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Abstract 

 The end of the Late Bronze Age in the Near East (1300 – 1200 BCE) saw the widespread 

collapse of several large cultural centers, the reasons for which are a subject of continued debate.  

Evidence from events leading up to this cultural collapse suggest epidemic disease may have 

factored into the eventual downfall of these early civilizations.  Recent DNA analysis from 

Egyptian mummies who lived during the period leading up to the Late Bronze Age collapse 

identified malaria in several elite individuals, suggesting the widespread prevalence of this 

infectious disease in Egypt.  However, the exact prevalence, antiquity, and dynamics of malaria 

in the Near East, including what role it may have played in the shifting cultural and political 

landscape of the Late Bronze Age, remain uncertain. 

 This dissertation delves into this question of malarial spread and impact in the Near East 

in a multidisciplinary approach.  Existing evidence from ancient literary texts, biology and 

pathophysiology, theoretical models, entomology, paleoclimatology, and historical records of 

malaria epidemics are surveyed and incorporated into a paleoepidemiological reconstruction of 

malaria.  This reconstruction relies heavily on methods from epidemiology to identify a 

previously undefined skeletal manifestation of malaria and form a set of diagnostic criteria for 

identifying the disease in ancient populations.  The new diagnostic method is then applied to the 

tightly dated human skeletal remains recovered from the ancient city of Amarna, Egypt. 

 Results indicated five skeletal lesions effective in diagnosing malarial infection: cribra 

orbitalia, femoral cribra, humeral cribra, spinal lytic lesions, and periostitis.  Although many of 

these lesions are not systematically reported by bioarchaeologists, high rates of cribra orbitalia 

over time and space in the Nile Valley suggest a malarial prevalence that remained substantial 

throughout dynastic Egypt.  Furthermore, the application of the full diagnostic criteria to the 



 

Amarna skeletons showed a high prevalence of malaria within that population, with around 50% 

of individuals showing signs of recent infection.  This prevalence rate, combined with 

demographic features and patterns of abnormal burial practices within the cemetery at Amarna, 

strongly suggest that malaria featured in the epidemics that afflicted the Near East prior to the 

collapse.  
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Chapter 1 – Introduction 

 

Malaria is an ancient disease, and continues to be one of the most deadly diseases affecting 

people around the globe today.  Although it was successfully eradicated from the United States 

and several other countries through the Global Malaria Eradication Campaign, malaria continues 

to wreak havoc on the health of people living in tropical, developing nations (Nadjm and 

Behrens 2012).  Even with increases in eradication efforts and availability of anti-malarial drugs, 

there were an estimated 198 million cases of malaria worldwide in the year 2013, resulting in 

584,000 deaths, of which 78% were children under the age of five (World Health Organization 

2014).  Understanding the evolution, spread, and natural history of malaria, as well as the role 

humans have played in its history, will allow medical researchers to advance our defenses 

against this disease (Pinhasi and Turner 2008).  Similarly, the presence and prevalence of malaria 

in past societies would have had major impacts on the health and success of the societies as a 

whole, and thus, is of great importance for researchers reconstructing the lives of ancient 

peoples. 

The main goal of my dissertation is to investigate the prevalence of tropical malaria 

(caused by the deadly Plasmodium falciparum species) in the ancient Near East.  Many theorists 

have suggested various routes and time spans for the spread of malaria out of Africa, but 

supporting evidence has been limited mainly to written documentation from the last three-

thousand years (Bruce-Chwatt 1965; Sallares et al. 2004).  Recently, methodological advances in 

bioarchaeology have shown promise with regard to cultural, spatial, and skeletal indicators of 

malaria.  Furthermore, ancient deoxyribonucleic acid (aDNA) analyses have provided direct 

evidence of P. falciparum in ancient tissue.  My research will seek to integrate this line of 
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evidence with new interdisciplinary approaches with toward the goal of elucidating the 

paleoepidemiology of malaria in the ancient Near East. 

Unlike some other infectious diseases, malaria’s skeletal manifestation is not well known.  

In order to identify the presence of malarial infection on ancient osteological remains from the 

Near East, this study uses data gathered on the manifestation of the disease on skeletons from a 

modern reference sample in Uganda where malaria is known to be holoendemic (i.e. continuous 

transmission year-round, affecting virtually everyone), and compares them to a similar modern 

sample in a malaria-free area.  By documenting and comparing the lesions from modern samples, 

diagnostic criteria will be established to allow the identification of malaria in unknown skeletal 

remains.  This type of study, involving a large sample from a clinical setting with known 

individual medical histories, is a common method for establishing diagnostic characteristics of 

disease in paleopathology, but has never before been attempted with regard to malaria (Setzer 

2014). 

Detecting the past presence of malaria in a region requires a multidisciplinary approach, 

applying methods from anthropology, climatology, epidemiology, microbiology, and 

entomology (Pinhasi and Turner 2008; Herring and Swedlund 2010).  My research will take a 

holistic approach, incorporating evidence from each of these disciplines to form a comprehensive 

temporal and geographic frame for the spread of malaria out of Africa into the Near East.  I will 

focus primarily on the anthropological perspective by compiling reports of physical indicators of 

malaria left on ancient human skeletons to create a timeline of malaria spread in this region.  

Subsequently, I will create similar timelines based on evidences from the other disciplines and 

compare to see how they match up.  
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1.1 Objectives 

 The goal of this dissertation project was to determine the skeletal manifestation of 

malaria in order to elucidate the prevalence and spread of the disease in the ancient Near East.  

This project had three primary objectives.   

Objective 1: Testing models of malaria spread in the ancient Nile Valley – The various 

skeletal indicators that have been associated previously with malarial infection or anemia in 

general are tested for their ability to predict the spread of malaria up the Nile River Valley in the 

timeframe of Dynastic Egypt. 

Objective 2: Identifying skeletal markers of malaria in a clinical case-control study 

approach – These existing purported skeletal indicators are then refined through a case-control 

study comparing skeletal lesions present on a collection of modern human skeletal remains of 

known medical history in Uganda to a similar sample from a non-endemic area for malaria.  

From this comparison, a group of diagnostic skeletal markers are identified and tested for their 

diagnostic power in an outcome algorithm (i.e. “if” condition) of weighted criteria.   

Objective 3: Estimating the prevalence of malaria at Amarna, Egypt and its implications 

for the Near East – This diagnostic criteria is used to estimate the prevalence of malaria in the 

skeletal remains recovered from a non-elite cemetery at the ancient city of Amarna, Egypt and 

predict the prevalence and spread of the disease in the rest of the Near East. 

 

1.2 Hypotheses 

Hypothesis 1: Malarial individuals will have a higher rate of porous skeletal lesions due to 

hemolytic anemia (increased marrow space and bone resorption) caused by malaria infection.  
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Other skeletal markers of physiological stress (i.e. periostitis, enamel hypoplasias) will not 

follow the same trend as porosity. 

Hypothesis 2: Stable malaria transmission in a population will be marked by higher rates 

of anemia in children and women of reproductive age, whereas both children and adults will be 

affected by anemia in areas of unstable transmission. 

Hypothesis 3: Falciparum malaria was endemic throughout Egypt, but not yet established 

in the rest of the Near East and Mediterranean at the end of the Late Bronze Age.  Isolated 

epidemics of falciparum malaria and endemic vivax malaria will be present at this time in some 

areas. 

 

1.3 Significance 

My project will establish diagnostic criteria by which other researchers performing 

paleopathological analyses on prehistoric and historic skeletal assemblages will be able to 

identify malarial infection of individuals.  Through this diagnosis, researchers will not only be 

able to observe the presence of malaria in a population, but will be able to observe frequencies of 

infection within and across populations and geographic regions.  Diseases play a part in every 

aspect of human experience, from social structure, to religion, to group interaction and warfare 

(McNeill 1977).  Knowledge of the prevalence and impact of malaria on past societies will force 

the reexamination of current theories and perhaps reveal previously unknown aspects of human 

history. 

With the results of this study, I will be able to address the question as to the plausibility of 

malaria as the cause of the Hittite plague and its relation to ancient Egypt at the end of the Late 

Bronze Age (c.a. 1300 BCE).  I will also be able to select which Amarna skeletal individuals 



5 

 

were most likely to have died with a malaria infection, allowing for representative sampling for 

future DNA testing.  Thus, my study will add evidence to speculations about ancient disease 

epidemics in both the ancient Hittite and Egyptian empires. 

This potential for new information regarding past malaria prevalence will allow for the 

construction of new models portraying the history and spread of the disease throughout human 

existence.  Current models for the spread of malaria out of Africa have been largely theoretical in 

nature, relying on surviving written accounts of fevers and estimations of temperature and 

mosquito presence.  With my project’s contribution, a more realistic picture of malaria’s history 

based on multiple lines of evidence will be possible.  It is also my intention that the results of my 

study will lead other researchers to incorporate similar modern reference samples to form 

diagnostic criteria for other diseases as well, leading to improved methods in paleopathological 

studies. 

In a world of climate change and microbial resistance to drug treatments, knowledge of the 

evolution and history of human malarial infection is more important than ever.  Anthropologists 

have the opportunity to provide new perspectives to the global effort to eradicate the disease by 

contributing to the understanding of the social and historical aspects of malaria (Magner 2009; 

Herring and Swedlund 2010).  With a better understanding of the interaction between humans 

and malaria in the past, medical researchers will be able to produce a more effective response to 

these ancient microbial invaders. 

 

1.4 Organization of Chapters 

 This dissertation is presented as a broad literature review and a series of three prepared 

articles.  The first chapter introduces the topic, gives the goals and objectives, and outlines the 



6 

 

organization of the following chapters.  The second chapter provides an in-depth literature 

review of key concepts and background information pertinent to the methods and interpretation 

of results presented in the later chapters.  The subsequent three chapters encompass three articles 

that report the research undertaken to address the objectives of the dissertation.  These three 

chapters are followed by a summary and conclusions chapter that makes broad observations 

about the big picture meaning of the research.  The combined references are listed at the end of 

the dissertation.   

 The first article, presented in Chapter Three, is entitled “Cribra orbitalia in the ancient 

Nile Valley.”  This article presents the current hypotheses and models for malaria’s origin and 

spread out of Africa, and attempts to test these models through the use of one of the current 

proposed skeletal markers of malaria: cribra orbitalia.  Through a meta-analysis of published 

cribra orbitalia rates at various Nile River Valley archaeological sites, this study sought 

significant differences in the rates of the lesion over time and space.  It is the first comprehensive 

meta-analysis of cribra orbitalia rates in the ancient Nile Valley, providing a more realistic view 

of how these rates relate to each other across the different sites and time periods.  This paper has 

been accepted for publication in the International Journal of Paleopathology. 

 Chapter Four presents the second article, “The skeletal manifestation of malaria: a 

clinical case-control study.”  In this article, skeletal lesions present on a sample of skeletons from 

an endemic area for malaria are reported and compared with individuals from a non-endemic 

area.  The endemic sample is split into two groups: anemic individuals (those whose cause of 

death included malaria or anemia) and non-anemic individuals.  The samples are put through a 

series of statistical and epidemiological tests to determine which lesions are the best indicators of 

individuals infected with malaria.  From these indicators and their relationship with each other, 
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diagnostic criteria are formed which can be used to diagnose unknown skeletal samples for 

malaria prevalence.  This article has been submitted for publication in the American Journal of 

Physical Anthropology. 

 The last of the articles is presented in Chapter Five and is entitled, “The prevalence of 

malaria at Amarna, Egypt and its regional implications.”  This article takes the diagnostic 

algorithm produced in Chapter Four and applies it to the individuals recovered at the South 

Tombs Cemetery at Amarna, Egypt.  The prevalence of malaria at ancient Amarna is estimated 

and discussed in reference to the larger interaction sphere and political turmoil in the Near East, 

especially in connection to the Hittite plague at the end of the Late Bronze Age (c.a. 1300 BCE).  

This article is in preparation for submission to the American Journal of Physical Anthropology. 
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Chapter 2 – Literature Review 

 

2.1 Introduction 

 Paleopathology as a field of study has grown from something of a hobby of physicians in 

the 19th century, beginning with mummy unrollings and identification of chronic diseases of 

known skeletal manifestation, followed by collection of skulls to suggest biological affinity, to 

finally form a scientific field of research after 1945 with increased focus on standardized 

methods and systematic data collection (Aufderheide and Rodríguez-Martín 1998; Buikstra and 

Roberts 2012).  This increase in scientific rigor came predominantly from the large Egyptian and 

Nubian archaeological salvage expeditions that came with the dam projects on the Nile River, in 

which archaeologists were removing whole populations of skeletons from the ground, not just 

mummies or skulls (Buikstra and Roberts 2012).  This made a way for the study of overall trends 

in the health of populations over time. 

 The field of paleopathology, having developed out of physicians’ diversions, has never 

truly had its own theory, but instead has made advances by borrowing and incorporating 

theoretical paradigms from other related fields of study (Grauer 2012).  These fields include 

clinical medicine, microbiology, epidemiology, biochemistry, and ecology.  Cutting-edge 

research in paleopathology today is that which incorporates all of the aforementioned paradigms 

to form a holistic model of the impact of specific diseases in past populations.  Paleopathologists 

of past decades used non-specific markers of physiological stress to infer general health of 

populations; however, this practice is becoming less and less prominent in current research as 

questions of why and how are used to determine more specific afflictions of these groups 

(Pinhasi and Turner 2008). 
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 More and more, paleopathologists are beginning to see the importance of the 

incorporation of scientific advances from other fields into the methods of paleopathological 

studies (Zuckerman et al. 2015).   This study takes such an interdisciplinary approach to answer 

the question of malaria’s impact on the health of past populations.  In order to understand the 

complex nature of malaria paleoepidemiology, this chapter surveys current knowledge and 

evidence for ancient malaria from the following areas: ancient texts, malaria biology, vector 

ecology, paleoclimate reconstructions, theoretical models, and paleopathology. 

