a 

subsample of PPS students who were non-applicants to dual language immersion programs. We 

also limited the sample to those who were at least present in third grade as a baseline. 

Using this subsample of 17,249 students, we assigned treatment status to approximately 

half (8,625) and control status to the other 8,624 students. Under simulated random assignment 

of treatment, the expected average treatment effect (ATE) is zero. This random assignment of 

artificial treatment status in conducted 100 times to create 100 different samples, each with a 
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different treatment and control group. Next, in each of these 100 datasets, we created artificial 

attrition of the control group under various scenarios ranging from completely random attrition 

to attrition based solely on third grade test scores. In grade three, we created attrition equal to 5% 

and 10% of the control group. It is important to note that this sample (pre-artificial simulated 

attrition) already will present some real attrition in grades later than three, due to the fat that it is 

based on real administrative data. Therefore, for the purposes of this simulation analysis, we 

focused on estimating effects in grade three, where all attrition is controlled by our simulation 

exercise and no real attrition of students has taken place in the data yet. 

Under the case of completely random attrition, test scores are uncorrelated with 

predictors of attrition, and differential attrition should not bias the results. Therefore, under 

random attrition, the estimated effect even without correction should still be equivalent to the 

actual ATE which is zero in this exercise. Theoretically, the Angrist et al. (2006) correction 

methods (both parametric and non-parametric) should work best under the case of attrition based 

solely on third grade test scores, although the parametric method still requires an underlying test 

score distribution that is normal. Under attrition that is a mix of test scores and random error, 

there is theoretically some point at which too much random attrition causes the method to fail, 

but if there is too much random attrition, then differential attrition becomes a non-issue. This 

simulation analysis seeks to find the situations under which Angrist et al. (2006) bounding  

methods do or do not correct any existing differential attrition bias. 

We present results for both the parametric and non-parametric methods proposed by 

Angrist et al. (2006) under 14 scenarios. For attrition amounts of both 5 and 10 percent, we 

present results under control group attrition using seven different mechanisms: attrition based 

solely on test scores, attrition that is completely random, and five cases of attrition that is driven 
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by a mix of test scores and random error in the following ratios: (25/75, 40/60, 50/50, 60/40, and 

75/25). To create these attrition variables in different ratios of test score based attrition and 

random attrition, we used z-scores (test scores normalized to a mean of zero and standard 

deviation of one), and created a random variable with the same standard normal distribution. 

Then, we apply a propensity to attrite, by adding these two variables in various proportions. We 

then replicated this exercise in 100 samples and study average performance in estimating the 

actual ATE, which in this simulation exercise should be zero. 

5.1 Angrist et al. (2006) Parametric Results under Artificially Simulated Attrition 

The results of the parametric approach (Angrist et al., 2006) for the simulated sample are 

presented in Table 10 and Figure 2. To briefly summarize before analyzing these results in detail, 

this method does appear to work quite well when the assumptions underlying this approach are 

met, as Angrist et al. (2006) predicted. The problem, however, is that its ability to correct for 

differential attrition falls apart if the attrition is also based on random error, or on factors other 

than test scores.  

In Table 10, we present statistics for each combination of attrition type (test scores, 

random, or a mix), and model (a naïve OLS and Tobit models censored at various percentiles). In 

these simulations, we assign treatment status randomly in a way such that the expected ATE 

should be zero. Therefore, methods that work should return estimates not significantly different 

from zero. Table 10 includes the average estimate calculated over each of 100 loops and the 

share of accurate estimates (the proportion of times out of those 100 loops where the estimate 

calculated was not significantly different from the expected ATE of zero). Under the case where 

the attrition is driven entirely by test scores (the 5 percent of control group students with the 

highest test scores artificially attrite), the naïve OLS model would be biased 100 percent of the 
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time, but the Angrist et al. (2006) parametric results using Tobit censored at the 95th percentile or 

lower would be accurate in at least 95% of cases. 

Figure 2 also shows the “shares of accurate estimates” from the Angrist et al. (2006) 

parametric correct method graphically. These shares represent the number of samples out of 100 

for which we calculate accurate estimates. There is a monotonic relationship between the amount 

of attrition that is based on test score and the share of accurate estimates. When attrition is driven 

entirely by test scores, the parametric results using Tobit at the 99th percentile corrected the bias 

in 68 out of 100 cases, but using Tobit at the 95th percentile or lower corrected the bias in at least 

95 out of 100 cases. Under other types of attrition, e.g. when attrition is as much as 50 percent 

random, the correction method still works in the vast majority of cases, using Tobit models 

censored at the 90th percentile or lower. Where the randomness really begins to become an issue, 

it appears, is in the case of 60 percent randomness, where the Tobit censored at the 90th 

percentile only corrects the bias in about 64 out of 100 cases. As expected, when attrition is 

completely random, there is no systematic relationship between test score outcomes and 

treatment group status, so the estimated ATE even in the naïve OLS model is equal to the actual 

ATE and there is no bias to correct for. Under this situation, however, attempting to correct for 

this attrition actually introduces bias, as indicated in Table 10 by the fact that 0 percent of the 

estimates for the Tobit models were accurate in the 100 percent random case. 

