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Abstract 

Transmembrane proteins make up critical components of living cells.  Protein function 

can be greatly impacted by the charged state of its respective components, the side chains of 

amino acid residues.  Thus far, in the lipid membrane, little is known about the properties of 

residues such as glutamic acid. To explore these properties, I have included glutamic acid in a 

suitable model peptide-lipid system for fundamental biophysical experiments.  Within the 

system, I have placed a glutamic acid residue instead of leucine in the L14 position of the helical 

hydrophobic peptide GWALP23 (acetyl-GGALWLALALALAL14ALALWLAGA-amide). 

Substitutions of glutamine and aspartic acid serve as controls for the properties of the peptide 

helix in lipid bilayer membranes. The GWALP23 peptide derivatives are placed in various lipid 

bilayer environments.  

Specifically, I investigated the impact of glutamic acid (position E14) when differently 

charged lipids are present in the bilayer. The underlying importance is to understand the charged 

or neutral state behavior of glutamic acid under conditions where it is important for the 

functioning of several types of membrane proteins, such as ion channels, drug transporters and 

others.  For the experimental plan, core alanine resides of GWALP23 were labeled with 

deuterium to enable detection of helix characteristics by solid-state 2H NMR spectroscopy. The 

peptide-lipid samples included primarily the neutral lipid DMPC, 1,2-

dimyristoylphosphatidylcholine, (with 14-carbon acyl chains), along with 10% of a charged 

lipid.  For each membrane system, I confirmed lipid bilayer formation for the particular peptide-

lipid mixture by solid-state 31P NMR. The charged lipids consisted of the negatively charged 

lipid DMPG, 1,2-dimyristoylphosphatidylglycerol, and the positively charged lipid DMTAP, 1,2-

dimyristoyl-3-trimethylammonium-propane.  These charged lipids were found to influence the 
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properties of the GWALP23 helix when E14 was present.  DMTAP, in particular, improves the 

2H NMR spectra and the prospects for characterizing helix dynamics when a glutamic acid 

residue is present.  While some experiments were cut short due to a global emergency, the results 

show promise for characterizing glutamic acid in model helices and actual membrane proteins.   
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Abbreviations 
A, Ala, alanine 

CD, circular dichroism 

DMTAP, 1,2-dimyristoyl-3-trimethylammonium-propane 

DMPC, 1,2-dimyristoylphosphatidylcholine 

DMPG, 1,2-dimyristoylphosphatidylglycerol 

DLPC, 1,2-dilauroyl-sn-glycero-3-phosphocholine 

Fmoc, fluorenyl methoxycarbonyl 

GALA, geometric analysis of labeled alanines 

G, Gly, glycine 

GWALP23, acetyl-GGALW(LA)6LWLAGA-[ethanol]amide 

HPLC, high-performance liquid chromatography 

kHz, kilohertz 

L, Leu, leucine 

MALDI-TOF, matrix-assisted laser desorption/ionization-time of flight 

MtBE, methyl-t-butyl ether 

NMR, nuclear magnetic resonance 

E, Glu, glutamic acid 

TFA, trifluoroacetic acid 

TFE, 2,2,2-trifluoroethanol 

TIPS, triisopropylsilane 

W, Trp, tryptophan 

Q, Gln, glutamine 
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Introduction 

 The study of transmembrane proteins is a crucial topic when investigating any aspect of 

the cell membrane. These proteins are key for maintaining proper cell function to prevent 

disease. Transmembrane proteins in the cellular lipid bilayer play major roles in the functioning 

of the cell in processes such as cell signaling, ion transport and adhesion activities1. These 

proteins make up around 30% of proteins in the cell membrane2. The structure of transmembrane 

proteins is generally made up of a stretch of hydrophobic residues, and it is speculated that the 

proteins are anchored in the membrane with aromatic residues that flank the protein by 

interacting with the charged lipid head groups3. These confer an a-helical formation in the 

hydrophobic region of the lipid bilayer membrane. Transmembrane proteins may oligomerize to 

form larger complexes of proteins, connected with a flexible loop region1,4. The polarity of 

amino acid residues present in the interior of the bilayer determine the structure and function of 

these proteins in the cell.  