 

2.2 Ancient Near Eastern texts 

 My research began with a question: could malaria have been responsible for the 

mysterious illness that plagued the Hittite empire at the end of the Late Bronze Age.  In ancient 

Turkey (Anatolia), at the end of the 14th Century BCE, the Hittite King wrote a series of prayers 

pleading with the gods for relief from a widespread, 20-year epidemic that had already killed the 

two preceding kings, and continued to ravage his country.  These ancient texts, known as the 

Plague Prayers of Mursili II, reveal that this deadly epidemic was brought by Egyptian prisoners 

of war taken to the Hittite capital city (Singer 2002).  Mursili describes the plague as a divine 

punishment of his father, Suppiluliuma I, who attacked the Egyptian border in a breach of his 

oath of treaty with the Egyptians (Bryce 1998; Singer 2002).  This attack occurred after another 

of Suppiluliuma’s sons was murdered on his way to marry a prominent female figure in Egypt 

(perhaps King Tutankhamun’s wife, Ankhesenamun), who had written to the Hittite king, 

pleading for the Hittite prince’s hand in marriage (Schulman 1978). 

 Unfortunately, the disease responsible for the epidemic has never been identified 

definitively for two main reasons.  First, the Hittites tended to cremate their dead; thus, no Hittite 
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cemeteries from this time period have yet been found (Emre 1991).  Therefore, there is no direct 

evidence of the disease agent because there are no skeletons on which to identify this agent.  

Second, if the disease indeed came from Egypt, there is no textual evidence of this because 

Egyptians have been known to omit or change negative historical events in their writings.  This 

tendency is best exemplified through the Battle of Kadesh (c.a. 1274 BCE), wherein Egyptian 

writings and reliefs depict a grand victory over the Hittites, but in actuality, historians and 

archaeologists consider the Hittite documents recording a victory on their side to be the more 

likely outcome (Hasel 1998).  From the descriptions in Mursili’s Plague Prayers, the disease 

seems to have spread rapidly after the prisoners entered the city, and infection was not dependent 

upon age or class (Singer 2002: 56–57). The texts do not mention specific symptoms, but Mursili 

emphasizes the deadliness of the disease and that it persisted for 20 years in Hittite lands. The 

prisoners must have showed no obvious symptoms until after entering the city, suggesting a long 

incubation period. 

Some scholars have suggested that tumultuous events in Egypt leading up to this point in 

history indicate Egypt may have been stricken by the same epidemic disease as the Hittite empire 

(Kozloff 2012; Dodson 2014).  The pharaoh Akhenaten suddenly changed the Egyptian religion 

and founded his new capital city of Amarna in a previously uninhabited area, which remained the 

capital for only 17 years (c. 1349–1332 BCE). Some scholars have attributed this abrupt 

religious and geographical shift to epidemic disease, perhaps even polio or bubonic plague 

(Nunn 1996; Kozloff 2006).  However, even the abrupt movement of an entire capital city did 

not seem to prevent the spread of epidemic disease.  Ancient texts and stelae found at Amarna 

point to a mysterious “Canaanite illness” and “hand of Nergal” that afflicted people even at the 

end of the Amarna period (Moran 1992: 107–109, letter EA 35; Assman 2003: 223–224). 
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Approximately two years before the estimated date of Suppiluliuma’s death, Amarna was 

abandoned, scattering its occupants to the far reaches of the empire, and hence, possibly to the 

Egyptian-Hittite border.  Along with the dispersion of people came a redeployment of military, 

such that any disease present at Amarna could also have spread to the borders of the Egyptian 

empire, potentially affecting those Egyptians subsequently taken to the Hittite capital.  This 

coincidence of timing between a period of uncertainty and change in Egypt and a known 

epidemic in Anatolia makes it hard to imagine that disease that caused the Hittite epidemic was 

not present in Egypt at the same time (Assman 2003). 

Two of the Hittite kings’ deaths are attributed to this epidemic, and early deaths in the 

royal family at Amarna suggest a similar lack of immunity of the royalty, if indeed these were 

caused by the same disease agent.  At Amarna, Akhenaten’s second daughter, Meketaten died 

around age 12, and was commemorated by various depictions of the royal family mourning in 

her royal tomb (Redford 1984: 186; Tyldesley 2003).  The early death of another of Akhenaten’s 

children, the famous Tutankhamun, has long been the subject of serious debate as to the cause of 

death, with malaria recently implicated as such through ancient DNA (aDNA) evidence (Hawass 

et al. 2010).  This aDNA study found positive genetic markers for two different strains of 

tropical malaria (Plasmodium falciparum) in Tutankhamun’s mummified tissue, suggesting he 

had a double infection of malaria at his time of death.  Two other members of the royal family 

were also tested and shown to be positive for malaria infection.  The following sections in this 

chapter will outline evidence from various fields of study to address the unresolved question of 

malaria’s role in the Near Eastern Late Bronze Age epidemics. 
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2.3 Biology, ecology, and pathophysiology of malaria 

 Malaria is a disease caused by protozoal parasites of the genus Plasmodium transmitted 

by the Anopheles mosquito vector.  There are at least four Plasmodium species known to affect 

humans, all differing in their disease ecology (see Table 2.1).  The two species of major global 

importance (i.e. have the greatest impact on human health) today are P. falciparum and P. vivax 

(Webb 2009).  The main differences between these two species include their temperature 

requirements, severity of symptoms, and ability to cause relapses.  P. falciparum malaria can 

only exist at temperatures above 19° Celsius (about 66°F), and is not known to have the ability to 

remain dormant in the liver like P. vivax, and thus, requires transmission all year round to keep a 

foothold within a population (Sherman 1998).   It is for this reason falciparum malaria is also 

referred to as “tropical malaria,” since it is most common in areas that maintain warm 

temperatures all year round.  Falciparum malaria also distinguishes itself from vivax malaria in 

its severity, being more virulent in general and having a greater potential to cause death of its 

host (Webb 2009). 

Table 2.1. Comparison chart of malaria species ecology 

 P. falciparum P. vivax P. ovale  P. malariae 

Global importance Major Major Minor  Minor 

Host Humans Humans Humans  Humans + 

African apes 

Incubation (on 

average) 

12 days 15 days - 12 mo. 17 days  18-40 days 

Relapse? No Yes Yes  No 

Fever wave freq. Every 48 hours Every 48 hours Every 48 

hours 

 Every 72 hours 

Disease 

consequences 

Severe anemia, 

cerebral malaria 

Increasingly 

severe anemia 

  

In-utero infection? Yes Yes   

Post-partum 

antibodies? 

Yes No   

Required temp (°C) >19 >15   

*Chart based on malaria species ecology from Webb (2009). 
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 The identification of the protozoa responsible for malaria only occurred within the last 

150 years, and its lifecycle was only recognized within the last 50 years (Sherman 1998).  The 

modes of transmission begin when a gravid Anopheline mosquito takes a blood meal from a 

human infected with malaria. Once in the mosquito’s stomach, the stomach acid activates 

malarial male and female gametocytes, which combine to produce zygotes called ookinetes.  

These ookinetes invade the midgut wall and develop into oocysts.  The oocysts form on the 

outside of the mosquito stomach and rupture, releasing thousands of sporozoites which migrate 

to the mosquito’s salivary glands. 

 As the mosquito takes its next blood meal, the sporozoites are injected with the saliva 

into the human’s (or other warm-blooded animal’s) bloodstream, where they are taken to the 

liver and therein invade hepatocytes.  Within the hepatocytes, the sporozoites undergo asexual 

reproduction for a few days to form millions of merozoites, which eventually burst out of the 

hepatocytes into the bloodstream where they invade red blood cells.  This is where the 

falciparum species differs from the others, causing the red blood cells it invades to adhere to the 

blood vessel walls and to other red blood cells; a phenomenon called rosetting (Gilles 1997).  

Researchers believe this rosetting has a major causative effect on the progression of the disease 

to cerebral malaria (Wahlgren et al. 1992). 

 Once inside the red blood cell, merozoites undergo further asexual reproduction, 

consume available hemoglobin as food, and simultaneously rupture out of the red blood cells at 

the same time all over the body, releasing toxins and millions more merozoites into the 

bloodstream, causing the high fevers in the host.  This cycle in the blood continues until either 

the host dies or recovers, and some of the merozoites form into gametocytes.  Meanwhile, the 
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next Anopheline mosquito to bite the infected individual picks up the gametocytes in its blood 

meal, thereby completing the life cycle (see Figure 2.1 for life cycle diagram). 

 

 
Figure 2.1. Malaria life cycle diagram (courtesy CDC – DPDx Alexander J. da Silva and Melanie 

Moser, content providers) 

 

 The clinical manifestation of malaria arises during the blood stage, with the release of 

toxins and pigments into the bloodstream as merozoites erupt from the red blood cells (Gilles 

1997).  Clinical symptoms include severe headaches, body aches, periodic extreme fever, 

enlarged spleen and liver, and hemolytic anemia.  Additional deadly symptoms possible in 

severe falciparum infections include severe malarial anemia (most common in young children) 
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and cerebral malaria (most common in older children) (Reyburn et al. 2005; Roca-Feltrer et al. 

2010; Billig et al. 2012; Botez and Doughty 2014). 

 The pathophysiology of malaria, especially regarding the chemical release and hormone 

activation of the blood stage, remain under research and debate.  With regard to the skeleton, 

some recent experimental work with malaria in mice has suggested that the influx of free heme 

in the bloodstream leads to impaired bone formation and an imbalance favoring bone resorption 

(Moreau et al. 2012).  This imbalance may also be affected by the increase of acid phosphatase, a 

known osteoclast stimulator, in the bloodstream during malaria infection (D’Souza et al. 2011).  

The hemolysis of red blood cells has also been shown to quickly affect bone marrow and bones 

in the malarial mice as compared with bled mice (Moreau et al. 2012).  Thus, while skeletal 

changes involved in malarial infections are rarely the focus of research into the disease, malaria 

does appear to have a resorptive effect on the skeleton.  More skeletal evidence from 

bioarchaeological contexts will be discussed below. 

 

2.4 Models of malaria origin and spread 

 The origins of falciparum malaria are still the subject of debate among researchers today. 

Unlike many diseases, the origins of which can be back-calculated through changes to the 

genome, P. falciparum has a mosaic genome, complicating its hypothesized evolutionary history, 

as well as complicating any attempts at creating a vaccine (Zilversmit and Hartl 2005).  Most 

biologists generally agree that this malaria species originated in Africa, probably in tropical West 

Africa (Sherman 1998).  Livingstone (1958) was the first to consider malaria’s evolution in a 

social, environmental, and genetic context.  He suggested that falciparum malaria existed in 

tropical West Africa, but did not reach epidemic status until humans began practicing slash-and-
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burn agriculture, which created pools of water suitable for higher populations of Anopheline 

mosquitoes to breed.  According to Livingstone, it was during this period of agricultural 

innovation and larger population sizes, that falciparum malaria was able to get a foothold in 

human populations. In turn, humans with abnormal hemoglobin such as thalassemia and the 

sickle-cell trait had a greater chance of survival, leading to the increase in these genetic traits in 

human populations.  This idea of genetic polymorphisms, the increased survival of heterozygous 

individuals for these deleterious genes due to their conference of malarial resistance, explained 

the retention of these genes in African, Asian, and Mediterranean populations today. 

 Many researchers have traditionally believed that due to its virulence, falciparum malaria 

must have evolved recently under the assumption that over time, diseases will find a balance 

with their host so that they can live together peacefully instead of killing off their hosts quickly 

(Livingstone 1958).  However, this theoretical assumption has been called into question recently, 

especially when considering vector-borne and water-borne diseases, as well as those that can 

survive long periods of time in an external environment (Ewald 2003).  Studies into the genome 

of the falciparum species have resulted in many far-reaching estimations for the age of this 

parasite, projecting its evolution anywhere from as recently as 5,000 years to as ancient as 3-4 

million years (Hume et al. 2003; Rich et al. 2009; Datta and Chauhan 2010).  Some have 

suggested that both of these age estimations are correct, and represent two separate regional 

expansions of the genome, with the most recent corresponding to the advent of agriculture in 

West Africa (Zilversmit and Hartl 2005).  Vivax malaria is suggested to be 1-3 million years old, 

likely originating in Asia (Datta and Chauhan 2010).   

 Since Anopheline mosquitoes generally need clean, fresh water in which to breed, they 

tend to be found in marshy environments today.  It is hypothesized that the seasonal flooding of 
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the Nile River and its utilization by ancient Egyptians through irrigation canals may have 

worsened an already prime niche for malaria to thrive (Scheidel 2001; Scheidel 2012).  

Considering this environmental advantage, coupled with the large cities of clustered potential 

hosts, researchers have generally hypothesized that malaria spread out of Africa and into Europe 

through the Nile Valley pathway (Bruce-Chwatt 1965).  However, the date and pathway of this 

disease spread continues to be debated in the literature. 

 Bruce-Chwatt and de Zulueta (1980) theorize that falciparum malaria only arrived and 

began to spread in Europe during the age of the Roman Empire.  They discount the textual and 

physical evidence of falciparum malaria, and insist that falciparum malaria could not have 

existed mainly due to lack of proper mosquito vectors.  Even in ancient Egypt where the climate 

was undoubtably well-suited for malaria, de Zulueta (1987) claims that only a low prevalence of 

malaria would have existed due to lack of efficient vector.  They also suggest that the ancient 

Mediterranean nautical warfare would have been markedly one-sided if falciparum malaria was 

at play (De Zulueta 1987). 

Sallares and coworkers (2004) argue for a slightly earlier spread of malaria, possibly 

extending back to 700 BCE from Tunesia to Sicily, Sardinia, and Italy.  They speculate that 

epidemics of falciparum malaria spread simultaneously with the migration of the mosquito 

vector An. sacharovi into Greece and Italy.  This hypothesis seems to suggest that malaria spread 

gradually in Europe as mosquitoes slowly migrated, but does not consider that mosquitoes can 

(and often do in modern times) hitch rides on seafaring vessels to spread to new areas at the same 

time as their human transporters. 