We also perform similar simulations but increase the level of attrition to 10 percent of 

control group students. These results are presented in Table 11 and Figure 3. Figure 3 indicates 

that, similar to the case of 5 percent attrition, the Angrist et al. (2006) parametric method works 

quite well as long as attrition is at least primarily test score-based. When the level of attrition is 

higher, the correction method does appear more sensitive to the introduction of randomness.  
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Similar to the case of 5 percent attrition, under the case where attrition is driven entirely by test 

scores, the naïve OLS model would be biased 100 percent of the time, but the Angrist et al. 

(2006) parametric results using Tobit censored at the 90th percentile or lower corrected the bias 

in all at least 96 out of 100 cases. 

In other cases, where attrition is as much as 40 percent random, the correction method 

still has accurate estimates in at least 96 out of 100 cases using Tobit models censored at 80 

percent or lower. Again, as with the case of 5 percent attrition, the randomness appears to 

become an issue when it reaches 60 percent. As expected, when attrition is completely random, 

there is no systematic relationship between test score outcomes and treatment group status, so the 

ATE even in the naïve OLS model is ATE and there is no bias to correct for. Under this 

situation, however, attempting to correct for this attrition would actually introduce bias, as with 

the case of 5 percent attrition that is completely random. 

5.2 Angrist et al. (2006) Non-Parametric Bounding Results under Artificially Simulated 

Attrition 

The results of the non-parametric proposed by Angrist et al. (2006) are presented in Table 

12 and Figure 4, with simulated attrition of 5 percent. Overall, as it was also the case for Angrist 

et al. (2006) parametric bounding approach, this method does appear to work quite well even 

when the assumptions are not fully met, as long as most of the attrition is based on test scores, 

rather than random error. 

In Table 12, we present three statistics for each combination of attrition type (test scores, 

random, or a mix), and model (a naïve OLS and estimates of bounds at various quantiles). In 

these simulations, we present the mean of both the lower and upper bounds, as well as the 

proportion of times that this range includes the expected actual ATE value of zero.   
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Figure 4 shows the proportion of cases in which the range included zero. Under the case 

where the attrition is driven entirely by test scores (the 5 percent of control group students with 

the highest test scores artificially attrite), the range of estimates created by the lower and upper 

bounds at various quantiles included the expected ATE of zero in the vast majority of cases (at 

least 97 out of 100). In addition, as long as the attrition is based at least primarily (60 percent or 

more) on test scores, the method appears to work rather well, resulting in few Type I errors (false 

positives) at certain quantiles. For example, as long as attrition is based at least 60% on test 

scores, at least 96 percent of the bounds included zero with censoring at the 90th percentile or 

below. Interestingly, when the attrition is based completely on random error, the range of 

estimates generally does include zero, and when most of the attrition is based on random error 

(60 percent or more, the method still works in about 68 to 99 percent of the cases), at least with 

censoring at the 95th percentile or below.  

Next, we present the results of the non-parametric method (Angrist et al., 2006) when 

attrition is increased to 10 % of the control group in Table 13 and Figure 5. In Table 13, we 

present the mean of both the lower and upper bounds, as well as the proportion of times that this 

range includes the expected actual value of ATE which should be zero. Figure 5 graphically 

shows the proportion of cases in which the range includes zero. Under the case where the 

attrition is driven entirely by test scores, the range of estimates created by the lower and upper 

bounds at various quantiles included the expected ATE of zero in the vast majority of cases.  

In addition, as with the case of 5 percent attrition, as long as the attrition is based 

primarily (60 percent or more) on test scores, the method appears to work rather well, resulting 

in few Type I errors (false positives) at certain quantiles. For example, when attrition is at least 

60 percent based on test scores, and with censoring at the 85th percentile or below, the range of 
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estimates included zero in at least 96 percent of the cases. When the attrition is based completely 

on random error, the range of estimates generally does include zero, and when most of the 

attrition is based on random error (60 percent or more, the method still works in about 63 to 93 

percent of the cases), at least with censoring at the 80th percentile or below.  

Overall, the results of the simulation analysis indicated that, when the assumptions of the 

Angrist et al. (2006) correction methods are met (when attrition is at least primarily based on test 

scores), these methods generally are successful at correcting differential attrition. Therefore, we 

believe that the lack of accurate correction methods in the non-simulated data might be due to the 

fact that the underlying assumptions for these methods were not clearly met.  