 Transmembrane proteins are a significant area of biochemical research due to their roles 

in cellular function and disease. Around fifty percent of currently marketed pharmaceuticals 

target membrane proteins, due to the nature of their transport and signaling processes1. These 

targeted proteins are involved in many different diseases, including Alzheimer’s4. Some of these 

proteins require molecular chaperone, but some are able to fold into their active conformations 

based solely on their amino acid composition1. Aiming to understand the fundamental principles 

of this folding in proteins based on amino acid sequence allows the possibility of computational 

models to be built to predict the structure and function of these transmembrane proteins from the 

sequence alone, as the lipid environment greatly complicates these processes5. Along with this, 

the effect of different membrane environments must also be considered, as the cellular lipid 
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bilayer environment is made up of a variety of lipids and other materials, such as cholesterol and 

cardiolipin4.  

 In order to better understand how transmembrane proteins with certain modifications may 

interact in a cellular environment, their behavior is studied using model systems. Using a system 

of model peptides has shown to be an effective way to simplify and study isolated aspects of the 

complex protein-lipid system4. To examine the basic principles for these interactions, a synthetic 

model can be used6. Specifically, this project uses a synthetic GWALP peptide model system. 

This system was initially modified from the WALP model, containing tryptophan residues which 

function as anchors to secure the peptide in the membrane3. Characteristics of this model, such as 

its high dynamic averaging, make it a poor model to study single residue substitutions1. Further 

studies adapted the original WALP model into a GWALP23 peptide model system. This system 

has a higher stability and a defined orientation that serves to make it better suited for studying 

single residue substitutions1. Instead of containing four tryptophan residues to secure the 

transmembrane helix, this model contains two located at positions 5 and 19. The core of this 

model peptide contains repeated leucine-alanine units which create a highly hydrophobic core 

with an a-helical conformation7. This core allows the peptide to span the hydrophobic interior 

portion of the membrane, and the tryptophan residues secure the peptide in place at the polar 

exterior portions of the membrane7. This characteristic positioning allows the peptide to be 

observed using solid-state NMR spectroscopy. Different substitutions to the model can then be 

made and analyzed in comparison to examine changes in tilt and rotation within the lipid bilayer.  

In order to study this system using solid-state NMR spectroscopy, deuterium labelled 

alanine residues are utilized. A pair of these deuterated alanines are introduced at specific 

locations in the core of the GWALP23 model peptide, one in 50% and the other in 100% isotope 



 9 

abundancy. By selecting the specific 

percent abundancies of 50% and 

100%, the residues can clearly be 

identified on 2H-NMR spectra due to 

their concentrations which present 

different peak heights upon analysis, 

as shown in Figure 1. Utilizing this 

method of analysis, previous 

experimentation has focused on analyzing the impact of substituting charged residues, such as 

arginine, histidine and glutamic acid, in different positions on the GWALP23 model peptide in 

order to study the impacts these substitutions may have on behavior in the lipid bilayer system.  

In this project, the GWALP23 model serves as a control for the system. Glutamic acid, an 

amino acid found within membrane proteins, is negatively charged in water solution at a neutral 

pH, but its ionization properties may change if glutamic 

acid is submerged in a lipid membrane. The interaction 

of this amino acid with the lipids in the cell membrane 

can therefore impact the behavior of certain 

transmembrane proteins and thereby influence cell 

function. Glutamic acid residues can be placed at various 

points in the GWALP23 model. This protein can then be 

introduced into different lipid bilayer environments to 

observe the behavior in the presence of the 

transmembrane protein. This behavior will be observed using core alanine residues labeled with 

Figure 1. 2H-NMR spectra demonstrating deuterated alanine 
residues in the core of the GWALP23-E14 peptide. These 
are present in 50% and 100% relative abundance at positions 
13 and 15. 

 

Figure 2. Models of peptide 
sequences GWALP23-E14 (glutamic 
acid) and GWALP23-Q14 
(glutamine) with highlighted 
tryptophan residues.  
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deuterium to detect helix 

characteristics by solid-state NMR 

spectroscopy. 31P-NMR spectroscopy 

will also be used in order to analyze 

the lipid bilayer orientation with the 

peptide inserted into the membrane. 

This is done to ensure that proper 

bilayers are formed. Previous studies 

with glutamic acid substitutions have focused on the study of neutral lipids. The orientation of 

the helix, with a polar residue at position 14 in GWALP23, has also been determined to be 

affected in DLPC [2].  DLPC, 1,2-dilauroyl-sn-glycero-3-phosphocholine, is a neutral lipid like 

DMPC. These experiments suggest that the pka of the E14 peptide is high or that the host helix, 

containing the E14 residue, does not respond to the titration of the side chain8. The results of this 

study with DLPC resulted in noisy spectra with poorly resolved peaks, as demonstrated in Figure 

3.  