Thus, much is still unknown about the origins and spread of malaria in the past.  For this 

reason, anthropology can be of use in identifying malaria’s presence, impact, and 
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paleoepidemiology through the physical remains of past humans.  By reconstructing disease 

dynamics of the past, anthropologists can contribute to overall understanding about how best to 

respond to this disease in the future (Brown et al. 1997). 

 

2.5 Mosquito evidence 

   The successful spread of malaria to new locations depends on the presence and 

substantial population size of the correct species of mosquito (genus Anopheles), and at least one 

human who is infected or is an asymptomatic carrier of malarial Plasmodium.  Climate, 

elevation, and breeding grounds are the most important factors determining the plausibility of 

large mosquito population sizes.  Each species of Anopheles mosquito has its own preference as 

to the temperature and altitude range it likes to inhabit.  For this reason, different geographic 

locations tend to have different dominant malaria vector species. 

 Furthermore, each of these species has its own behavioral differences as to what 

elevations it prefers to inhabit, where it prefers to breed, which animal it prefers to bite, and how 

it prefers to hibernate.  Some species do not enter man-made structures, whereas others who 

prefer to enter structures, especially at night, making the latter a much more effective malaria 

vector than the former (Sherman 1998).  Another factor in mosquito malaria transmission is 

whether or not the mosquito prefers to bite humans or other animals.  Mosquitoes that prefer to 

bite humans over animals, known as anthropophilic mosquitoes, are much more likely to 

transmit malaria than those which prefer to bite other animals. 

In the Near East, the dominant malaria vector species include An. sacharovi, An. 

sergentii, and An. superpictus (Sinka et al. 2010).  An. sacharovi is the most important malaria 

vector species in modern Turkey, and its current habitat ranges from coastal areas bordering the 
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Mediterranean Sea in Greece, widespread in the whole of Turkey and the Fertile Crecent, and 

coastal areas bordering the Black Sea (see Figure 2.2).  An. sacharovi has several behavioral 

advantages for successful malaria transmission.  It will breed in stagnant fresh water or brine, is 

found in elevations up to 1720m, and has an incomplete hibernation in winter; thus, is able to 

cause new cases of malaria all year round (Alten et al. 2000).  The most important malaria vector 

in modern Egypt is An. sergentii, known for its adaptability in desert climates and ability to 

overwinter, but of which host preferences are still under debate (Sinka et al. 2010; Manguin 

2013).  Less is known about An. superpictus, but it does seem to be particularly dangerous in 

open country and high altitudes where other mosquito species may be absent (Sinka et al. 2010). 

For the reasons listed above, in order for malaria to spread in the Middle East region, a 

substantial mosquito vector must be present, and its population size must be maintained, 

including optimal temperatures, elevation, breeding grounds, and anthropophilic behavior 

patterns of the mosquito species present.  Once the conditions are met for a plausible malaria 

vector population, transmission is possible during human migrations to new areas. 
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Figure 2.2. Sinka et al’s (2010) predictive distribution maps of modern dominant Anopheles 

vector species of human malaria in Europe and the Middle East: a) An. sacharovi, b) An. 

sergentii, and c) An. superpictus.  Red areas mark the distribution range. 
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2.6 Paleoclimate evidence 

 Climate is incredibly important to understanding the plausibility of past malaria 

epidemics because it controls the potential for large populations of malaria vector mosquitoes.  

As evidenced from fossilized pollen and charcoal analyses from a lagoon in the Nile Delta 

region, the climate in the ancient Middle East leading up to the expansion of city-state societies 

was characterized by a very moist and humid period from about 6000 – 3500 BCE (Bernhardt et 

al. 2012).  After about a 500 year period of fluctuating rainfall, the climate shifted to a much 

drier state around 2800 BCE, likely involving droughts that impacted ancient peoples negatively 

(Kaniewski et al. 2013).  In regard to mosquito populations, this drier climate meant highly 

decreased populations, probably only surviving in areas of remaining moisture, like the Nile 

Valley and Delta region. 

 This drought period was alleviated briefly by periods of increased rainfall between 1500 

– 1100 BCE and a small spike around 500 BCE (Bernhardt et al. 2012).  These periods are 

important because they represent time periods of increased mosquito population size and range 

in the Middle East, leading to higher malaria parasitemia in endemic regions, as well as higher 

possibility of malaria spread to new regions with human migration.  From these reconstructions, 

it seems that the spread of falciparum malaria epidemics would have been possible in the Near 

East during the time of the Hittite plague (i.e. 1320 – 1300 BCE).  

 

2.7 History of malaria epidemics 

 To reconstruct past disease spread and epidemics of malaria, historical documents of past 

epidemics can be used to suggest ancient disease dynamics.  In dealing with falciparum malaria 
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spread in the Near East, historical malaria epidemics suggest generally devastating health effects 

in non-immune populations experiencing the parasite for the first time.  One such epidemic 

occurred on the Northwest coast of the United States in the 1830’s.  From the detailed record 

keeping of the European settlers, anthropologist Robert Boyd was able to implicate malaria as 

the disease agent, which he proposes to have been brought in with a migrant from an endemic 

area on a ship that came into Portland, Oregon in September 1830 (Boyd 1975; Boyd 1999).  The 

subsequent spread of the epidemic into California which decimated Native American villages 

there has also been tracked by historians to a group of fur-traders in John Work’s Buenaventura 

brigade in August 1833 (Ahrens 2011). 

 After studying the accounts and reconstructing epidemiology of various other epidemics 

on the Northwest coast at this time (e.g. smallpox, measles, and syphilis among others), Boyd 

calls this malaria epidemic "the single most important epidemiological event in the recorded 

history" of this area (Boyd 1999: 84).  Although Europeans were hard-hit during these yearly 

epidemics, the indigenous populations who did not have access to the typical cinchona bark 

(quinine) treatment were ravaged by this disease (Boyd 1999; Ahrens 2011).  Historical accounts 

told of traditional healing techniques involving sweat baths followed by a plunge into cold river 

water, which seemed tragically to increase the deadly outcomes of the disease, as noted by the 

Europeans who told of whole villages disappearing during these epidemic years (Boyd 1999; 

Ahrens 2011). 

 Due to the lack of knowledge about the etiology of malaria at the time, it can only be 

speculated as to the species of malaria parasite that caused the 1830s Northwest coast epidemic.  

In recent times, multi-year malaria epidemics caused by Plasmodium falciparum entering into a 

naïve population have been documented in areas of increased human migration like the isthmus 
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of Panama (Calzada et al. 2008).  During such an epidemic in 2005, nearly half of the indigenous 

Kuna community of Chepo became infected before the Panamanian health officials could 

intervene (Shah 2010).  Unlike the temperate climate of the aforementioned Northwest coast 

epidemics, Panama’s tropical climate provided the possibility of year-round transmission, which 

extended the duration and increased morbidity and mortality rates of the epidemic. 

 From these historical disease dynamics, key information for finding evidence for past 

epidemics can be elucidated.  Primarily, we can see that malaria can be spread by just one single 

infected person migrating to a new area, as long as that new area is inhabited by a substantial 

Anopheline mosquito population.  Secondly, not only biological immunity, but also cultural 

response to disease plays a large part in the duration and virulence of the disease on the 

population.  Finally, climate is an intrinsic factor in the ability of an epidemic of falciparum 

malaria to gain a foothold in a population. 

 

2.8 Skeletal evidence 

J. Lawrence Angel was among the first to suggest a skeletal manifestation involving 

malaria through his work on archaeological sites in the Near East (Angel 1966; Angel 1967; 

Angel 1972; Angel 1978; Buikstra and Roberts 2012).  Angel focused on the widespread porous 

lesions of the cranium, which he termed porotic hyperostosis, and hypothesized about their 

etiological link to the hemolytic anemia brought on by genetic conditions conferring resistance to 

malaria (i.e. thalassemia and sickle cell disorder) (Angel 1964a; Angel 1966).  The lesions were 

thought to develop as a result of the expansion of the hemopoietic diploe of the cranium (seen as 

the characteristic “hair on end” appearance radiographically), to allow greater red blood cell 

generation to compensate for the severe anemia (Zaino 1964).  He suggested that the appearance 
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of these lesions in ancient populations suggested the presence of falciparum malaria within these 

populations (Angel 1964a; Angel 1966).  However, these genetic disorders are maintained at low 

levels in endemic populations, and so could not explain the high rates of these skeletal lesions 

within ancient populations (Hengen 1971).  Moreover, since falciparum malaria is not thought to 

have existed in the New World prior to European contact, genetic hemolytic anemia cannot 

explain the porotic hyperostosis found at pre-Columbian American sites (Angel 1966; El-Najjar 

et al. 1976). 

Thereafter, etiological theories shifted toward iron-deficiency anemia as the main 

causative agent for porotic hyperostosis.  Hengen (1971) observed rates of the porous orbital 

lesions only (generally thought to be of similar etiology to porotic hyperostosis, but termed 

cribra orbitalia), noting their gradation in frequency rates in relation to the equator, with higher 

rates tending to appear at lower latitude sites.  He suggested a possible connection between cribra 

orbitalia and greater iron-deficiency anemia due to parasitic worms, which are more common in 

tropical environments. 

Mahmoud El-Najjar was among the first to make this connection with iron-deficiency 

anemia mainstream in his work on prehistoric sites in the Southwest of the United States (El-

Najjar et al. 1975; El-Najjar et al. 1976).  El-Najjar pointed to a lack of iron in the diet causing 

higher rates of porotic hyperostosis in populations dependent on maize agriculture as compared 

with nearby populations more dependent on meat for subsistence (El-Najjar et al. 1976).  From 

this point on, paleopathologists began to shift their attention from potential presence of malaria 

in the past to dietary stress associated with agriculture (Carlson et al. 1974; Lallo et al. 1977; 

Mensforth et al. 1978; Stuart-Macadam 1987). 
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However, many anthropologists have pointed out flaws in the iron-deficiency anemia 

hypothesis.  Many discredit the attribution of only dietary lack of iron to the formation of the 

cranial lesions, and have instead suggested a multi-factorial etiology including diet and other 

factors such as parasitic and diarrheal disease (Hengen 1971; Lallo et al. 1977; Mensforth et al. 

1978; Walker 1986; Holland and O’Brien 1997; Wapler et al. 2004).  Gleń-Haduch and 

coworkers (1997) found no significant correlations between the levels of iron in teeth and 

presence of cribra orbitalia, suggesting other etiological factors are more important than lack of 

iron in the development of this lesion.  Wapler and coworkers (2004) suggest the lesions have 

been over-estimated in the bioarchaeological record due to misdiagnosis.  He suggests 

microscopic examination and histology in order to differentiate between expansion of marrow 

space and other causes, such as inflammation and atrophy due to increase pressure or tissue 

hemorrhages caused by vitamin C deficiency (Wapler et al. 2004).  Further, McClure and 

coworkers (2011) found high rates of cribra orbitalia in a population in Spain which they say 

could not have been caused by iron-deficiency anemia due to the high isotopic levels of animal 

protein in their diet.  They suggest a combination of weaning-related vitamin B12 deficiency and 

malaria-induced hemolytic anemia as the cause. 

The biggest criticism to the iron-deficiency anemia hypothesis came in an article by 

Walker and coworkers (2009).  They reasoned that iron-deficiency anemia could not in fact 

induce the bone marrow hypertrophy responsible for producing these lesions because this type of 

anemia depresses red blood cell production.  Instead, they pointed to megaloblastic and 

hemolytic anemia as the main factors triggering the formation of these skeletal lesions.  The 

former type of anemia arises in individuals with a nutritional deficiency in B12, and the latter 
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arises in individuals with genetic disorders conferring protection from malaria (thalassemia and 

sickle-cell anemia), as well as in individuals with a malaria infection (Walker et al. 2009). 

Walker’s article is still a matter of debate currently, with some suggesting that iron 

deficiency could still contribute to marrow space expansion because it causes ineffective 

erythropoiesis rather than a complete dyserythropoiesis (Oxenham and Cavill 2010).  However, 

others refute this ineffective erythropoiesis claim, and instead insist that iron deficiency anemia 

is a side effect, not the cause, of porotic hyperostosis (Rothschild 2012).  Further, McIlvaine 

(2013) suggests that if we refute the iron-deficiency anemia hypothesis, we should also refute the 

B12 deficiency explanation because the mechanisms behind both types of anemia are the same.  

At this point, bioarchaeologists have not come to a consensus on the etiology of porotic 

hyperostosis and cribra orbitalia, but there seems to be evidence for multiple factors at play 

(McIlvaine 2013). 

Malaria is often dismissed in differential diagnoses by paleopathologists, many of whom 

hold that the disease does not manifest itself upon the skeleton (Nunn and Tapp 2000; Roberts 

2000).  However, recent research has shown evidence to the contrary.  Rabino Massa and 

coworkers (2000) provided a link between direct evidence for malaria and skeletal lesions of 

anemia. They tested ancient Egyptian mummies for immunological evidence of malarial 

antigens, and of those testing positive for falciparum malaria, 92% had porotic hyperostosis and 

cribra orbitalia. This link was corroborated by Nerlich and coworkers (2008) who found 

concurrent positive malarial aDNA detection and skeletal markers of chronic anemia.  Similarly, 

Gowland and Western (2012) mapped and associated cribra orbitalia with the distribution of 

large populations of Anopheline mosquitoes, lower altitude and marshy environments, and higher 

incidence of historic “fever and ague” (an archaic term for malaria) across Great Britain. Their 
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study found a correlation between vivax malarial infection and cribra orbitalia, which gives 

additional support to the hypothesis that malaria does indeed manifest itself in the skeleton. 