6. CONCLUSIONS 

This study exploited a unique opportunity to test and compare the performance of various 

correction methods for differential attrition, a practical issue that is common in lottery-based 

studies. We find that, using the real (non-simulated) data, where the source of attrition is 

unknown, the results from the attrition-affected PPS dataset were actually similar to the results 

from the augmented state-provided ODE dataset, which we treat as the benchmark data source. 

Despite the apparent similarity between the unadjusted PPS and benchmark ODE results, we 

tried various correction methods, many of which seemed to add more bias, or at least more noise, 

to the estimates. The Angrist et al. (2006) parametric bounds and the Lee (2009) bounds did not 

appear to work in this particular case, indicating the limited practicality of these methods in a 

situation such as the one considered in this paper.  

In the non-simulated data, inverse probability weighting often increased the magnitude of 

the bias, rather than decreasing it. In five out of seven grade-level treatment effect estimates, the 
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inverse probability weighted results were further from the ODE benchmark results than the 

unweighted PPS results were.  

The second method for which we report results using the non-simulated data is the 

Angrist et al. (2006) non-parametric bounding method. These bounds tended to provide 

negatively biased results. For the grade five reading results, in which there was a positive effect 

in the benchmark ODE model, this method lead to false negatives, and the unadjusted PPS 

results were actually closer and more substantively similar to the benchmark. Adding to this 

confusion, we note that in several cases, the upper bound was actually lower than the 

corresponding lower bound. 

In our non-simulation analysis, the bias and noise from using correction methods, without 

certainty that the necessary assumptions are met, leads to false positives or false negatives in 

many cases. In addition, some would have changed the overall interpretation of the results. In 

most cases, the unadjusted PPS results were closer and more substantively similar to the true 

benchmark ODE results. Keeping in mind that we normally would not have had the opportunity 

to compare these methods to the benchmark ODE result, the main result of the non-simulation 

analysis is that attempting to adjust results using these various methods probably would have not 

been the right choice in our case, and that researchers should approach the use of these methods 

with caution. 

Serious concerns about whether the assumptions upon which these methods rely on were 

actually met motivated the second part of our study, a simulation analysis to test the performance 

of the Angrist et al. (2006) parametric and non-parametric methods under various types of 

attrition. Overall, we find these Angrist et al. (2006) bounding methods do work quite well, even 
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when the assumption about what types of students attrite is not fully met, as long as the majority 

of the attrition is based on student test scores.  

The problem, however, is that in most studies or datasets, the researchers are not able to 

observe (or simulate) what is driving the attrition, and that little reliable information is available 

to determine whether the necessary conditions are met. Therefore, the most important conclusion 

of this study is that researchers must only use these types of correction methods with caution, 

and need to have strong evidence that the assumptions are met, because otherwise, using these 

methods incorrectly might actually introduce more bias. The results are important for researchers 

who use these types of methods, or for those who are consumers of information from studies that 

use these types of methods. In the absence of clear knowledge about what is driving attrition, 

there must be a strong theoretical reason for these assumptions to be met if we are to rely upon 

these methods. 
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Table 1: Enrollment in PPS by Grade, Binding Lottery Applicants Only

 

Total

Original Participants 864      1,082   1,946   

K 684      79% 728      67% 1,412   

1 661      77% 675      62% 1,336   

2 633      73% 633      59% 1,266   

3 610      71% 590      55% 1,200   

4 462      53% 460      43% 922      

5 343      40% 357      33% 700      

6 205      24% 238      22% 443      

7 125      14% 171      16% 296      

8 73        8% 103      10% 176      

9 26        3% 62        6% 88        

Treatment Control
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Table 2: Propensity to Enroll in PPS (Full Sample); Dependent Variable: Has Reading Test Score and Enrolls in Portland (Marginal 

Effects) 

 
Note: There were no test score outcomes in kindergarten, so the outcome in Kindergarten is simply enrolled in PPS.

K 3rd 4th 5th 6th 7th 8th 9th

Won Lottery 0.0685 *** 0.134 *** 0.127 *** 0.173 *** 0.141 *** 0.201 *** 0.229 *** -0.188 ***

(0.0160) (0.0220) (0.0230) (0.0256) (0.0357) (0.0440) (0.0582) (0.0708)

Female -0.0125 0.00896 -0.0111 0.00340 0.0756 ** 0.0751 0.145 ** 0.0612

(0.0161) (0.0225) (0.0235) (0.0266) (0.0367) (0.0466) (0.0624) (0.0770)

Asian -0.0443 0.0213 0.0228 -0.00543 0.0122 -0.117 -0.0705 0.313 **

(0.0311) (0.0372) (0.0379) (0.0439) (0.0565) (0.0840) (0.108) (0.159)