 The objective of this project is to analyze the influence of inserting the glutamic acid 

residues and the impact of pH on the ability of the lipids to form properly oriented bilayers and 

potentially find a model similar to the cell membrane that will suit the glutamic acid side chain. 

For this project, a glutamic acid residue will be substituted at the L14 position in the helical 

model. This residue is polar and negatively charged. GWALP23-E14 will then be introduced into 

a membrane model. A list of relative peptides and their sequences is shown in Table 1.  

 

 

Figure 3. Poorly resolved 2H-NMR spectra of GWALP23-
E14 in DLPC bilayers8. 
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Peptide Sequence 

GWALP23 Ac-GGALWLALALALALALALWLAGA-amide 

GWALP23-Q14 Ac-GGALWLALALALAQALALWLAGA-amide 

GWALP23-E14 Ac-GGALWLALALALAEALALWLAGA-amide 

Table 1. Names and sequences of relevant peptides. GWALP23 was not actually synthesized but is shown in 
order to compare sequences with experimentally prepared peptides. 

 

While cellular lipid bilayers are mostly made up of neutral lipids, charged lipids are also present. 

In order to better mimic this type of environment the impact of using charged lipids will be 

studied. These will consist of the positively charged lipid, DMTAP (1,2-dimyristoyl-3-

trimethylammonium-propane), the negatively charged lipid DMPG (1,2-

dimyristoylphosphatidylglycerol), and the neutral lipid, DMPC (1,2-

dimyristoylphosphatidylcholine). The structures of these lipids are shown in Figure 4. The model 

will consist of the neutral DMPC with a percentage of the charged lipid. The results will be 

examined using solid-state 2H-NMR spectroscopy. Deuterated alanine labels will be incorporated 

into the model peptide at various positions within the core helix in order to study the effects of 

pH variation on the system. These labels will be used to determine the tilt of the helix assessed 

with solid-state 2H-NMR 

spectroscopy. This project will 

monitor changes in the quadrupolar 

splittings of the neighboring 

deuterated alanines in order to 

determine if there is a change. The 

  
DMPC 
 
 
 
DMPG 
 
 
 
DMTAP 

Figure 4. Chemical structures of lipids used in 
experimentation, DMPC, DMPG, and DMTAP. 
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outcome of this experimental analysis will be helpful in understanding various properties of 

glutamic acid containing peptides in cell membranes as well as understanding the behavior of 

glutamic acid in different lipid environments. 
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Materials and Methods 

Solid Phase Peptide Synthesis 

The peptides of interest were synthesized using an Applied Biosystems 433A Peptide 

Synthesizer from Life Technologies9. All side chain protected amino acids were purchased from 

Novabiochem (San Diego, CA) for use in the synthesizer, with the exception of the deuterated 

alanine residues. This residue was formed and recrystallized for use in the laboratory10. For the 

peptide synthesis the Fmoc, fluorenyl methoxycarbonyl, method was used. This is a stepwise 

method where each amino acid is added individually while attached to a stabilizing resin and 

then the byproducts of the attachment reaction are removed through washing11. The amino (N) 

terminus will be capped with an acetyl group and the carboxy (C) terminus will be capped with 

an amide group. This will neutralize the charges on either end of the peptide, thus removing the 

N and C-terminus from consideration in the results of the experiment. Peptide synthesis began by 

weighing out 0.57 mmol of each amino acid required for the sequence in separate, labelled 

cartridges using an analytical balance. These cartridges were then capped. Two deuterium 

labelled alanine residues were selected to replace alanine residues in the sequence, one in 50% 

abundance and the other in 100% abundance. To measure out the 50% abundance, Fmoc-ala-d4, 

the laboratory synthesized deuterated alanine, only half of the measured 0.57 mmol of alanine 

was replaced in the cartridge with Fmoc-ala-d4. To measure out the 100% abundance, the 0.57 

mmol of alanine was entirely replaced by measured Fmoc-ala-d4. These residues were placed in 

pairs at positions 3 and 21, 13 and 15, and 9 and 11 in GWALP23-E14 and in a pair at position 

13 and 15 in GWALP23-Q14. Once properly measured out and sealed, these cartridges were 

placed in the delivery chamber of the peptide synthesizer from C-terminus to N-terminus in 



 14 

sequence for the proper peptide. The resin was also placed into the synthesizer where the peptide 

began to form from the C-terminus. Ensuring proper synthesis is vital to spectral determination12. 