 

2.9 Summary 

Multiple lines of evidence must be used in describing malarial prevalence in the past, 

including textual, biological, historical, and climatological studies.  However, none of these 

represent direct evidence of ancient malaria prevalence.  This shortage of direct evidence can be 

improved through a greater understanding and refined methods for identifying the physical 

evidence for malaria on human skeletal remains.  Although several studies have linked porotic 

hyperostosis and cribra orbitalia to malaria and genetic disorders conferring protection from 

malaria, much is still unknown about the etiology of these skeletal lesions.  At the very least, 

there appear to be multiple factors leading to their manifestation, such as nutrition and parasitic 

infection (Holland and O’Brien 1997; Wapler et al. 2004; Walker et al. 2009).  The research 

undertaken in this dissertation will test models and build on the previous studies by providing an 

a priori means by which to diagnose malarial infection in ancient remains through macroscopic 

skeletal examination, which will provide empirical evidence in considering malaria’s 

involvement in the Hittite plague of 1320 BCE. 
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Chapter 3 – Cribra orbitalia in the ancient Nile Valley and its connection to malaria 

 

3.1 Introduction 

Cribra orbitalia is one of the most common skeletal lesions noted in ancient human skeletal 

remains excavated from the Nile Valley (Hillson 1980).  Researchers have long explained this 

porous lesion of the eye orbits, along with the similar porous cranial vault lesions (porotic 

hyperostosis), as an expansion of the marrow space in the cranial vault caused by iron-deficiency 

anemia (Carlson et al. 1974; El-Najjar et al. 1976, 1975; Lallo et al. 1977; Mensforth et al. 1978; 

among others).  This iron-deficiency anemia hypothesis has recently been called into question by 

a number of researchers, including Walker and coworkers (2009), who maintain the depression 

of red blood cell production in iron-deficiency anemia excludes the possibility of its participation 

in the stimulation of increased marrow space involved in porotic hyperostosis and cribra orbitalia 

formation. 

While Walker and coworker’s (2009) etiological reappraisal is still being debated in the 

literature (Oxenham and Cavill, 2010; Rothschild, 2012; McIlvaine, 2014), other researchers 

have shown an association between cribra orbitalia and malaria infection (Rabino Massa et al. 

2000; Nerlich et al. 2008; Gowland and Western 2012).  Malaria has been identified in the 

mummified tissue of ancient Egyptians of various time periods, dating back to as early as 3200 

BCE using ancient DNA (aDNA) sequencing and antigen evidence (Miller et al. 1994; Bianucci 

et al. 2008; Nerlich et al. 2008; Hawass et al. 2010).  This direct genetic and immunological 

evidence verifies the presence of malaria in antiquity, but leaves the prevalence and spread of the 

disease unknown.  
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Although there are many factors that could have potentially contributed to the overall 

anemia seen in the human skeletal remains of ancient Egypt, malaria infection has been shown to 

have a major synergistic effect with other factors to increase overall anemia levels, and thus, 

would have arguably raised the overall frequencies of cribra orbitalia (Nájera and Hempel 1996; 

Gilles 1997; Lusingu et al. 2004; Shanks et al. 2008).  The present study surveys the 

temporospatial variability in rates of cribra orbitalia reported at archaeological sites along the 

Nile Valley in order to suggest ancient prevalence and distribution of malaria in this region.  

Tracking changes in cribra orbitalia in this region provides not only a more holistic picture of 

ancient Egyptian anemia, but also a potential way to test theoretical models of malaria’s spread 

out of Africa. 

 

3.2 Porotic hyperostosis, cribra orbitalia, and anemia 

Genetic conditions conferring resistance from malaria were hypothesized to cause 

skeletal lesions such as porotic hyperostosis and cribra orbitalia in the ancient Mediterranean and 

Near East (Angel 1964a; Zaino 1964; Angel 1966; Angel 1967; Angel 1972).  However, there is 

a discrepancy between low rates of these genetic disorders in modern endemic populations and 

the high rates of these skeletal lesions within ancient populations (Hengen 1971). Consequently, 

paleopathologists turned to iron-deficiency anemia, a main contributor to anemia in modern 

populations as the main causative agent implicated for these lesions (Hengen 1971; Carlson et al. 

1974; El-Najjar et al. 1976; Lallo et al. 1977; Mensforth et al. 1978; Stuart-Macadam 1987).  

This hypothesis has been linked with agriculture through studies showing higher rates of porotic 

hyperostosis and cribra orbitalia in maize agriculturalists as compared with populations whose 

diets included meat (El-Najjar et al. 1976). 
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The porous lesions of the vault (porotic hyperostosis) and those of the orbits (cribra 

orbitalia) tend to show a connection, but also variability, in etiology (Stuart-Macadam 1989; 

Walker et al. 2009).  Some consider cribra orbitalia as an early indicator of anemia, and porotic 

hyperostosis as an indicator of a more chronic, long term anemic state (Hrdlička 1914; Caffey 

1937).  Only children tend to display active lesions, leading to the widely-held explanation that 

these lesions form during childhood and are only maintained due to lack of bone turnover in 

adults (Stuart-Macadam 1985; Mittler and Van Gerven 1994). 

However, many anthropologists have pointed out flaws in the iron-deficiency anemia 

hypothesis.  Many discredit the attribution of dietary lack of iron as the main causative factor of 

the cranial lesions, and have instead suggested a multi-factorial etiology including diet and other 

factors such as parasitic and diarrheal disease (Hengen 1971; Lallo et al. 1977; Mensforth et al. 

1978; Walker 1986; Holland and O’Brien 1997; Wapler et al. 2004).  However, the role of 

parasites in the etiology of cribra orbitalia has also been disputed (DeGusta 2009).  Gleń-Haduch 

and coworkers (1997) found no significant correlations between the levels of iron in teeth and 

presence of cribra orbitalia, suggesting other etiological factors are more important than lack of 

iron in the development of this lesion.  Further, McClure and coworkers (2011) found high rates 

of cribra orbitalia with concurrent high isotopic levels of dietary animal protein in a population 

in Spain, precluding the possibility of iron-deficiency.   

The biggest criticism to the iron-deficiency anemia hypothesis came in an article by 

Walker and coworkers (2009).  They reasoned that iron-deficiency anemia could not in fact 

induce the bone marrow hypertrophy responsible for producing these lesions because this type of 

anemia depresses red blood cell production.  Instead, they pointed to megaloblastic and 

hemolytic anemia as the main factors triggering the formation of these skeletal lesions.  The 
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former type of anemia arises in individuals with a nutritional deficiency in B12, and the latter 

arises in individuals with genetic disorders conferring protection from malaria (thalassemia and 

sickle-cell anemia), as well as in individuals with a malarial infection (Walker et al. 2009). 

Walker’s article is still a matter of debate currently, with some suggesting that iron 

deficiency could still contribute to marrow space expansion because it causes ineffective 

erythropoiesis rather than a complete dyserythropoiesis (Oxenham and Cavill 2010).  However, 

others refute this ineffective erythropoiesis claim, and instead insist that iron deficiency anemia 

is a side effect, not the cause, of porotic hyperostosis (Rothschild 2012).  Further, McIlvaine 

(2013) suggests that if the iron-deficiency anemia hypothesis is refuted, the B12 deficiency 

explanation should also be refuted because the mechanisms behind both types of anemia are the 

same.  At this point, the exact etiology of porotic hyperostosis and cribra orbitalia remains 

uncertain, but appears to a combination of many factors (McIlvaine 2013). 

 

3.3 Differential diagnosis of anemia in the Nile Valley 

To explain the high frequencies of cribra orbitalia in the Nile Valley, many causes have 

been suggested, including schistosomiasis, intestinal worms, dietary deficiencies, brucellosis, 

and malaria.  Schistosomiasis (a blood fluke infection) in ancient Egypt has been evidenced 

directly from mummified tissues and indirectly from ancient texts (Brier 2004).  However, 

antigenic evidence of schistosoma infection was not shown to associate with skeletal lesions of 

anemia in non-adults at the Nubian site of Semna South (Alvrus 2006: 167), indicating other 

etiological factors are more important than schistosomiasis in the formation of these lesions in 

the Nile Valley.   
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Hookworms, common in modern tropical areas, are a notorious cause of iron-deficiency 

anemia, and have been implicated in causing higher rates of cribra orbitalia in equatorial areas 

(Hengen 1971).  If Walker’s (2009) position is correct that iron-deficiency anemia is unable to 

cause porotic hyperostosis and cribra orbitalia, then this type of anemia would be unlikely to 

generate these lesions.  Vitamin B12 deficiency caused by hookworm infestation could be a 

factor, as the malabsorption of nutrients due to chronic diarrhea is attributed to megaloblastic 

anemia, which has been implicated as a cause of marrow hypertrophy (Walker et al. 2009; but 

see McIlvaine 2013 for critique).  Nevertheless, Vitamin B12 deficiency-induced megaloblastic 

anemia is not a major contributor to total anemia worldwide, even in tropical, developing nations 

(Kassebaum et al. 2014).  Therefore, neither hookworms nor other sources of Vitamin B12 

deficiency were likely responsible for high skeletal anemia rates in the Nile Valley. 

Brucellosis is a disease underestimated by paleopathologists in the past, consisting of a 

bacterial zoonotic infection passed from domestic cattle to humans usually through ingestion of 

raw milk (D’Anastasio et al., 2011).  Brucellosis causes undulating fevers and hemolytic anemia 

similar to malaria, potentially inducing skeletal lesions of anemia like cribra orbitalia.  However, 

brucellosis maintains a low prevalence in humans, even in high-risk occupational groups like 

dairy farmers (Lopes et al., 2010).  Due to this low prevalence, and even lower chance of anemia 

severe enough to make a mark on the skeleton, it is not likely that high rates of skeletal anemia in 

the Nile Valley were caused by this disease. 

Malaria is a disease caused by parasites of the genus Plasmodium and transmitted by the 

Anopheles mosquito vector.  There are at least four species of the parasite known to infect 

humans: P. falciparum, P. vivax, P. malariae, and P. ovale.  It has also been implicated for 

causing the chronic anemia pattern in the ancient Nile Valley.  In ancient Egyptian medical texts, 
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the annual plague described in the Edwin Smith Surgical Papyrus has been attributed to seasonal 

epidemics of malaria during periods of annual Nile River flooding (Brier 2004).  This disease 

does not discriminate against age or class, although does contribute to higher rates of anemia in 

women and children (World Health Organization 2014).  Malaria is known to cause hemolytic 

anemia, which is capable of producing marrow hyperplasia (Walker et al. 2009).  In addition to 

the classic model of skeletal anemia by expansion of marrow space, recent research has 

suggested that the hemolysis during the schizogony phase of malaria infection may contribute to 

porous skeletal lesion formation due to the release of acid phosphate, free heme, and the malarial 

pigment hemozoin into the bloodstream.  This leads to an imbalance in bone remodeling by 

stimulating osteoclasts while simultaneously impairing osteoblasts (D’Souza et al. 2011; Moreau 

et al. 2012).  Furthermore, severe malarial anemia may induce extramedullary erythropoiesis, 

which is known to cause cortical thinning and coarse trabeculation (Al-Aabassi and Murad 

2005). 

 

3.4 Models of malaria origin and spread 

In his classic paper published in 1958, Livingstone was the first to consider malaria’s 

evolution in a social, environmental, and genetic context.  He suggested that malaria caused by 

the P. falciparum species (referred to as falciparum malaria) existed in tropical West Africa, but 

did not reach epidemic status until the advent of slash-and-burn agriculture in the region 

(approximately 2,000 – 4,000 years ago), which created pools of water suitable for higher 

populations of Anopheles mosquitoes to breed.  This connection between tropical forest 

deforestation and increased malaria risk has been widely intimated in modern populations 

(Yasuoka and Levins 2007; Afrane et al. 2008; Hahn et al. 2014).  According to Livingstone, it 
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was during this period of agricultural innovation and larger population sizes, that falciparum 

malaria was able to get a foothold on human populations.  In turn, humans with abnormal 

hemoglobin such as thalassemia and the sickle-cell trait had a greater chance of survival, leading 

to the increase in these genetic traits in human populations (Livingstone 1958; Livingstone 

1971).  This idea of balanced polymorphisms, the increased survival of heterozygous individuals 

for these deleterious genes due to their conference of malarial resistance, explained the presence 

of these genes in African, Asian, and Mediterranean populations today (Livingstone 1958; 

Livingstone 1971). 

The origins of P. falciparum malaria are still the subject of debate today due to its mosaic 

genome, which complicates its hypothesized evolutionary history (Zilversmit and Hartl 2005).  

There is a general consensus that this malaria species originated in Africa, most likely in the 

tropical West African region (Sherman 1998).  Attempts at dating the genome of the falciparum 

species have resulted in many far-reaching estimations for the age of this parasite, projecting its 

evolution anywhere from as recently as 5,000 years to as ancient as 3-4 million years (Hume et 

al. 2003; Datta and Chauhan 2010).  Some have suggested that both of these age estimations are 

correct, and represent two separate regional expansions of the genome, with the most recent 

corresponding to the advent of agriculture in West Africa (Zilversmit and Hartl 2005). 

As the most virulent of the malarial species, researchers assumed that falciparum malaria 

evolved recently under the assumption that over time parasites will evolve a more symbiotic 

relationship with their hosts in order to propagate their offspring rather than killing off their hosts 

quickly (Livingstone 1958; Capasso 1998; Baum and Bar-Gal 2003).  However, this theoretical 

assumption has been modified recently to consider the evolutionary advantage of virulence in 

immobilizing hosts for more effective spread of vector-borne diseases (Ewald 2003).  
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Nevertheless, genetic polymorphisms that confer resistance or immunity to malaria appear to 

have arisen within the last 5,000 years, giving support to theories of recent evolution of the more 

virulent falciparum malaria (Hedrick 2012). 

Since Anopheles mosquitoes generally need clean, fresh water in which to breed, they tend 

to be found in marshy environments today.  It is hypothesized that the seasonal flooding of the 

Nile River and its utilization by ancient Egyptians through irrigation canals may have worsened 

an already prime niche for malaria to thrive (Scheidel 2001; Scheidel 2012).  Evidence for the 

use of irrigation in the Nile Valley dates back to 3200 BCE, but it is likely that the practice arose 

in earlier predynastic times (Nicholson and Shaw 2000).  Considering this environmental 

advantage, coupled with the large cities of clustered potential hosts, researchers have generally 

hypothesized that malaria spread out of Africa and into Europe through the Nile Valley pathway 

(Bruce-Chwatt 1965; Schlagenhauf 2004).  Some have theorized that the spread of malaria out of 

Africa occurred recently, as late as 2,000 years ago (Bruce-Chwatt and de Zulueta 1980; De 

Zulueta 1987).  Bruce-Chwatt and de Zulueta based their reasoning of this late malarial diaspora 

on the assumption that efficient mosquito vectors had not yet migrated into the Mediterranean 

areas between the last glacial period (c.a. 12,000 years ago) and the Roman era (Bruce-Chwatt 

and de Zulueta 1980: 11–13).  However, this assumption is difficult to prove due to the scarcity 

of Anopheles mosquitoes in the fossil record (Capasso 1998). 