Black -0.0149 -0.101 * -0.0195 0.0412 0.0351 0.0156 -0.00748 0.0976

(0.0424) (0.0569) (0.0545) (0.0513) (0.0738) (0.0898) (0.116) (0.193)

Hispanic 0.00798 -0.00529 0.0183 0.0467 0.0129 0.0314 0.119 0.206

(0.0268) (0.0378) (0.0384) (0.0405) (0.0581) (0.0698) (0.0911) (0.133)

Other Race -0.0427 -0.0490 -0.0791 -0.125 -0.145 -0.196 -0.365

(0.0370) (0.0499) (0.0599) (0.0847) (0.141) (0.160) (0.243)

Missing Race -0.420 *** -0.457 *** -0.162 -0.352 *** -0.197 -0.296 -0.235

(0.0862) (0.0803) (0.119) (0.132) (0.185) (0.309) (0.327)

FRPL 0.0497 ** 0.0395 -0.0487 -0.0587 -0.0308 -0.105 -0.182 ** 0.0567

(0.0203) (0.0305) (0.0361) (0.0420) (0.0542) (0.0645) (0.0916) (0.110)

Special Needs (t=0) 0.110 *** 0.0145 0.112 *** 0.103 ** 0.0909 -0.0465 -0.0520 0.0503

(0.0177) (0.0549) (0.0404) (0.0433) (0.0743) (0.113) (0.134) (0.160)

First Language Not English -0.0892 ** -0.153 *** -0.0849 * -0.0976 * -0.0890 -0.0667 -0.00330 -0.0610

(0.0364) (0.0448) (0.0493) (0.0554) (0.0680) (0.0796) (0.113) (0.108)

Lagged Test Score 0.0113 0.037 ** 0.00382 -0.00189 0.0184 -0.0858 *

(0.0134) (0.0162) (0.0220) (0.0275) (0.0372) (0.0443)

Observations 1,625 1,581 1,095 847 591 416 251 135

*** p<0.01, ** p<0.05, * p<0.1
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Table 3: Propensity to Enroll in PPS for Treatment Group Only; Dependent Variable: Has Reading Test Score and Enrolls in 

Portland (Marginal Effects)  

 
Note: There were no test score outcomes in kindergarten, so the outcome in Kindergarten is simply enrolled in PPS. 

 

K 3rd 4th 5th 6th 7th 8th 9th

Female 0.00504 0.0139 0.0362 0.0324 0.0674 0.128 ** 0.126 0.0855

(0.0203) (0.0293) (0.0284) (0.0279) (0.0487) (0.0602) (0.0847) (2.487)

Asian -0.00605 0.00581 0.0400 -0.0316 -0.00633 -0.185 -0.123 0.221

(0.0326) (0.0453) (0.0382) (0.0469) (0.0725) (0.122) (0.135) (4.919)

Black -0.0379 -0.248 *** -0.0745 -0.0661 0.0366 0.136 * 0.0535

(0.0612) (0.0919) (0.0798) (0.0842) (0.0997) (0.0695) (0.130)

Hispanic 0.0243 -0.0553 0.0559 0.0536 -0.0515 -0.0167 0.0144 0.992

(0.0324) (0.0561) (0.0410) (0.0365) (0.0881) (0.0971) (0.142) (2.979)

Other Race -0.00466 -0.0197 0.00854 -0.0739

(0.0444) (0.0704) (0.0684) (0.133)

Missing Race -0.432 *** -0.580 ***

(0.162) (0.136)

FRPL 0.0132 0.0643 * -0.105 ** -0.0866 * -0.0279 -0.129 -0.277 -0.474

(0.0279) (0.0381) (0.0506) (0.0525) (0.0831) (0.106) (0.198) (62.59)

Special Needs (t=0) 0.0688 *** -0.0745 0.0577 0.0383 -0.0322 -0.166 -0.392

(0.0244) (0.0729) (0.0459) (0.0401) (0.112) (0.160) (0.240)

First Language Not English -0.0839 * -0.139 ** -0.0994 -0.0747 -0.129 0.000468 0.0582 0.165

(0.0488) (0.0603) (0.0655) (0.0629) (0.102) (0.0996) (0.114) (3.915)

Lagged Test Score -0.0120 0.0223 -0.0433 -0.0337 -0.0649 -0.1000

(0.0160) (0.0184) (0.0306) (0.0341) (0.0537) (2.958)

Observations 752 721 498 369 244 151 89 31

*** p<0.01, ** p<0.05, * p<0.1
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Table 4: Propensity to Enroll in PPS for Control Group Only; Dependent Variable: Has Reading Test Score and Enrolls in Portland 

(Marginal Effects)

 
Note: There were no test score outcomes in kindergarten, so the outcome in Kindergarten is simply enrolled in PPS.