Peptide Cleavage 

 Once synthesized, the peptide must be cleaved from the stabilizing resin.  This was done 

using TFA, trifluoroacetic acid, cocktail. This cocktail is composed of an 85:5:5:5 ratio of 

TFA:TIPS:H2O:phenol11. To begin, 100 mg of peptide-resin mixture was weighed out. The TFA 

cocktail was then added to the mixture, sealed, and shaken for 3 hours. The mixture was then 

removed from the shaker and filtered through a Pasteur pipette filled with glass wool. This 

filtration effectively removed the peptide from the resin. The filtered peptide solution was then 

dried under N2 flow until a quarter of the original volume was present. Next, the peptide was 

transferred to a 50 mL centrifuge tube and precipitated from solution by adding 30 mL 

MtBE(methyl-t-butyl ether):hexane solution. The mixture was submerged in ice for 30 minutes, 

reaching a temperature of 4°C. This was then centrifuged at this temperature for 10 minutes at a 

speed of 1800 rotations per minute (RPM). After centrifugation, the supernatant was removed, 

another 30 mL of MtBE:hexane solution was added, and the previous precipitation steps repeated 

twice more. Finally, the precipitated product was dried under N2 flow, ensuring a low flow to not 

lose peptide by being blown out of the tube, 2 mL of acetonitrile added, and lyophilized, or 

freeze dried, overnight to obtain a white powder product. 

Crude Peptide Purification and Quantitation 

 The cleaved peptide product was purified using reverse-phase HPLC in order to remove 

any contaminants. The white powder product was dissolved in 0.8 mL of TFE and 0.1 mL of 
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acetic acid. This solution was filtered through a 0.22 µm yellow filter which was rinsed with 100 

µL of TFE. This ensured no particulate matter was present before purification in the HPLC, a 

Hitachi L1700 system with a Zorbax RX-C8 column (9.4 mm x 250 mm) from Agilent 

Technology. The column was rinsed overnight. A test run was performed with 10 µL of solution 

in order to determine the proper gradient for the best separation, usually a gradient of 86-90% 

methanol. Once determined, injections of 250-350 µL were performed, and the resulting product 

collected in a 50 mL centrifuge tube. This solution was dried under N2 flow. Then, 1 mL of 

acetonitrile was added, and the solution lyophilized. The process was repeated twice more and 

the final lyophilization left overnight.  

 The peptide was quantified using UV-Vis Spectroscopy and confirmed for mass and 

deuteration using MALDI-TOF mass spectrometry. The tryptophan residues in the purified 

peptide fluoresce at 280 nm, allowing the use of a diode array UV-Vis spectrophotometer to 

characterize the peptide. The lyophilized peptide was dissolved in 2 mL of TFE. The UV-Vis 

instrument was zeroed using a blank of MeOH (methanol). Then, 10 µL of peptide solution was 

mixed with 990 µL of MeOH. The cuvette was then filled with this solution and run at 280 nm. 

The optical density measured from the sample was used to calculate the amount of peptide 

present. 1.33 µL aliquots and 0.0625 µL aliquots of peptide solution were placed in separate, 

labelled glass tubes and dried under N2 flow. These were then sealed and stored in the 

refrigerator until further experimentation.  
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Circular Dichroism and Fluorescence Spectroscopy 

 0.0625 µL aliquoted peptide samples were combined with each lipid in a 1:60 ratio, dried 

under N2 flow, and placed under vacuum for 48 hours. Then, 1 mL of deuterated water was 

added, and the solution was sonicated for around 1 hour in order to form vesicles, which contain 

the peptides. The sample was centrifuged, and the supernatant collected for analysis. The 

fluorescence data of the sample was analyzed, and CD spectra recorded in order to determine if 

the peptide was a-helical in conformation.  