 

3.5 Paleopathology and malaria 

Advances in aDNA extraction and immunological assays from skeletal and mummified 

tissues have revealed direct evidence for malaria’s presence in the ancient Nile Valley through 

genetic markers of the P. falciparum malaria parasite in ancient mummified tissue (Miller et al. 
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1994; Bianucci et al. 2008; Nerlich et al. 2008; Hawass et al. 2010).  However, these aDNA 

studies are limited to providing evidence for presence, but not prevalence, of the disease in the 

past. 

Malaria is often dismissed in differential diagnoses by paleopathologists, many of whom 

hold that the disease does not manifest itself upon the skeleton (Nunn and Tapp 2000; Roberts 

2000).  However, recent research has provided evidence to the contrary.  Rabino Massa and 

coworkers (2000) provided a link between direct evidence for malaria and skeletal lesions of 

anemia.  They tested ancient Egyptian mummies for malarial antigens, and of those testing 

positive for falciparum malaria, 92% had porotic hyperostosis and cribra orbitalia.  This link was 

corroborated through a similar aDNA study by Nerlich and coworkers (2008).  Similarly, 

Gowland and Western (2012) mapped and associated cribra orbitalia with the distribution of 

large populations of Anopheles mosquitoes, lower altitude and marshy environments, and higher 

incidence of historic “fever and ague” (an archaic term synonymous with malaria) across Great 

Britain.  Their study found a correlation between vivax malarial infection and cribra orbitalia, 

which gives additional support to the hypothesis that malaria does indeed manifest itself in the 

skeleton. 

 

3.6 Materials and methods 

The present study tests a theoretical Dynastic Egyptian time frame for the spread of 

malaria up the Nile Valley and out of Africa by using the variability of cribra orbitalia 

frequencies among ancient Egyptian and Nubian remains as a proxy for malarial infection.  If 

malaria did spread into Egypt during the Dynastic period, an increasing trend in cribra orbitalia 

frequency over time from South to North in the Nile Valley was predicted.  
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Reports from 29 ancient Nile Valley sites were surveyed (see Appendix A), representing 

4,760 individuals ranging from prehistoric to Christian periods (4400 BCE – 1500 CE) and 

situated between upper Nubia and the Nile delta (see Table 3.1 and Figure 3.1).  Data collection 

was conservative, with several restrictions for unbiased comparison.  If a report recorded less 

than 15 individuals containing observable orbits for scoring cribra orbitalia, then it was not 

included in the statistical analysis.  If no number of observable individuals was mentioned in the 

report, the site was excluded.  Similarly, sites reporting poor skeletal preservation were excluded. 

Additional data on proportions of adult females (out of the total number of adults assigned 

a sex) and nonadults under 17 years of age (out of total individuals assigned an age) in each 

sample population was collected when available.  The reason for collecting this demographical 

data was to ascertain any biases in the sample that would affect the total frequency of cribra 

orbitalia at the site.  For example, since cribra orbitalia has been noted at higher rates in children, 

a skeletal sample containing only children may contain higher rates of cribra (Stuart-Macadam 

1985).  Similarly, since women and children are at higher risk for malarial infections and bear a 

greater anemia burden than adult males in endemic areas, higher proportions of either of these 

groups may influence the total cribra orbitalia rate of the sample population (Gilles et al. 1969; 

World Health Organization 2007; Billig et al. 2012).  Table 3.2 lists the raw frequencies of the 

variables collected from the site reports. 

Spatial comparison between sites was analyzed by latitudinal coordinates of site location in 

order to visualize changes in anemia along the Nile River.  Temporal comparison between sites 

was accomplished by taking the mean of the occupation dates for the site.  Analysis of the data 

consisted of comparison of overall distribution of the data to other existing cribra orbitalia meta-

analyses, comparison of means through Student’s t-test, and determination of associations 
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through Spearman’s rank and Kendall’s tau correlations.  Statistical analyses were carried out 

using IBM SPSS 22.01. Statistical significance was set at p ≤ 0.05. 

Few meta-analyses have been published for comparison of cribra orbitalia rates across 

wide areas and time periods.  The range of Nile Valley cribra orbitalia rates compiled in this 

study will be compared with other existing cribra orbitalia meta-analyses compiled from New 

World (Steckel and Rose 2002) and English samples (Gowland and Western 2012). 

 

Table 3.1. Chronology of Ancient Egypt and Nubia (after Baines and Malek 1983) 

Date Egyptian Nubian 

4400 – 2600 BCE Late Pre-Dynastic/Early Dynastic A-Group 

2600 – 2134 BCE Old Kingdom - 

2134 – 2040 BCE 1st Intermediate Period C-Group 

2040 – 1640 BCE Middle Kingdom (Egyptian occupation) 

1640 – 1550 BCE 2nd Intermediate Period (Egyptian occupation) 

1550 – 1070 BCE New Kingdom (Egyptian occupation) 

1070 – 332 BCE 3rd Intermediate/Late Period - 

332 BCE – 1500 AD Greco/Roman/Christian Meroitic/X-Group/Christian 
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Figure 3.1. Map of the location of the sites used for this study.  Map created using ESRI ArcGIS 

10.0. Satellite imagery © CNES/Airbus DS, Earthstar Graphics.  Source: Esri, DigitalGlobe, 

GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, 

Aerogrid, IGN, IGP, swisstopo, and the GIS User Community | Esri, HERE, DeLorme. 

 

 

 



40 

 

Table 3.2. Frequencies of cribra orbitalia, females, and nonadults under 17 years by site 

Site Time Period Region n* 

Cribra 

orbitali

a (%) 

Females
† (%) 

Nonadult

sǂ (%) 

Abusir (Mastaba of 

Ptahshepses) 

Late Period Lower Egypt 14

2 

26.8 44.7 46.3 

Abydos Early Dynastic N. Upper 

Egypt 

10

6 

49.1 - - 

Abydos Old Kingdom N. Upper 

Egypt 

28 78.6 - - 

Abydos Middle 

Kingdom 

N. Upper 

Egypt 

41 68.3 - - 

Abydos ('Tombs of 

the Courtiers') 

Early Dynastic N. Upper 

Egypt 

30 40.0 - - 

Adaïma Late Predynastic S. Upper 

Egypt 

27

2 

26.5 - 100.0 

Amarna (S. tombs) New Kingdom Middle Egypt 10

3 

42.7 - - 

Aswan Old Kingdom S. Upper 

Egypt 

18 61.1 - - 

Aswan Middle 

Kingdom 

S. Upper 

Egypt 

47 63.8 - - 

Dendara 1st Intermediate N. Upper 

Egypt 

76 53.9 - - 

Dishasha Old Kingdom Middle Egypt 21 42.9 - - 

El-Badari 

(Badarian graves) 

Late Predynastic N. Upper 

Egypt 

30 63.3 - - 

Elephantine 1st Intermediate S. Upper 

Egypt 

32 75.0 68.3 26.7 

el-Raqaqna Old Kingdom N. Upper 

Egypt 

17 52.9 - - 

el-Tarif Middle 

Kingdom 

S. Upper 

Egypt 

54 55.6 - - 

Gebelein Old Kingdom S. Upper 

Egypt 

23 73.9 43.3 8.6 

Gebelein 1st Intermediate S. Upper 

Egypt 

47 78.7 43.6 20.8 

Gebelein Late Period S. Upper 

Egypt 

17 52.9 - - 

Hierakonpolis 

(HK27C) 

1st Intermediate, 

Middle 

Kingdom 

S. Upper 

Egypt 

21 28.6 65.4 29.7 

Hierakonpolis 

(HK43) 

Late Predynastic S. Upper 

Egypt 

14

5 

13.1 59.5 20.9 

Hierakonpolis 

(Prehistoric & 

Late Predynastic S. Upper 

Egypt 

39 71.8 - - 
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Site Time Period Region n* 

Cribra 

orbitali

a (%) 

Females
† (%) 

Nonadult

sǂ (%) 

'Fort' cemeteries) 

Kerma 2nd 

Intermediate 

Upper Nubia 30

6 

13.7 61.5 4.2 

Kulubnarti (21-R-

2) 

Christian Upper Nubia 16

4 

39.0 - - 

Kulubnarti (21-S-

46) 

Christian Upper Nubia 17

0 

51.8 - - 

Memphis New Kingdom Lower Egypt 30

6 

24.8 44.3 3.9 

Missiminia Meroitic - 

Christian 

Upper Nubia 33

3 

27.9 48.3 - 

Naqada (Great, B, 

and T cemeteries) 

Late Predynastic N. Upper 

Egypt 

97 40.2 35.7 0.0 

Naqada B 

cemetery 

Late Predynastic N. Upper 

Egypt 

20 60.0 - - 

Naqada T 

cemetery 

Late Predynastic N. Upper 

Egypt 

23 43.5 - - 

Qaw el-Kebir Old Kingdom N. Upper 

Egypt 

27 70.4 - - 

Qaw el-Kebir 1st Intermediate N. Upper 

Egypt 

69 63.8 - - 

Qubbet el Hawa Old Kingdom S. Upper 

Egypt 

15

6 

48.7 39.4 19.2 

Qubbet el Hawa 1st Intermediate S. Upper 

Egypt 

32 34.4 27.8 18.2 

Qubbet el Hawa Middle 

Kingdom 

S. Upper 

Egypt 

18 50.0 46.7 28.6 

Qubbet el Hawa 2nd 

Intermediate 

S. Upper 

Egypt 

60 63.3 45.0 31.0 

Qubbet el Hawa Late Period S. Upper 

Egypt 

14

6 

36.3 45.4 17.0 

Qurneh New Kingdom S. Upper 

Egypt 

17

2 

16.3 52.0 7.5 

Shellal New Kingdom Lower Nubia 15

4 

20.1 47.7 3.8 

Sidmant 1st Intermediate Middle Egypt 55 67.3 - - 

Sidmant Middle 

Kingdom 

Middle Egypt 15 53.3 - - 

SJE (C-Group) Middle 

Kingdom 

Lower Nubia 20

5 

14.1 64.8 12.9 

SJE (Pharaonic) New Kingdom Lower Nubia 73 23.3 55.1 15.2 

Tarkhan Late Predynastic 

– Early Dynastic 

Middle Egypt 29 72.4 - - 
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Site Time Period Region n* 

Cribra 

orbitali

a (%) 

Females
† (%) 

Nonadult

sǂ (%) 

Tarkhan Early Dynastic Middle Egypt 26 34.6 - - 

Tell el-Dab'a 2nd 

Intermediate 

Lower Egypt 41 26.8 40.8 48.1 

Thebes-West New Kingdom - 

Late Period 

S. Upper 

Egypt 

16

8 

29.2 45.5 20.2 

Thebes-West 

(Valley of the 

Queens) 

Roman S. Upper 

Egypt 

21

2 

18.4 48.0 19.2 

Tombos New Kingdom Upper Nubia 83 10.8 59.5 15.0 

Wadi Halfa (24I3) X-Group Upper Nubia 45 26.7 50.0 29.6 

Wadi Halfa (6B13) Christian Upper Nubia 28 14.3 - 32.4 

Wadi Halfa (6B16) Meroitic Upper Nubia 62 11.3 58.3 17.1 

Wadi Halfa (6G8) Christian Upper Nubia 29 13.8 - 39.4 

Wadi Halfa (NAX) X-Group Upper Nubia 12

7 

26.7 56.6 14.1 

* n = number of individuals with observable orbits. 
† Proportion of adult females versus adult males reported at the site. 
ǂ Proportion of nonadults under 17 years of age versus adults reported at the site. 

 

 

3.7 Results 

Generally high cribra orbitalia rates between 10.8% and 78.7% existed within each of the 

sites, with an overall mean of 42.8%.  Figure 3.2 shows the greater overall rates of cribra 

orbitalia in the Nile Valley sample compared with other global cribra orbitalia meta-analyses.  

The comparisons with Steckel and Rose’s (2002) meta-analyses, however, must be viewed with 

caution due to the small sample sizes of sites.  Interestingly, the Nile Valley cribra orbitalia 

distribution only overlaps slightly the results from the English sample that purportedly contained 

P. vivax malaria infections, with a significant difference in means of the two distributions 

(t=7.898 (58), p=0.000). 
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Figure 3.2. Boxplot showing cribra orbitalia frequency distributions for each location, with the 

horizontal line representing the median, box representing 50% of the data, and vertical lines 

extending to 95% confidence interval limits. Dots represent outliers. 

 

Scatterplots of the total cribra orbitalia frequency against latitude and date showed three 

geographical clusters: Nubian sites, Upper and Middle Egyptian sites, and Lower Egyptian sites 

(see   

Figure 3.3 and Figure 3.4).  Thus, the data was analyzed separately within each of these 

groups and tested for correlations between cribra orbitalia and latitude, date of occupation, date 

of report publication, proportion of adults at the site classified as female, and proportion of 

individuals at the site classified as nonadults.  There was no significant correlation for any of 

these variables (see graphs in Figure 3.5, Figure 3.6, and Figure 3.7; and Table 3.3 for statistical 

results).   
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Figure 3.3. Scatterplot showing no trend in cribra orbitalia rate over location in the Nile Valley.  

Dotted lines delineate the three geographical clusters (Nubia, left; Upper/Middle Egypt, center; 

Lower Egypt, right). 
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Figure 3.4. Scatterplots showing no trend in cribra orbitalia rate over time in the Nile Valley. 