Dependent Variable: Has Reading Test Score and Enrolls in Portland (Marginal Effects)

K 3rd 4th 5th 6th 7th 8th 9th

Female -0.0328 0.0032 -0.0616 * -0.0274 0.0747 0.0355 0.158 * 0.0889

(0.0258) (0.0325) (0.0355) (0.0414) (0.0519) (0.0622) (0.0849) (0.104)

Asian -0.109 * 0.0214 -0.0106 0.0276 0.0004 -0.0485 -0.0345 0.270

(0.0581) (0.0593) (0.0674) (0.0716) (0.0867) (0.113) (0.156) (0.201)

Black 0.0122 0.0017 0.0600 0.175 *** 0.0319 -0.0675 -0.0543 0.301

(0.0628) (0.0732) (0.0724) (0.0607) (0.105) (0.126) (0.155) (0.261)

Hispanic -0.0054 0.0309 -0.0073 0.0430 0.0615 0.0834 0.170 0.184

(0.0432) (0.0518) (0.0588) (0.0650) (0.0775) (0.0908) (0.122) (0.156)

Other Race -0.0805 -0.0645 -0.15 * -0.158 -0.150 -0.217 -0.341

(0.0582) (0.0675) (0.0854) (0.108) (0.152) (0.168) (0.226)

Missing Race -0.438 *** -0.401 *** -0.262 * -0.457 *** -0.262 -0.291 -0.208

(0.0995) (0.0942) (0.140) (0.129) (0.198) (0.292) (0.321)

FRPL 0.0957 *** 0.0234 0.0000 -0.0471 -0.0434 -0.113 -0.170 0.103

(0.0310) (0.0451) (0.0523) (0.0641) (0.0743) (0.0821) (0.110) (0.136)

Special Needs (t=0) 0.149 ** 0.167 *** 0.185 *** 0.192 ** 0.0197 0.0938 0.272

(0.0753) (0.0630) (0.0683) (0.0977) (0.160) (0.167) (0.245)

First Language Not English -0.0954 * -0.151 ** -0.0734 -0.120 -0.0379 -0.103 -0.0365 -0.0932

(0.0570) (0.0639) (0.0741) (0.0849) (0.0913) (0.106) (0.153) (0.147)

Lagged Test Score 0.0348 * 0.0427 * 0.0335 0.0147 0.0588 -0.0978 *

(0.0208) (0.0247) (0.0305) (0.0376) (0.0482) (0.0562)

Observations 845 860 594 475 345 264 162 95

*** p<0.01, ** p<0.05, * p<0.1
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Table 5: Propensity to be in treatment group (won lottery), conditional on enrollment in PPS and having a reading score 

 

Dep Var: Won Lottery 3rd 4th 5th 6th 7th 8th 9th

Female -0.0421 -0.0373 -0.0746 * -0.0834 * -0.0809 -0.119 -0.141

(0.0297) (0.0336) (0.0385) (0.0489) (0.0594) (0.0804) (0.155)

Asian 0.127 *** 0.154 *** 0.156 *** 0.162 ** 0.0842 0.221 * 0.203

(0.0479) (0.0512) (0.0574) (0.0729) (0.107) (0.124) (0.290)

Black -0.0738 -0.0242 -0.0609 0.0751 0.147 0.102

(0.0691) (0.0757) (0.0819) (0.0945) (0.105) (0.143)

Hispanic -0.0037 0.0391 0.0613 0.0876 -0.0027 -0.239 * 0.0789

(0.0503) (0.0563) (0.0654) (0.0778) (0.0924) (0.123) (0.191)

Other Race -0.0099 -0.0068 -0.124 -0.289 * -0.237

(0.0631) (0.0798) (0.112) (0.155) (0.185)

Missing Race -0.181 -0.171 -0.0222 -0.151

(0.151) (0.154) (0.193) (0.247)

FRPL 0.00153 0.00620 0.0187 0.0531 0.0580 0.0319 -0.114

(0.0418) (0.0484) (0.0567) (0.0687) (0.0799) (0.120) (0.145)

Special Needs 0.0126 0.0121 -0.0125 -0.0284 0.0493 -0.0649

(0.0744) (0.0838) (0.0948) (0.114) (0.152) (0.185)

First Language Not English 0.0494 -0.0001 0.00533 -0.0437 0.0672 0.143 0.0260

(0.0547) (0.0609) (0.0708) (0.0854) (0.107) (0.150) (0.168)

Observations 1,164 908 692 440 292 169 30

*** p<0.01, ** p<0.05, * p<0.1
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Table 62: Comparison of Reading Results: Inverse Probability Weighting

 

Grade 3 ITT 0.0585 0.0774 0.019 0.0756 0.017 -0.002

(0.0508) (0.0552) (0.0549)

Grade 4 ITT 0.0779 0.0648 -0.013 0.0603 -0.018 0.005

(0.0564) (0.0618) (0.0615)