Oriented Sample Preparation 

 In order to perform solid-state NMR spectroscopic analysis, oriented samples were 

prepared. Peptide samples were combined with lipids in a 1:60 peptide to lipid ratio. This was 

completed by adding 80 µmol of lipid to the 1.33 µL aliquot. The lipids used for this were 

DMPC, DMPG and DMTAP. DMPC was used as a control due to its neutral nature. Charged 

samples were created by adding 5-20% of charged lipid with 80-95% DMPC. Once the lipids 

were added to the peptide and vortexed, the peptide-lipid mixture was dried under N2 flow. Two 

clean glass plates were obtained and labelled accordingly. 36 glass slides were arranged between 

the two plates. Then, 850 µL of a 1 mL solution of 47:47:6 methanol to chloroform to water was 

added to the peptide-lipid film. The mixture was then added to the slides by transferring 25 µL 

with a 50 µL Hamilton syringe to each slide, leaving two slides blank to be used as cover slides 

during hydration. The slides were allowed to dry and then placed under vacuum in a desiccator 

and shielded from light for 48 hours.  
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 After two days, the plates were removed from the vacuum line and hydrated with a buffer 

at the desired pH for experimentation. The amount of buffer required was determined by the 

molar mass of the peptide, lipids and number of slides for hydration at 45%. A 0.2-2 µL pipette 

was used to distribute the proper amount of buffer across the slides in 3 drops, while 

simultaneously stacking the plates on top of each other. Three slides maximum were hydrated at 

a time before stacking to ensure proper hydration. Using forceps, pressure was applied to the 

stack in order to mechanically create bilayers in the slides. Finally, once all plates were hydrated, 

they were placed into a cuvette for analysis and the cuvette was sealed with a glass cover and 

epoxy glue. The glue was allowed to dry, and the sample placed in a heating block at 40°C for at 

least 48 hours to incubate. Incubation ensures that the sample can acquire a liquid-crystalline 

state that allows for proper bilayer formation. Figure 5 illustrates this process.  

 

 

 

 

 

 

 

Figure 5. Visual depiction of oriented sample preparation.  
1. Peptide and lipid mixture was distributed evenly on 34 glass slides and dried under vacuum 
for 48 hours. 
2. Plates were then hydrated and stacked. 
3. The hydrated stack was placed in the cuvette & sealed. 
4. Sample was incubated at 40°C for 48 hours.  
5. NMR experiments were performed at β= 0° and 90°. 
 



 18 

Solid-State 2H-NMR Spectroscopy 

Oriented samples were placed in a Bruker Avance 300 spectrometer and run twice, at 

b=0° and b=90° in respect to magnetic field. b=90°, indicates the bilayer is perpendicular to the 

magnetic field and b=0° indicates the bilayer is parallel to the magnetic field. The displayed 

spectra produce characteristic quadrupolar splittings, distance between the deuterated alanine 

peaks, that can be quantified to determine peptide orientation. These spectra were recorded and 

processed for data analysis.  

Solid-State 31P-NMR Spectroscopy 

 This method is very similar to the solid-state 2H-NMR spectroscopy. Oriented samples 

were placed in a Bruker Avance 300 spectrometer and run twice at b=0° and b=90° in respect to 

magnetic field. The displayed spectra serve to interpret if the bilayer is properly aligned by 

analyzing the phosphorous-containing head groups of the lipids. Lipid-only oriented samples 

were also analyzed with this method. These samples were prepared in the same method, omitting 

the addition of peptide.  
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Results 

In order to carry out further experimentation, the first step of analysis was to confirm the 

GWALP23-E14 peptide had been synthesized with the intended deuterium-labelled alanines 

through MALDI-TOF mass spectrometry. The expected mass of GWALP23-E14 was 2275 Da. 

The two peaks labelled in Figure 6 occur at 2302.2 and 2306.2 Da corresponding to the 50% and 

100% deuterated alanine labels, as expected for the peptide molecular mass plus a sodium ion 

plus four deuterons (50% of sample) or eight deuterons (100% of sample). In light of this, the 

method confirms the expected results.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

 

 

 

Figure 6. MALDI-TOF mass spectrometry isotope distribution of GWALP23-E14 
peptide. Mass to charge ratio peaks at 2302.2 and 2306.3 show peptides with 
deuterated alanines at 50% and 100%.  
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The secondary structure of GWALP23-E14 was examined using Circular Dichroism 

(CD) Spectroscopy. The hydrophobic core is expected to be a-helical in structure when inserted 

into the interior of the membrane. There is a characteristic spectral shape for this a-helical 

structure, that is in fact aligned with the spectra for GWALP23-E14 and GWALP23-Q14, which 

was used as a control, as pictured in Figure 7, with double minima at 208 nm and 222 nm13. This 

is further quantified in Table 2.  