Total sample (top) and geographic clusters (bottom). 
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Figure 3.5. Scatterplots showing no trend in cribra orbitalia rate over date of report publication. 

Total sample (top) and geographic clusters (bottom). 
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Figure 3.6. Scatterplot showing no trend in cribra orbitalia rate over proportion of females at the 

site.  Total sample (top) and geographic clusters (bottom). 
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Figure 3.7. Scatterplot showing no trend in cribra orbitalia rate over proportion of nonadults at 

the site.  Total sample (top) and geographic clusters (bottom). 
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Table 3.3. P-values showing insignificant correlations between cribra orbitalia and other 

variables within three regions 

 Nubia 

Upper/Middle 

Egypt Lower Egypt 

Latitude 0.886 0.327 0.164 

Date of occupation 0.129 0.261 0.061 

Date of publication 0.822 0.131 0.229 

Females 0.061 0.075 - 

Nonadults 0.543 0.582 0.221 

 

 

3.8 Discussion 

Although most theoretical models of falciparum malaria’s spread out of Africa take place 

before or during Dynastic Egypt, the physical evidence goes against this model of disease spread.  

Genetic and immunological studies have provided direct evidence of malaria’s presence in 

numerous Egyptian mummy studies dating as far back as 3200 BCE (Miller et al. 1994; Bianucci 

et al. 2008; Nerlich et al. 2008; Hawass et al. 2010).  This genetic evidence suggests high 

prevalence of malaria in the ancient Nile Valley, but does not provide information on prevalence 

rates. 

Since cribra orbitalia has been linked to malaria infection in recent literature, an increasing 

frequency trend in these lesions in the Nile Valley was expected when compared by time and 

space in accordance with Bruce-Chwatt’s (1965) theoretical model.  Though cribra orbitalia is 

likely caused by multiple factors, malaria’s synergistic role with other diseases and major impact 

on modern anemia rates in endemic areas indicate that the presence of this disease in the Nile 

Valley would have caused a general increase in overall cribra orbitalia rates (Nájera and Hempel 

1996; Gilles 1997; Lusingu et al. 2004; Shanks et al. 2008).  However, Nile Valley cribra 

orbitalia rates showed no trend throughout time and space, and were generally high when 
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compared with New World samples.  There was no evidence to suggest malaria, or any other 

source of increased skeletal anemia, arrived suddenly in the Nile Valley during Late Predynastic 

through Christian periods.  Moreover, there was no association of cribra orbitalia with location, 

estimated date, proportion of females versus males at the site, proportion of nonadults versus 

adults at the site, or date of report publication.  The lack of any significant trend in cribra 

orbitalia over space or time highlights the importance of considering holistic trends rather than 

comparing only the skeletal assemblages of a few sites.  The lack of association with publication 

dates indicated importantly that researchers recognized the lesion during early excavations to the 

same extent as in present studies.  

This study has three implications for interpreting the etiology of cribra orbitalia and health 

in the Nile Valley.  First, the failure to correlate cribra orbitalia frequency with age proportion at 

the site suggests that the main cause of the high cribra orbitalia rates is not age-specific.  Cribra 

orbitalia is generally considered a lesion formed in childhood, due to the principal location of 

erythropoiesis in the cranium, thinner cranial bones, weaning stresses, and perhaps inadequate 

vitamin intake necessary for their growing bodies (Mittler and Van Gerven 1994; Walker et al. 

2009).  The results of this study go against this assumption, as the amount of nonadults at the site 

did not affect cribra orbitalia rates.  This lack of age-controlled prevalence suggests childhood 

factors such as diet, exposure to parasitic worms, or nutritional stress caused by weaning did not 

have a large effect on the formation of this lesion in the Nile Valley.  Instead, the main 

contributing factor seems to be an infectious cause that affects all age groups indiscriminately. 

Second, assuming that cribra orbitalia is indeed indicative of malaria infection (as 

suggested by Rabino Massa and coworkers (2000) and Gowland and Western (2012)), the 

ubiquity of high cribra orbitalia rates shown in this study suggest this disease had a general high 
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prevalence in the Nile Valley long before Dynastic Egypt.  This implication is supported by the 

aDNA evidence, and supports earlier theoretical timelines for malaria’s spread out of Africa.  

From the differential diagnosis of the potential causes of anemia in the Nile Valley, it seems 

reasonable to assume that malaria would have had a great impact on the frequencies of cribra 

orbitalia in the region.  Thus, if the high cribra orbitalia rates in the Nile Valley are tantamount to 

high malaria rates, malaria must have spread up the Nile Valley and out of Africa before the 

Badarian period (4400 – 4000 BCE), which is the earliest date used in this study.  Alternatively, 

this higher anemia burden in the Nile Valley sites could simply reflect the multitude of factors 

combining to cause and aggregate anemia in this region. 

Third, Gowland and Western (2012) showed an association of cribra orbitalia with P. vivax 

malaria infection in their meta-analysis of English sites, while the sites used in this study would 

have included individuals infected with the P. falciparum malaria species.  The mean rates of the 

cribra orbitalia frequencies found in the English study and this Nile Valley study differed 

significantly, perhaps reflecting the higher levels of severe malarial anemia generally associated 

with P. falciparum infections (Billig et al. 2012; Botez and Doughty 2014).  This finding is 

important because it suggests that although P. vivax infections tend to involve a chronic, but less 

severe anemia than P. falciparum infections, the latter species is associated with higher rates of 

skeletal responses to infection. 

One of the main limitations of this study involved the clustering of many dates and 

locations of sites, leading to a greater variability of cribra orbitalia frequencies in these clusters 

simply because of the greater number of sites.  This limitation forced the statistical analysis to 

follow the clustering by separation into three groups by regional position.  This study was also 

limited by the many sites that had to be excluded because they reported the presence of cribra 
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orbitalia and porotic hyperostosis together, combined under the name porotic hyperostosis.  

Nevertheless, the great variation in cribra orbitalia rates of sites included in this study is such that 

including more sites will not change the absence of a significant association between cribra 

orbitalia rates and date or latitude. 

 

3.9 Conclusion 

This study tested a method of identifying malaria in the Near East, and shed new light on the 

patterns of health in the ancient Nile Valley by providing a holistic view of anemia present 

throughout time and space.  In compiling cribra orbitalia rates from sites along the Nile Valley 

from various time periods, no significant association was shown between cribra orbitalia rates 

and date or latitude.  Furthermore, cribra orbitalia rates were not affected by the proportion of 

females or nonadults in the sample, or by the date of site report publication.  These results 

support the notion of a major infectious causative factor for cribra orbitalia in the ancient Nile 

Valley, and add credence to previous studies associating cribra orbitalia with malaria.  With 

Gowland and Western’s (2012) English malarial sample, this study provided the first 

interspecific (P. vivax versus P. falciparum) malaria comparison through large-scale cribra 

orbitalia frequency comparisons across many sites. 

The interpretations of this study rely on the assumption that the hemolytic anemia caused by 

malaria is responsible for high cribra orbitalia rates, but do not account for additional skeletal 

lesions that may also be caused by malarial infection.  To identify these potential additional 

skeletal lesions of malaria, future studies are planned involving a clinical comparison in a 

modern skeletal collection from an endemic malarial area, which will provide better diagnostic 

criteria for malaria.  
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Chapter 4 – The skeletal manifestation of malaria: a clinical case-control study 

 

4.1 Introduction 

 Attention to global climate change and its environmental effects have increased over the 

last decade, highlighting the importance of understanding tropical vector-borne diseases and their 

impact on past populations.  One of the most ancient of these diseases is malaria, which 

continues to be a major global health problem today (Nadjm and Behrens 2012).  In investigating 

the impact of malaria on ancient peoples, anthropologists must be able to determine the 

prevalence of the disease in archaeological populations through its skeletal manifestation.  

Currently, anthropologists can only suggest malaria prevalence from the presence of porotic 

hyperostosis and cribra orbitalia on ancient remains under the assumption that these lesions are 

indicators of hemolytic anemia (Setzer 2014).  However, this assumption has never been 

confirmed and the reliability of these markers never tested for sensitivity (i.e. how well the 

presence of the lesions correctly identifies malarial individuals) and specificity (i.e. how well the 

absence of the lesions correctly identifies non-malarial individuals). 

 This paper develops more reliable diagnostic criteria for identifying malaria on human 

skeletal remains through the combination of epidemiological and anthropological methods in a 

case-control model using clinical skeletal collections of known malarial status.  The results of 

this study will be of use to other anthropologists in discerning the prevalence, spread, and impact 

of malaria, providing more rigorous methods for reconstructing malaria disease patterns and 

effects on human societies throughout our existence.  
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4.2 Background 

Malaria is often dismissed as a differential diagnosis by paleopathologists, many of 

whom hold that the disease does not manifest itself upon the skeleton (Nunn and Tapp 2000; 

Roberts 2000).  Recent research on skeletal indicators of anemia, however, has shed new light on 

malaria’s effect on bones.  With advances in ancient deoxyribonucleic acid (aDNA) extraction 

and immunological assay from skeletal and mummified tissues, many researchers have been 

successful in isolating the antigenetic signatures and aDNA of one species of malaria parasite: 

Plasmodium falciparum (Miller et al. 1994; Bianucci et al. 2008; Nerlich et al. 2008; Hawass et 

al. 2010).  This method, although able to determine the presence of malaria in a population, is 

costly and destructive, and therefore is not usually performed on all individuals present in a 

skeletal assemblage.  Thus, aDNA can detect presence, but not prevalence of the disease in a past 

population.   

To overcome this problem, anthropologists and biochemists have advanced methods for 

potential recognition of malaria on human skeletal remains. For example, through DNA and 

skeletal lesion comparisons, Rabino Massa and coworkers (2000) examined the remains of 

ancient mummified Egyptians of known positive malarial antigen status for macroscopic 

indicators of anemia, porotic hyperostosis and cribra orbitalia, and found these skeletal lesions 

present in 92% of malarial individuals.  Their study provided a link between direct evidence for 

malaria and skeletal lesions previously associated with iron-deficiency anemia.  This link was 

later corroborated through an aDNA study by Nerlich and coworkers (2008). 

Further, Walker and coworkers (2009) reasoned that iron-deficiency anemia, long held to 

be the main cause of porotic hyperostosis and cribra orbitalia in cranial bones, could not in fact 

produce the bone marrow hypertrophy responsible for producing these lesions.  Instead, they 
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pointed to megaloblastic and hemolytic anemia as the main factors triggering the formation of 

these skeletal lesions.  The former type of anemia arises in individuals with a nutritional 

deficiency in B12, and the latter arises in individuals with genetic disorders conferring protection 

from malaria (thalassemia and sickle-cell anemia), as well as in individuals with a malaria 

infection.  Walker’s article is still being debated in the literature (Oxenham and Cavill 2010; 

Rothschild 2012; McIlvaine 2013), but seems to be gaining general acceptance within the field 

of paleopathology. 

Building on the previous two studies, Gowland and Western (2012) showed through a 

spatial epidemiological approach that the presence of cribra orbitalia lesions in skeletal remains 

across Great Britain matched with higher Anopheles mosquito vector presence, lower altitude 

and marshy environments, and higher incidences of historically recorded undulating fevers 

consistent with malarial infection.  Their study found a correlation between non-tropical malarial 

infection and cribra orbitalia, which gives additional support to the hypothesis that malaria 

manifests itself in the skeleton. 

This paper will build on the previous studies by providing an a priori means by which to 

diagnose malarial infection in ancient remains through macroscopic skeletal examination.  As 

mentioned above, genetic studies can provide researchers with direct evidence showing the 

infection of a skeletal individual with falciparum malaria, but is limited by the costly and 

destructive nature of the assay, as well as the factors of genetic preservation and disease latency.  

Therefore, genetic and immunological studies cannot indicate the prevalence of a disease in the 

entire population, limiting their utility for paleoepidemiologic approaches to the broad 

reconstruction of disease in the past.   
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Multiple lines of evidence must be used in describing malarial prevalence in the past, 

including physical evidence from skeletal remains.  Although several studies have linked porotic 

hyperostosis and cribra orbitalia to malaria and genetic disorders conferring protection from 

malaria, much is still unknown about the etiology of these skeletal lesions.  At the very least, 

there appear to be multiple factors leading to their manifestation, such as nutrition and parasitic 

infection (Holland and O’Brien 1997; Wapler et al. 2004; Walker et al. 2009).  

 

4.2.1 Malaria disease dynamics and pathophysiology 

 Understanding the disease dynamics and pathophysiology of malaria through modern and 

historical epidemiological studies is paramount to understanding the manifestation of the disease 

in the past.  The identification of the protozoa responsible for malaria only occurred within the 

last 150 years, and its lifecycle was only recognized within the last 50 years (Sherman 1998). 

The modes of transmission begin when a gravid Anopheles mosquito takes a blood meal from a 

human infected with malaria. Once in the mosquito’s stomach, the stomach acid activates 

malarial male and female gametocytes, which combine to create an oocyst which forms on the 

outside of the mosquito stomach and ruptures, releasing thousands of sporozoites which migrate 

to the mosquito’s salivary glands. As the mosquito takes its next blood meal, the sporozoites are 

injected with the saliva into the human’s bloodstream, where they are taken to the liver and 

therein invade hepatocytes. 

 Within the hepatocytes, the sporozoites undergo asexual reproduction for a few days, 

eventually bursting out millions of merozoites into the bloodstream where they invade red blood 

cells. This is where the falciparum species differs from the others, causing the red blood cells it 

invades to adhere to the blood vessel walls and to other red blood cells (called rosetting). 

Researchers believe this rosetting has a major causative effect on the progression of the disease 
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to cerebral malaria.  Once inside the red blood cell, merozoites undergo further asexual 

reproduction, consume available hemoglobin as food, and simultaneously rupture out of the red 

blood cells at the same time all over the body, releasing toxins and millions more merozoites, as 

well as some gametocytes into the bloodstream, causing the high fevers in the host.  This cycle in 

the blood continues until either the host dies or recovers; meanwhile, the next Anopheline 

mosquito picks up the gametocyctes in its blood meal to complete the life cycle. 