Grade 5 ITT 0.150 ** 0.123 * -0.027 0.122 * -0.028 0.001

(0.0600) (0.0660) (0.0660)

Grade 6 ITT 0.120 0.119 -0.001 0.106 -0.014 0.013

(0.0747) (0.0818) (0.0821)

Grade 7 ITT 0.117 0.0909 -0.026 0.0615 -0.056 0.029

(0.0809) (0.0942) (0.0950)

Grade 8 ITT 0.232 ** 0.313 *** 0.081 0.279 ** 0.047 -0.034

(0.101) (0.118) (0.124)

Grade 9 ITT 0.0917 -0.123 -0.215 -0.260 -0.352 0.137

(0.292) (0.310) (0.286)

Time Dummies Y Y Y

Demographic Controls Y Y Y

Binding Lottery Strata Fixed Effects Y Y Y

Constant 0.120 0.103 0.126

(0.172) (0.190) (0.200)

Observations 4,594 3,705 3,695

Students 1,447 1,208 1,208

Adjusted R-Squared 0.3112 0.3098 0.3114

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Change in 

Absolute 

Value of Bias

Benchmark 

ODE Sample

Unweighted 

PPS

Bias in 

Unweighted 

PPS

Inverse 

Probability 

Weighted PPS

Bias in 

IPW 

Portland
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Table 3: Proportion to be trimmed in Lee Bounds Analysis, by Grade 

 
Note: 9th grade calculations are not accurate due to small sample size 

 

 

 

 

 

Table 8: Lee (2009) Bounds on Reading Treatment Effects (Grades 3-8) 

 
Note: Covariates used for tightening include FRPL-eligibility and first language not English-status. 

 

3rd 4th 5th 6th 7th 8th

Reading 16.5% 17.2% 20.1% 15.7% 19.2% 21.9%

Lower Bound Upper Bound

Grade 3 -0.26 0.30

Grade 4 -0.35 0.24

Grade 5 -0.30 0.34

Grade 6 -0.27 0.22

Grade 7 -0.35 0.17

Grade 8 -0.14 0.50
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Table 9: Comparison of Reading Results: Non-Parametric Bounds (Angrist et al., 2006) 

Grade 3 ITT 0.0585 0.0774 0.019 0.0317 -0.027 0.00666 -0.052 0.0499 -0.009 0.0373 -0.021

(0.0508) (0.0552) (0.0490) (0.0475) (0.0496) (0.0477)

Grade 4 ITT 0.0779 0.0648 -0.013 -0.0173 -0.095 -0.0405 -0.118 0.0248 -0.053 -0.0203 -0.098

(0.0564) (0.0618) (0.0554) (0.0536) (0.0564) (0.0537)

Grade 5 ITT 0.150 ** 0.123 * -0.027 0.0880 -0.062 0.0616 -0.088 0.100 -0.050 0.0798 -0.070

(0.0600) (0.0660) (0.0603) (0.0589) (0.0610) (0.0590)

Grade 6 ITT 0.120 0.119 -0.001 0.0850 -0.035 0.0618 -0.058 0.0780 -0.042 0.0430 -0.077

(0.0747) (0.0818) (0.0738) (0.0719) (0.0743) (0.0714)

Grade 7 ITT 0.117 0.0909 -0.026 0.144 0.027 0.133 0.016 0.123 0.006 0.108 -0.009

(0.0809) (0.0942) (0.0907) (0.0885) (0.0906) (0.0878)

Grade 8 ITT 0.232 ** 0.313 *** 0.081 0.310 *** 0.078 0.228 * -0.004 0.344 *** 0.112 0.318 *** 0.086

(0.101) (0.118) (0.117) (0.119) (0.117) (0.117)

Grade 9 ITT 0.0917 -0.123 -0.215 -0.147 -0.239 0.0198 -0.072 -0.232 -0.324 -0.0846 -0.176

(0.292) (0.310) (0.302) (0.298) (0.343) (0.334)

Observations 4,594 3,705 3,510 3,266 3,470 3,283

Students 1,447 1,208 1,187 1,124 1,161 1,128

Adjusted R-Squared 0.311 0.310 0.315 0.304 0.316 0.305

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: Other covariates include year indicators, binding lottery strata fixed effects, and demographic controls (gender, race, special needs in kindergarten, 

first language not English in kindergarten, and FRPL in kindergarten).

Lower Bounds Upper Bounds

95% Upper 

Bound

Bias in 

95% UB

90% Upper 

Bound

Bias in 

90% UB

90% Lower 

Bound

Bias in 

90% LB

Benchmark 

ODE Sample

Unadjusted 

PPS

Bias in 

Unadjusted 

PPS

95% Lower 

Bound

Bias in 

95% LB
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Table 10: Parametric Results Under Artificially Simulated Attrition of 5% (Grade 3 Reading) 

 
Note: Standard deviation of the estimates was approximately 0.01 in all cases. 