 
 
 

 
 
 
 
 
 
 
 
 
 

 

Figure 7. Circular Dichroism spectra obtained for GWALP23-E14 and GWALP23-Q14 in 10% DMPG, 10% 
DMTAP and DMPC bilayers. Two minima at 208 nm and 222 nm suggest a-helical secondary structure.  

GWALP23-E14 GWALP23-Q14 

Table 2. Numerical data for Circular Dichroism spectra of GWALP23-E14 and GWALP23-Q14 in 10% 
DMTAP, 10% DMPG and DMPC lipid bilayers. The numerical data suggests a-helical secondary 
structure. 
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 The positioning of tryptophan residues was investigated using Fluorescence Spectroscopy 

in order to analyze the fluorescence maxima in each of the bilayers. The characteristic 

wavelength expected to be observed was at or near 333 nm. Figure 8 shows these spectra 

obtained for GWALP23-E14 and GWALP23-Q14 in 10% DMTAP, 10% DMPG and DMPC 

bilayers. Table 3 details the maxima of the spectra to confirm that it is at or near 333 nm 

indicating that the tryptophan residues are situated at the lipid bilayer interface in order to anchor 

the transmembrane peptide in the lipid bilayer14.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
GWALP2-E14 GWALP2-Q14 

Figure 8. Trp Fluorescence spectra for GWALP23-E14 and GWALP23-Q14 in 10% DMTAP, 10% DMPG and 
DMPC lipid bilayers. Maxima at or near 333 nm suggest that the Trp resides are situated at the lipid bilayer 
interface.  

Table 3. Numerical data for Fluorescence Maxima for GWALP23-E14 and GWALP23-Q14 in 
10% DMTAP, 10% DMPG and DMPC lipid bilayers. The maxima at or near 333 nm suggest 
the Trp residues are situated at the lipid bilayer interface.  
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31P-NMR Spectroscopy was used to 

examine the lipid bilayer alignment of the oriented 

samples in various lipid concentrations. An initial 

experiment, I did with 20% charged lipid and 80% 

neutral lipid did not form adequately oriented 

bilayers, so the focus was shifted to bilayers 

containing 10% or less charged lipid. Lipid-only 

samples as well as samples containing 

GWALP23-E14 were analyzed through this 

method, the lipid-only samples as 10% DMTAP, 

10% DMPG and DMPC and the lipid-peptide 

samples as 10% DMTAP, 10% DMPG, 5% 

DMTAP, 5% DMPG and DMPC. These were 

conducted at a pH of 6.1. The lipid-only samples 

are demonstrated in Figure 9 and the lipid-peptide 

samples in Figure 10. Each spectrum demonstrates 

proper bilayer alignment, with major well-defined 

peaks for the major DMPC component, along with 

small shoulders for the minor lipid components.   

 

 

Figure 9. 31P-NMR spectra for lipid-only samples 
at pH 6.1 for 10% DMTAP, 10% DMPG and 
DMPC.  

Figure 10. 31P-NMR spectra for lipid-peptide 
(GWALP23-E14) samples at pH 6.1 for 10% 
DMTAP, 10% DMPG, 5% DMTAP, 5% DMPG 
and DMPC. 
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 2H-NMR Spectroscopy was also used to examine the oriented samples. This data reveals 

peaks resulting from the 50% and 100% deuterium labelled alanines in the peptide that can be 

measured to determine the quadrupolar splittings. This data can be used to determine if there is a 

change in position and orientation in the lipid bilayer based on the lipids and pH variation. 

Experiments were focused on characterizing GWALP23-E14 at a pH of 6.1 with deuterium 

labels at 13 and 15 so that further work could be carried out across a range of pH levels. It was 

found that there was no change in quadrupolar splittings for all lipids, at 16.43 kHz and 6.88 

kHz, except for 10% DMPG samples, at 15.06 kHz and 5.46 kHz. The results are depicted in 

Figure 11. The spectra for these samples using DMPC bilayers showed much improvement from 

the noisy spectra obtained in previous experimentation of GWALP23-E14 in DLPC, another 

neutral lipid, shown in Figure 18.  