 Key features of this disease cycle are important in understanding the pathophysiology of 

the illness caused by malarial infection, and its relation to the skeleton.  One of the primary 

health impacts caused by malaria is hemolytic anemia, often referred to as severe malarial 

anemia or SMA, caused by the massive, simultaneous destruction of parasitized and 

unparasitized red blood cells (Sherman 1998).  Such hemolytic anemia in malaria has been 

implicated in skeletal lesions of expanded marrow space (Walker et al. 2009).  Moreover, recent 

research has suggested that the hemolysis during the schizogony phase of malaria infection may 

contribute to porous skeletal lesion formation due to the release of acid phosphate, free heme, 

and the malarial pigment hemozoin into the bloodstream. This leads to an imbalance in bone 

remodeling by stimulating osteoclasts while simultaneously impairing osteoblasts (D’Souza et al. 

2011; Moreau et al. 2012).  Furthermore, severe malarial anemia may induce extramedullary 

erythropoiesis, which is known to cause cortical thinning and coarse trabeculation (Al-Aabassi 

and Murad 2005). 

 Several risk factors and at-risk members of society have been identified (see Figure 4.1).  

In general, the main defense against malarial infection is an acquired immunity in individuals 

whose bodies have experienced such infections in the past.  The lack of acquired immunity puts 

an individual at an increased risk for infection.  This is especially relevant for travelers coming 
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from a non-endemic area into an endemic area, since they lack the immunity acquired during 

childhood by individuals of the endemic area. 

 

 

Figure 4.1. Web of risk factors and at-risk groups for malaria infection 

 

 Malaria is known to be especially dangerous for pregnant women and children up to age 

five (Gilles et al. 1969).  For women, any acquired immunity to the parasite disappears during 

pregnancy, leading to life-threatening anemia and increased chances of miscarriage or low fetal 

birth weight.  In order to study this phenomenon in sub-Saharan Africa, Gilles and coworkers 

(1969) set up a cohort-based longitudinal epidemiological study of pregnant women in which 

they gave half of the women anti-malarial treatments, and periodically tested all of the patients 

for anemia and parasitemia.  To their surprise, they could not complete the study because all of 

the women who had not been taking anti-malarial medicine contracted the disease, with some 

even having to be hospitalized for severe malarial anemia.   
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 Children make up 80% of current global malaria cases, with severe malaria anemia being 

more common in children up to age five, and cerebral malaria more common in children older 

than age four (Billig et al. 2012).  It has been suggested that not only does lack of acquired 

immunity factor into the increased burden on children, but that there is also a factor of allometry, 

with small body sizes and allometric developmental changes in red blood cell production, liver, 

spleen, and blood flow throughout the body playing a significant part in malaria infection in 

children (Billig et al. 2012).  Lusingu and coworkers (Lusingu et al. 2004) studied malaria 

parasitemia and anemia rates in children of Tanzanian villages with different endemic malaria 

statuses.  They found that in the highly endemic villages, malaria was the most important cause 

of parasitic anemia in children. 

 Adult men are also at high risk during malaria epidemics, especially due to malaria’s 

tendency to combine with other diseases to create a more deadly health outcome.  In their 

analysis of historical medical records from the penal colony on the Andaman Islands in the South 

Pacific, Shanks and coworkers (Shanks et al. 2008) found that malaria was the most important 

factor in all-case mortality for men, including tuberculosis and dysentery cases especially.  In 

other words, malaria has a strong indirect effect on mortality due to its synergy and co-infection 

with other diseases.  Similarly, historical accounts from the colonial Carolinas note that the two 

most deadly diseases of the southern colonies were malaria and dysentery, for which cinchona 

bark or going “out to sea” were the usual treatments (Duffy 1952).  This phenomenon has been 

noted by many independent researchers, although the cause of this increased mortality has not 

been identified.  The current consensus is that perhaps malarial anemia increases susceptibility 

for other infectious diseases and lowers immune response generally (Shanks et al. 2008). 
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 From these historical and modern epidemiological studies, it can be hypothesized that 

ancient populations affected by malaria would show high rates of maternal, fetal, and infant 

mortality that was directly caused by malaria anemia and cerebral malaria.  This preferential 

mortality dynamic has been argued to have been the case at an archaeological site in Italy (Soren 

2003).  The men would have also suffered with this disease, likely causing higher rates of 

respiratory and intestinal disease which combined to cause deadly health consequences.  The 

greatest chance of survival would have come from the presence of abnormal hemoglobins 

conferring malarial resistance in the blood of some members of the population (Sherman 1998).  

However, some genetic protectors against vivax malaria result in more severe parasitemia in 

falciparum malaria. Recent studies of patients negative for the Duffy antigen (used by the P. 

vivax parasite to invade red blood cells), have shown that platelet-mediated destruction of 

falciparum malaria is ineffective without the Duffy antigen (McMorran et al. 2012). Therefore, 

members of a population that had increased survival for vivax malaria infection may have 

experienced a higher mortality rate in a falciparum malaria epidemic. 

This paper combines epidemiological and anthropological methods to develop more 

reliable diagnostic criteria for identifying the disease on human skeletal remains.  Two skeletal 

samples are used in a case-control study format: 98 individuals of known malarial exposure from 

Uganda (Galloway Osteological Collection sample) and 352 individuals of known non-exposure 

to the disease from Louisiana, USA (LSU FACES lab sample). 
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4.2.2 Skeletal samples 

4.2.2.1 Galloway Osteological Collection 

 The Galloway Osteological Collection, housed at the Makerere University Medical 

School in Kampala, Uganda, is a large medical collection of unclaimed and donated Mulago 

Hospital patients who died between 1947 and 1980.  This collection consists of 592 individuals 

native to Uganda and neighboring East African countries, many of whom were refugees due to 

the political turmoil in their home countries (Musoke 1961).  Since East Africa is known to be 

highly endemic for tropical malaria, all of the individuals present in the collection likely 

experienced multiple infections of malaria during their lifetimes.  Additionally, records 

associated with the collection provide demographic information (i.e. age, sex, tribe) and cause of 

death for each individual. 

 Epidemiological studies published in the years during which the collection was being 

formed give the prevalence and types of malaria and malaria-related disorders seen at Mulago 

Hospital during that time.  One such study that gathered data on 570 pregnant women giving 

birth at the hospital in 1964-65 reported that 16.1% of placentae tested positive for malaria 

(Jelliffe 1968).  Of those testing positive, 54.3% were infected with P. falciparum malaria, 

20.7% P. malariae, and 4.3% mixed P. falciparum and P. malariae.  The remaining 20.7% were 

non-diagnostic for parasites.  Another study gathered data on children (aged zero to six years) 

admitted to the pediatric ward of Mulago Hospital in 1950-51 (Musoke 1961).  Routine blood 

slides for malarial parasite identification was performed in 85% of the 1,380 cases registered, 

and of these, most were identified as P. falciparum.  There were 181 children admitted for 

clinical malaria, and an additional 55 cases were identified by blood slides in children admitted 

for other reasons. Therefore, approximately 20% of children seen at the pediatric ward were 
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infected with malaria.  Sickle cell anemia was identified in 45 of the 66 children positive for 

sickling (5.6% of the total analyzed).  Other studies confirmed the dominance of P. falciparum 

species of malarial parasites in Uganda, with a minor presence of P. malariae, and near absence 

of the other two species (Onori 1967; World Health Organization 2012). 

 The Galloway collection began as a teaching collection for the anatomy department of 

the university medical school.  Mulago Hospital patients whose bodies were unclaimed were 

required by law to be buried by the hospital; however, the medical school requested a few bodies 

to be used for soft-tissue dissection and the remaining skeletal material to be cleaned and used to 

osteological instruction (William Buwembo, pers. comm. 2013).  In addition to its use for 

teaching purposes, the Galloway collection has been used as a research collection, mostly for 

osteometric studies. 

 Unfortunately, handling and use by students over the past seven decades, as well as the 

change of hands in the administration leading to less-than-ideal storage of the skeletal material, 

has impacted the preservation of this collection.  Many individuals are missing various skeletal 

elements, most notably cranial elements.  A number of individuals listed in the register are 

missing entirely.  Still some others have elements from other individuals commingled in the 

wrong crate, or consist of elements too greasy or fragmented to be easily observed.  All of these 

preservation and storage pitfalls limit the number of individuals available to be used in unbiased 

research projects. 

 

4.2.2.2 LSU FACES Lab Collection 

 The Forensic Anthropology and Computer Enhancement Services (FACES) laboratory at 

Louisiana State University (LSU) houses upwards of 300 unidentified and donated skeletons 
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from forensic cases in the state beginning in 1980 and continuing presently.  The United States 

has eradicated malaria and only sees a few cases of malaria per year imported by travelers.  

Therefore, the individuals present in the collection at the FACES lab are not likely to have ever 

experienced an infection of malaria in life, and can be used as a control sample for comparison 

with the Ugandan sample. 

 By definition, a forensic collection will be less complete in general than a medical 

collection.  The skeletons may have many absent or unobservable elements due to trauma or 

taphonomic processes from the environment.  The preservation of the remains is variable 

depending on the context in which they were found (i.e. charring from a fire or extreme 

weathering from exposure to external environmental conditions).  Additionally, demographic 

information and life history of the individuals are not known and must be inferred by the forensic 

anthropologists based on whatever evidence is obtainable.  However, once recovered and placed 

in the lab, the skeletons are maintained in optimal storage conditions within a climate-controlled 

lab, in cardboard boxes with careful packing procedures and small elements preserved in cloth 

bags.  To combat mold growth in the humid Louisiana climate, the skeletons are periodically 

cleaned and re-boxed. 

 

4.3 Materials and methods 

The Galloway collection skeletons were analyzed for visible pathologies, with analysis 

focused especially on porous lesions of the cranial and postcranial skeleton due to their 

hypothesized association with anemia (Rabino Massa et al. 2000; Djuric et al. 2008; Nerlich et 

al. 2008; Gowland and Western 2012), but also on other markers of specific or nonspecific 

infection: periosteal reactions, linear enamel hypoplasias, periodontal disease.  The collection of 



64 

 

data proceeded in three phases: (1) individuals whose cause of death was malaria or anemia, (2) 

matched cases of individuals of the same age, sex, and tribe as malarial/anemic individuals, and 

(3) all remaining individuals with skulls present.  This third phase was unplanned, but deemed 

necessary due to the paucity of cranial elements in the first two phases.  Using this phased 

approach, the data is comparable to epidemiological matched case-control studies.  The total 

number of skeletons analyzed was 98, with each phase making up approximately one-third of the 

total sample. 

 The FACES lab skeletons were analyzed for all visible pathologies, including x-ray 

analysis for Harris lines on the tibiae.  The good preservation of the majority of the collection 

allowed for complete description of the pathologies present on the skeletons.  For comparison 

with the Ugandan material for this research, more analyses had to be conducted to obtain 

frequencies of non-mainstream skeletal markers (i.e. spinal porosity, humeral cribra, and femoral 

cribra).  Through correspondences with LSU graduate student Nicole Klein, I coordinated data 

entry and further investigative probes into this collection to obtain a completely comparable 

sample.  All digitization of the LSU data was gratefully provided by the FACES lab staff for this 

research. 

In order to create a method for identifying malaria prevalence on ancient skeletal 

material, multiple stages of data analysis were undertaken.  First, contingency tables and tests of 

independence were used to verify significant osteological markers in malarial and anemic 

individuals versus non-malarial and non-anemic individuals within the Galloway sample.  

Markers with a higher prevalence in the anemic group were then tested against each other to 

determine associations between each marker.  Next, the Galloway sample was compared with the 

control sample from the LSU FACES lab for significant differences in the frequencies of 
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markers found to be prevalent in the above tests.  Based on the assumption that the Galloway 

sample contains individuals who have at some point been infected with malaria and that the LSU 

sample contains individuals who have never been infected, each skeletal lesion was evaluated for 

its diagnostic power by substituting the skeletal lesions for symptoms in epidemiological 

properties of diagnostic power, following Boldsen’s (2001) example.  These properties are 

defined as: 

1. Sensitivity =
True positive

True positive+False negative
 

2. Specificity =
True negative

True negative+False positive
 

3. Positive Predictive Value =
True positive

True positive+False positive
 

4. Negative Predictive Value =
True negative

True negative+False negative
 

5. Positive Likelihood Ratio =
Sensitivity

1−Specificity
 

6. Negative Likelihood Ratio =
1−Sensitivity

Specificity
 

7. Diagnostic Odds Ratio =
Positive Likelihood Ratio

Negative Likelihood Ratio
 

To form diagnostic criteria for identifying malaria prevalence in past populations, 

methods followed those described by Pinhasi and Turner (2008), which incorporate an 

epidemiological outcome algorithm with the type of data with which paleopathologists work.  

This method calculates prevalence rates based on differentially weighted criteria; applying an 

“if” condition comparing skeletal manifestations of malaria and their relationship to each other to 

diagnose the disease.  The algorithm formulated for malaria was then tested using a case-control 

study format to determine how well it identifies people with the disease and those without. 
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4.4 Results 

4.4.1 Anemic versus non-anemic within endemic sample 

 The data collected from the Galloway collection skeletons was divided into two samples: 

an anemic sample (those whose reported cause of death included malaria or anemia; n=27), and a 

non-anemic sample (those who died of other causes; n=71).  Malarial and anemic individuals 

were grouped together due to the fact that malaria is one of the most significant causes of anemia 

in Sub-Saharan East Africa (Kassebaum et al. 2014), and the other two major causes (i.e. 

hookworms and iron-deficiency) would be categorized separately as having “malnutrition” or 

“hookworm anemia” as the cause of death.  The anemic and non-anemic samples were not 

significantly different in demography (age group and sex).  Five porous skeletal lesions were 

identified that appear at high frequencies, and especially in the anemic sample. These appear on 

the cranium (cribra orbitalia and porotic hyperostosis), vertebral column (including vertebral and 

sacral elements, see Figure 4.2), and humeral and femoral necks (see Figure 4.3 and Figure 4.4).  