Naïve 

OLS

Tobit 

99%

Tobit 

95%

Tobit 

90%

Tobit 

85%

Tobit 

80%

Tobit 

75%

Tobit 

70%

100% Test Score

Estimate Mean 0.10 -0.02 0.00 0.00 0.00 0.00 0.00 0.00

Share of Accurate Estimates 0.00 0.68 0.95 0.97 0.96 0.96 0.96 0.96

75% Score, 25% Random

Estimate Mean 0.10 -0.02 0.00 0.00 0.00 0.00 0.00 0.00

Share of Accurate Estimates 0.00 0.60 0.96 0.97 0.96 0.96 0.96 0.96

60% Score, 40% Random

Estimate Mean 0.09 -0.03 -0.01 0.00 0.00 0.00 0.00 0.00

Share of Accurate Estimates 0.00 0.37 0.92 0.95 0.96 0.96 0.95 0.95

50% Score, 50% Random

Estimate Mean 0.08 -0.04 -0.02 -0.01 -0.01 0.00 0.00 0.00

Share of Accurate Estimates 0.00 0.12 0.82 0.90 0.96 0.97 0.96 0.96

40% Score, 60% Random

Estimate Mean 0.06 -0.06 -0.03 -0.02 -0.02 -0.01 -0.01 -0.01

Share of Accurate Estimates 0.01 0.00 0.32 0.64 0.80 0.88 0.91 0.92

25% Score, 75% Random

Estimate Mean 0.03 -0.09 -0.06 -0.05 -0.04 -0.03 -0.03 -0.03

Share of Accurate Estimates 0.24 0.00 0.00 0.05 0.16 0.26 0.47 0.58

100% Random

Estimate Mean 0.00 -0.14 -0.10 -0.08 -0.08 -0.07 -0.06 -0.06

Share of Accurate Estimates 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 11: Parametric Bounding Results Under Artificially Simulated Attrition of 10% 

 
Note: Standard deviation of the estimates was approximately 0.01 in all cases. 

 

Naïve 

OLS

Tobit 

99%

Tobit 

95%

Tobit 

90%

Tobit 

85%

Tobit 

80%

Tobit 

75%

Tobit 

70%

100% Test Score

Estimate Mean 0.17 -0.08 -0.01 0.00 0.00 0.00 0.00 0.00

Share of Accurate Estimates 0.00 0.00 0.88 0.97 0.97 0.97 0.96 0.98

75% Score, 25% Random

Estimate Mean 0.16 -0.09 -0.02 0.00 0.00 0.00 0.00 0.00

Share of Accurate Estimates 0.00 0.00 0.81 0.96 0.96 0.97 0.96 0.98

60% Score, 40% Random

Estimate Mean 0.16 -0.10 -0.03 -0.02 -0.01 0.00 0.00 0.00

Share of Accurate Estimates 0.00 0.00 0.26 0.84 0.93 0.96 0.96 0.96

50% Score, 50% Random

Estimate Mean 0.14 -0.12 -0.05 -0.03 -0.02 -0.01 -0.01 -0.01

Share of Accurate Estimates 0.00 0.00 0.03 0.36 0.71 0.85 0.91 0.94

40% Score, 60% Random

Estimate Mean 0.11 -0.14 -0.08 -0.05 -0.04 -0.03 -0.02 -0.02

Share of Accurate Estimates 0.00 0.00 0.00 0.02 0.16 0.40 0.59 0.75

25% Score, 75% Random

Estimate Mean 0.07 -0.20 -0.13 -0.10 -0.08 -0.07 -0.06 -0.05

Share of Accurate Estimates 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

100% Random

Estimate Mean 0.00 -0.28 -0.20 -0.17 -0.16 -0.14 -0.13 -0.12

Share of Accurate Estimates 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 12: Non-Parametric Bounding Results at Various Percentiles, Under Artificially 

Simulated Attrition of 5% 

 
Note: Standard deviation of the lower bound estimates was approximately 0.01 in all cases. 

Standard deviation of the upper bound estimates was approximately 0.01 to 0.03 in all cases. 