 

 

 

  

 

Figure 11. 2H-NMR spectra for GWALP-E14 at pH 6.1 in 10% DMTAP, 10% DMPG, 5% DMTAP, 
5% DMPG, and DMPC. No change was observed in the quadrupolar splittings measured at 16.43 kHz 
and 6.88 kHz, for all lipids except for the 10% DMPG bilayer measured at 15.06 kHz and 5.46 kHz.  
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 Additional characterization of 

GWALP23-E14 was conducted across a 

range of pH levels and analyzed using 2H-

NMR spectroscopy. Analysis of 

GWALP23-E14 with 15 and 17 deuterium 

labels and 13 and 15 deuterium labels was 

conducted. Preliminary experiments 

focused on the 15 and 17 labels at pH 5.5 

and 8.0 in 100% DMPC bilayers. A clear 

change in quadrupolar splittings was observed, as shown in Figure 12. Further experimentation 

was focused on characterizing these changes in 10% charged lipid bilayers, of DMTAP and 

DMPG, and carried out from pH 3.0 to 8.0. 

This revealed that no change was observed 

for DMPG bilayers across a range of pH, 

but there was a change in quadrupolar 

splittings, indicating titration, for DMTAP 

bilayers. This change is highlighted in 

Figure 13.  

  

 

 

 

Figure 12. 2H-NMR spectra for GWALP23-E14 
with deuterium labels at 15 and 17 at pH 5.5 and 
8.0. A change in quadrupolar splittings is 
observed. 

Figure 13. 2H-NMR spectra for GWALP23-E14 
with deuterium labels at 13 and 15 in DMTAP 
10% lipid bilayers at pH 3.0, 6.1 and 8.0. An 
observable change in quadrupolar splittings was 
demonstrated.  
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Final experiments were underway using GWALP23-E14 with deuterium labels at 3 and 

21 as well as 9 and 11, when the laboratory was shut down due to COVID-19 outbreak. These 

samples have been preserved, awaiting hydration, and analysis in solid-state 2H-NMR and 31P-

NMR spectroscopy.  
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Discussion 

 The secondary structure of GWALP23-E14 was determined to be a-helical based on 

results of Circular Dichroism (CD) spectroscopy. CD is a method of absorption spectroscopy that 

measures the difference between right and left circularly polarized light15. Different structures 

give characteristic spectral patterns. A key feature of a-helical structure is two minimum peaks 

at around 208 nm and 222 nm. These peaks were observed for the peptide of interest in all 

bilayers; therefore, the conclusion can be made that the peptide adopts an a-helical formation in 

these bilayers as expected. Additionally, the positioning of tryptophan residues was analyzed 

using fluorescence spectroscopy. The residues were confirmed to be at the peptide-lipid interface 

based on their maxima located at or near 333 nm in all bilayers. This wavelength is characteristic 

of this interface. Maxima above 333 nm indicate a more hydrophilic position, and below 333 nm 

a more hydrophobic position in the membrane16.  

Upon confirmation of these characteristics, the peptide was analyzed using 31P-NMR 

spectroscopy, to confirm bilayer alignment. The results produced confirm this alignment through 

the presentation of single, established peaks, as shown in Figures 9 and 10. With the lipid-

peptide samples containing 5% DMPG, 10% DMPG and 100% DMPC, a shoulder was 

introduced.  While a shoulder is expected from a minor component in a lipid mixture, it is not so 

clear why there is a shoulder for the 100% DMPC, unless perhaps the peptide is not distributed 

evenly within the mixture is some samples.  After this determination and results of initial 2H-

NMR spectra, all experiments were conducted using 10% of charged lipid and 90% DMPC or 

100% DMPC. This percentage was selected because experiments with 20% charged lipid did not 

form proper bilayers. Charged lipids in the amount of 10% was selected over 5% for further 
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experimentation because it more closely resembles the complex composition of cellular lipid 

bilayers which contain many charged lipids. 

 Several experiments were carried out to characterize peptide behavior in response to 

change in lipid charge, charge lipid concentration and pH variation by 2H-NMR spectroscopy. 

The resulting spectra for 10% DMTAP, 5% DMTAP, 5% DMPG and 100% DMPC showed no 

change in quadrupolar splittings based on change in charged lipid concentration and charge type. 

The splittings for these spectra were measured at peak distances of 16.4 kHz, representing 50% 

deuterated alanine at position 13 and 6.9 kHz, representing 100% deuterated alanine at position 

15. The pH in this analysis was held constant for all experiments at 6.1. Interestingly, the 10% 

DMPG spectra demonstrated a change in the peak distances with splittings measured at 15.1 

kHz, representing 50% deuterated alanine at position 13, and 5.5 kHz, representing 100% 

deuterated alanine at position 15. These changes can be attributed to changes in the helix 

orientation when DMPG is present.  