 

Naïve 

OLS

99th 

Percentile

95th 

Percentile

90th 

Percentile

85th 

Percentile

80th 

Percentile

75th 

Percentile

70th 

Percentile

100% Test Score

Lower Bound Mean 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Upper Bound Mean 0.10 0.09 0.07 0.06 0.06 0.04 0.04 0.06

Proportion of Bounds Including Zero 0.00 0.97 1.00 1.00 0.99 0.98 0.98 1.00

75% Score, 25% Random

Lower Bound Mean 0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Upper Bound Mean 0.10 0.09 0.07 0.06 0.06 0.04 0.04 0.06

Proportion of Bounds Including Zero 0.00 0.93 0.99 1.00 0.99 0.98 0.98 1.00

60% Score, 40% Random

Lower Bound Mean 0.09 0.02 0.01 0.00 0.00 0.00 0.00 0.00

Upper Bound Mean 0.09 0.08 0.07 0.06 0.05 0.04 0.04 0.06

Proportion of Bounds Including Zero 0.00 0.58 0.94 0.96 0.97 0.98 0.98 1.00

50% Score, 50% Random

Lower Bound Mean 0.08 0.03 0.01 0.01 0.01 0.00 0.00 0.00

Upper Bound Mean 0.08 0.07 0.07 0.06 0.05 0.04 0.04 0.06

Proportion of Bounds Including Zero 0.00 0.33 0.83 0.91 0.94 0.97 0.98 0.99

40% Score, 60% Random

Lower Bound Mean 0.06 0.03 0.02 0.01 0.01 0.01 0.00 0.00

Upper Bound Mean 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04

Proportion of Bounds Including Zero 0.01 0.23 0.68 0.86 0.94 0.96 0.94 0.99

25% Score, 75% Random

Lower Bound Mean 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01

Upper Bound Mean 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.03

Proportion of Bounds Including Zero 0.25 0.47 0.69 0.83 0.87 0.90 0.93 0.90

100% Random

Lower Bound Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Upper Bound Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Proportion of Bounds Including Zero 0.97 0.97 0.95 0.95 0.82 0.93 0.94 0.72
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Table 13: Non-Parametric Bounding Results at Various Percentiles, Under Artificially 

Simulated Attrition of 10% 

 
Note: Standard deviation of the lower bound estimates was approximately 0.01 in all cases. 

Standard deviation of the upper bound estimates was approximately 0.01 to 0.03 in all cases. 

 

Naïve 

OLS

99th 

Percentile

95th 

Percentile

90th 

Percentile

85th 

Percentile

80th 

Percentile

75th 

Percentile

70th 

Percentile

100% Test Score

Lower Bound Mean 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Upper Bound Mean 0.17 0.16 0.13 0.12 0.10 0.10 0.08 0.11

Proportion of Bounds Including Zero 0.00 1.00 1.00 0.99 0.98 0.98 1.00 1.00

75% Score, 25% Random

Lower Bound Mean 0.17 0.02 0.00 0.00 0.00 0.00 0.00 0.00

Upper Bound Mean 0.17 0.15 0.14 0.11 0.10 0.10 0.08 0.11

Proportion of Bounds Including Zero 0.00 0.63 0.96 0.99 0.98 0.98 1.00 1.00

60% Score, 40% Random

Lower Bound Mean 0.15 0.05 0.02 0.01 0.00 0.00 0.00 0.00

Upper Bound Mean 0.15 0.14 0.13 0.12 0.11 0.10 0.08 0.11

Proportion of Bounds Including Zero 0.00 0.04 0.73 0.93 0.96 0.98 0.99 0.99

50% Score, 50% Random

Lower Bound Mean 0.14 0.06 0.03 0.02 0.01 0.01 0.01 0.01

Upper Bound Mean 0.14 0.13 0.12 0.10 0.11 0.09 0.08 0.10

Proportion of Bounds Including Zero 0.00 0.01 0.36 0.67 0.87 0.93 0.93 0.94

40% Score, 60% Random

Lower Bound Mean 0.12 0.06 0.04 0.02 0.02 0.01 0.01 0.01

Upper Bound Mean 0.12 0.11 0.10 0.10 0.09 0.08 0.08 0.08

Proportion of Bounds Including Zero 0.00 0.00 0.14 0.42 0.65 0.83 0.86 0.87

25% Score, 75% Random

Lower Bound Mean 0.07 0.05 0.04 0.03 0.02 0.02 0.02 0.01

Upper Bound Mean 0.07 0.07 0.06 0.06 0.07 0.05 0.05 0.07

Proportion of Bounds Including Zero 0.01 0.03 0.20 0.36 0.50 0.63 0.74 0.77

100% Random

Lower Bound Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Upper Bound Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Proportion of Bounds Including Zero 0.97 0.95 0.92 0.95 0.85 0.93 0.92 0.74
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Figure 1: ODE Reading Test Score Distribution 

 

 

 

Figure 2: Parametric Results Under Artificially Simulated Attrition of 5% (Grade 3 Reading) 
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Figure 3: Parametric Bounding Results Under Artificially Simulated Attrition of 10%

 
 

 

Figure 4: Non-Parametric Bounding Results at Various Percentiles, Under Artificially Simulated 

Attrition of 5% 
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Figure 5: Non-Parametric Bounding Results at Various Percentiles, Under Artificially Simulated 

Attrition of 10% 
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