 An additional focus in the characterization of GWALP23-E14, was the determination of 

titratability of the glutamic acid side chain in the charged lipid bilayers. Glutamic acid alone, has 

a side chain pka of around 4.25 and in GWALP23-E14 the pKa has been determined to be high 

based on the effects of neighboring residues and insertion in a bilayer system. The titration 

potential of glutamic acid is the reason for a glutamine residue to be used for comparison in 

preliminary experimentation in GWALP23-Q14, as glutamine does not contain a titratable R-

group8. 2H-NMR spectra of GWALP23-E14 in DMPC only shows a change in quadrupolar 

splittings from pH 5.5 to 8.0. 2H-NMR spectra of GWALP23-E14 in 10% DMPG bilayers 

demonstrated no change in splittings and in 10% DMTAP a change was observed in splittings 

from experiments conducted in a pH range of 3.0 to 8.0. These changes indicate that the peptide 
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is titrating. More experimentation was conducted to gather spectra for pH values above 8.0 and 

below 3.0 in an effort to examine the titration curve of the peptide; however, no clearly resolved 

spectra were obtained from the initial samples.  Additional experiments will be needed.  Notably, 

it is known and documented to be difficult to prepare oriented lipid samples with peptides that 

contain glutamic acid8.   

 Final analyses of GWALP23-E14 were to be conducted through experiments at pH 6.1 in 

10% DMTAP and 10% DMPG using deuterated alanine labels at 9 and 11 as well as 3 and 21. 

These peptides were synthesized and partially prepared according to the outlined oriented sample 

preparation. The prepared samples were under vacuum for 48 hours awaiting hydration, when 

due to the outbreak of COVID-19, experimentation had to be halted as the laboratory was shut 

down. The samples were preserved for future use and are only a few days of experimentation 

away from achieving results. These results would have served to perform a GALA data analysis, 

geometric analysis of labeled alanines, in order to examine the peptide helix orientation in these 

bilayers and the end fraying of alanines 3 and 21. From such analysis, helical dynamics, tilt and 

rotation would have been able to be examined to view a full picture of peptide behavior, based 

on the quadrupolar splittings to form a quadrupolar wave plot. The plan from this point will be to 

complete this study in future work17.  
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Conclusions 

 The experiment was successful in synthesizing the proper peptide, GWALP23-E14, as 

confirmed by CD spectroscopy, Fluorescence spectroscopy and MALDI-TOF mass 

spectrometry, and successful in the analysis of the peptide in various charged lipid bilayers and 

across a range of pH values. GWALP23-E14 was confirmed to be a-helical and was verified that 

its insertion in a lipid membrane is anchored by tryptophan residues at positions 5 and 19. 

GWALP23-E14 does not show any change in behavior in response to pH variation in 10% 

DMPG but does show titratability in 10% DMTAP and 100% DMPC.  

 The peaks in the 2H NMR spectra for labeled GWALP23-E14 in DMPC are quite broad 

and poorly resolved. Inclusion of 10% DMPG alters the 2H quadrupolar splittings only slightly. 

Inclusion of 10% DMTAP notably improves the 2H spectral resolution without changing the 

quadrupolar splittings at pH 6.1.  The spectral improvement observed with DMTAP will offer 

technical advantages for future experiments.  

 It was also determined that the peptide GWALP23-E14 introduces a shoulder in the 31P 

NMR spectra of 100% DMPC and DMPG bilayers, but not when DMTAP is present. The minor 

shoulders in some of the spectra are not yet completely understood.  

 Finally, experimentation to complete a GALA analysis of peptide orientation was close to 

completion, before laboratory shutdown17. This analysis would present data about the rotation 

and tilt of the peptide in response to these variables, offering a complete view of its behavior in 

the membrane system created.  Of particular interest will be the complete results when 10% 

DMTAP is present with the peptide helix in bilayer membranes of DMPC.   

 Future work should aim to complete the characterization of this glutamic acid-containing 

peptide through a GALA analysis and investigate the use of other lipid systems in order to 
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characterize the titration of this peptide at more extreme pH levels. Additionally, an approach to 

further characterize tryptophan position in the bilayer would be to add quenchers in order to 

specifically measure the Trp depth in the membrane18. This could be performed to further 

understand peptide helix behavior, orientation in the bilayer and the influence of glutamic acid.  

The overall results will be important for understanding glutamic acid residues in membrane 

proteins.  
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