Included among these are all of the features of Djuric’s (2008) “cribrous syndrome” for anemia 

(cribra orbitalia, humeral cribra, and femoral cribra).  The frequencies of these porous lesions, 

along with frequencies of other non-specific inflammatory lesions – periostitis, alveolar 

resorption (periodontitis), and linear enamel hypoplasias (LEHs) – are shown in Figure 4.5.  

None of the frequency differences was found to be significant when tested for association with 

chi-square and Fisher’s exact tests. 
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Figure 4.2. "Spinal porosity" on the vertebral (left) and sacral (right) bodies of individual 

MC190.  Photos by Nicole E. Smith. 
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Figure 4.3. “Humeral cribra” on individual MC100 (left) and individual MC53 (right).  Photos 

by Nicole E. Smith. 

 

 
Figure 4.4. "Femoral cribra" on individual MC1 (bilateral).  Photo by Nicole E. Smith. 
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Figure 4.5. Comparison of skeletal lesions in anemic vs non-anemic within the Galloway sample 

 

Only humeral cribra and femoral cribra were associated with age at death, and both 

showed a greater prevalence of the lesion in younger individuals (Student’s t-test, p=0.000 and 

p=0.003, respectively).  None of the lesions were significantly linked with sex. 

To determine associations between the skeletal lesions, each lesion was tested for 

association with each other lesion (Table 4.1).  Cribra orbitalia presence was significantly 

associated with the presence of cranial vault porosity (porotic hyperostosis), and the odds of the 

linked presence of both lesions was also significant.  Although humeral and femoral cribra were 

highly associated (Fisher’s exact, p<0.000), neither feature was found to be associated with 

cribra orbitalia, perhaps signifying that multiple factors contribute to the development of cribra 

orbitalia in this population.  The presence of periostitis was associated with spinal porosity and 
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femoral cribra, perhaps suggesting that all three of these lesions are part of the same 

inflammatory response. 

 

Table 4.1. Relationship of prevalent lesions to each other within the Galloway sample 

 CO1 PH HC FC SP P AR LEH 

CO         

PH FET, 

p=0.012* 

OR 9.7 (CI 

1.1-86.4)* 

       

HC FET, 

p=0.199 

OR 2.9 (CI 

0.7-12.0) 

FET, p=1 

OR 1.8 (CI 

0.2-17.2) 

      

FC FET, 

p=0.051 

OR 3.5 (CI 

1.1-11.7) 

FET, 

p=0.405 

OR 3.8 (CI 

0.4-34.0) 

FET, 

p=0.000** 

OR 8.3 (CI 

2.7-25.7) 

     

SP FET, 

p=0.686 

OR 0.5 (CI 

0.1-2.8) 

FET, p=1 

OR 0.9 (CI 

0.1-8.9) 

FET, 

p=0.673 

OR 2.4 (CI 

0.3-20.9) 

FET, 

p=0.143 

OR 5.0 (CI 

0.6-42.5) 

    

P χ², p=0.520 

OR 1.4 (CI 

0.5-4.0) 

FET, 

p=0.648 

OR 0.5 (CI 

0.1-3.3) 

χ², p=0.545 

OR 1.4 

(0.5-3.7) 

χ², 

p=0.050* 

OR 0.4 (CI 

0.2-1.0) 

FET, 

p=0.042* 

OR 5.3 (CI 

1.1-26.7) 

   

AR FET, 

p=0.755 

OR 0.7 (CI 

0.2-2.5) 

FET, 

p=0.624 

OR 1.7 (CI 

0.3-11.3) 

FET, 

p=0.710 

OR 0.7 (CI 

0.2-2.8) 

χ², p=0.176 

OR 0.4 (CI 

0.1-1.5) 

FET, 

p=0.657 

OR 0.4 (CI 

0.0-3.5) 

χ², p=0.962 

OR 1.0 (CI 

0.3-3.2) 

  

LEH FET, 

p=0.636 

OR 2.8 (CI 

0.3-27.2) 

FET, p=1 

OR 0.9 (CI 

0.1-8.4) 

FET, p=1 

OR 0.7 (CI 

0.1-7.2) 

FET, p=1 

OR 1.3 (CI 

0.2-8.3) 

FET, p=1 

OR 1.2 (CI 

0.1-11.7) 

FET, 

p=0.358) 

OR 0.3 (CI 

0.0-2.5) 

FET, 

p=0.137 

OR 0.2 (CI 

0.0-1.5) 

 

1Abbreviations in headers: CO=cribra orbitalia; PH=porotic hyperostosis; HC=humeral cribra; 

FC=femoral cribra; SP=spinal porosity; P=periostitis; AR=alveolar resorption; LEH=linear 

enamel hypoplasias 

* Significant at the 95% confidence interval 

**Significant at the 99% confidence interval 

 

4.4.2 Endemic versus non-endemic sample 

The second stage of testing involved the comparison of the skeletons from the Galloway 

collection (endemic sample of individuals with malaria exposure; n=98) to the LSU FACES lab 
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skeletons (non-endemic sample of individuals unexposed to the disease).  The non-endemic 

sample was limited to only those individuals with African-American ancestry (n=106) in order to 

minimize the potential for a confounding effect of the sickle cell trait on the results.  The 

demography between the two samples was significantly different (age at death: χ², df=5, 

p=0.017; sex: χ², df=1, p=0.014), so the results of their comparison could be impacted by this 

difference.  All of the non-dental lesions were found at much higher frequencies in the endemic 

sample than the non-endemic sample (Figure 4.6).   

   

 
Figure 4.6. Comparison of skeletal lesions in endemic vs non-endemic populations 

 

Highly significant associations were found for endemicity with cribra orbitalia, porotic 

hyperostosis, spinal porosity, femoral cribra, and periostitis (Fisher’s exact, p<0.000), and 

humeral cribra (Fisher’s exact, p=0.006).  Alveolar resorption was more common in the non-
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endemic sample, but not significantly so.  Linear enamel hypoplasias associated significantly 

with the non-endemic sample (χ², df=1, p=0.017).  Frequencies and Odds Ratios for all lesions 

by sample are recorded in Table 4.2. 

 

Table 4.2. Frequencies of lesions in endemic and non-endemic samples 

 Endemic Non-endemic Odds Ratio for Endemicity 

Cribra orbitalia 33(56.9%)** 1(1.8%) 73.9 (95% CI = 9.6 – 571.1)* 

Porotic hyperostosis 53(91.4%)** 20(30.8%) 23.9 (95% CI = 8.3 – 68.7)* 

Spinal porosity 84(89.4%)** 9(18.4%) 37.3 (95% CI = 14.1 – 99.1)* 

Humeral cribra 21(23.6%)** 2(4.5%) 6.5 (95% CI = 1.5 – 29.1)* 

Femoral cribra 37(38.5%)** 0(0.0%) 29.5 (95% CI = 3.9 – 222.8)* 

Periostitis 51(52.0%)** 9(17.3%) 5.2 (95% CI = 2.3 – 11.8)* 

Alveolar resorption 37(71.2%) 43(86.0%) 0.4 (95% CI = 0.2 – 1.1) 

Enamel hypoplasia 5(9.6%) 15(27.8%)* 0.3 (95% CI = 0.1 – 0.8) 

* Significant at the 95% confidence interval 

**Significant at the 99% confidence interval 

 

 From the frequencies of the lesions, we can eliminate alveolar resorption and linear 

enamel hypoplasias as effective diagnostic markers of malaria.  Based on the assumption that the 

endemic sample contains individuals who have at some point been infected with malaria and that 

the non-endemic sample contains individuals who have never been infected, we can evaluate 

each skeletal lesion for its diagnostic power.  Substituting the skeletal lesions for symptoms in 

epidemiological calculations of sensitivity and specificity following Boldsen’s (2001) example, 

each marker is evaluated in Table 4.3.  The absence of cribra orbitalia is a good indicator of the 

absence of malaria (false negative rate < 2%), but the presence of the lesion cannot be used alone 
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to diagnose malaria (false positive rate > 43%).  Conversely, porotic hyperostosis presence is a 

good indicator of malaria (false positive rate < 9%), but it also yields false negatives in more 

than 30% of cases.  Spinal porosity tested fairly well in both sensitivity and specificity, yielding 

false positives in about 10% of cases and false negatives in about 20%.  Humeral and femoral 

cribra both tested similarly, with poor sensitivities (62 – 76% false positives) and excellent 

specificities (0 – 5% false negatives).  Finally, periostitis presence produced 48% false positives 

and 18% false negatives. 

 

Table 4.3. Epidemiological properties of diagnostic power for skeletal markers of malaria 

 Sensitivity Specificity Positive 

Predictive 

Value 

Negative 

Predictive 

Value 

Positive 

Likelihood 

Ratio 

Negative 

Likelihood 

Ratio 

Diagnostic 

Odds 

Ratio 

Cribra 

orbitalia 
0.569 0.983 0.971 0.691 32.431 0.439 1.404 

Porotic 

hyperostosis 
0.914 0.692 0.726 0.900 2.970 0.125 0.807 

Spinal 

porosity 
0.894 0.816 0.903 0.800 4.865 0.130 1.129 

Humeral 

cribra 
0.236 0.955 0.913 0.382 5.191 0.800 2.391 

Femoral 

cribra 
0.385 1.000 1.000 0.443 37.113* 0.615 2.223* 

Periostitis 0.520 0.827 0.850 0.478 3.001 0.580 1.779 

* Positive likelihood ratio and diagnostic odds ratio are not solvable for femoral cribra as there 

were no false negatives. The ratios for this marker were estimated by adding 0.5 to all the counts 

of this marker, though it should be stated that this introduces a bias in the results. 

 

 

4.4.3 Forming an Outcome Algorithm for Case Diagnosis 

 From Table 4.3, we see that the diagnostic markers perform fairly well, with the 

exception of porotic hyperostosis (diagnostic odds ratio below unity).  Therefore, porotic 

hyperostosis was henceforth excluded from the diagnostic criteria formulated due to its poor 
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diagnostic performance.  To successfully diagnose malaria on ancient skeletons, the remaining 

markers can be used to define a set of diagnostic criteria.  By differentially weighting the 

appearance of the markers and their relationship to each other (see Table 4.1), such a refined 

criterion should be possible.  Using Pinhasi and Turner’s (2008) example equation, we arrive at 

the following logical expression for an “if” condition, or outcome algorithm, for malaria: 

𝐶𝑖 = 1 if {(CO or HC or FC = 1) AND (SP or P = 1)}; else 𝐶𝑖 = 0 

where 𝐶𝑖 is case i  in a skeletal sample and the diagnosis is coded in binary classification: ‘1’ 

denotes positive diagnosis for malaria, whereas a ‘0’ value denotes a negative diagnosis. The 

skeletal markers are scored similarly (1 for presence of the lesion; 0 for absence of the lesion) 

and abbreviated as CO: cribra orbitalia; HC: humeral cribra; FC: femoral cribra; SP: spinal 

porosity; and P: periostitis. 

 This algorithm was tested using the total Galloway collection (n=98) and total LSU 

collection (n=352) samples. Of these samples, there were only 142 individuals observable for all 

of the lesions specified in the outcome algorithm: 75 Ugandans and 67 Americans.  The model 

produced two false positives (3%) and 23 false negatives (30%).  The diagnostic test 

characteristics are shown in Table 4.4. 

 The false negatives produced can be explained by the presence of individuals in the 

Galloway sample who were not infected with malaria at the time of death, and whose malarial 

markers have resorbed.  This reasoning was confirmed by retesting the diagnostic power of the 

algorithm with only those individuals in the Ugandan sample whose cause of death included 

anemia or malaria (n=20) selected as the positive gold standard (see right columns in Table 4.4).  

Though the sample size was lower, the number of false negatives was cut in half, leading to only 

15% of the anemic East Africans incorrectly diagnosed as not having malaria. 
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Table 4.4. Diagnostic test characteristics for skeletal malaria outcome algorithm with total 

Ugandan sample included (left) and with only anemic Ugandan sample included (right) 

 

Total Ugandan sample 
 

Anemic Ugandan sample 

Estimated 

Value 

Lower 

CI 

Upper 

CI 

 Estimated 

Value 

Lower 

CI 

Upper 

CI 

Sensitivity 0.693 0.575 0.792  0.850 0.611 0.960 

Specificity 0.970 0.887 0.995  0.970 0.887 0.995 

Positive predictive 

value 
0.963 0.862 0.994 

 
0.895 0.655 0.982 

Negative predictive 

value 
0.739 0.632 0.824 

 
0.956 0.868 0.989 

Positive likelihood 

ratio 
23.227 5.882 91.710 

 
28.475 7.182 112.894 

Negative likelihood 

ratio 
0.316 0.225 0.445 

 
0.155 0.054 0.439 

Prevalence 0.528 0.443 0.612  0.230 0.149 0.335 

 

 

4.5 Discussion 

 The results of this study have identified five skeletal lesions that were shown to be 

indicative of malarial infection: cribra orbitalia, spinal porosity, humeral cribra, femoral cribra, 

and periostitis.  These lesions were all found to occur at high rates in the Galloway collection 

individuals, especially in those whose cause of death included malaria or anemia.  Periostitis is 

described in general by paleopathologists as an inflammatory reaction of the periosteum, which 

is considered a non-specific stress indicator.  This skeletal lesion is seen in most specific 

infectious diseases (Pinhasi and Mays 2008).  In the case of malaria, periostitis likely arises due 

to the systemic infection and high fevers.  Cribra orbitalia, humeral cribra, and femoral cribra 

have all been implicated previously as a joint trifecta of anemia indicators called “cribrous 

syndrome” (Miquel-Feucht et al. 1999; Djuric et al. 2008).  From the associations in the 

Galloway collection, we see that all three of these features do indeed appear at higher 
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frequencies in anemic individuals, and that humeral and femoral cribra are strongly associated.  

However, cribra orbitalia shows no association with the other two lesions, suggesting that 

different etiological factors contribute to their development.  Similarly, cribra orbitalia tended to 

affect people of all ages, whereas humeral and femoral cribra trended significantly toward 

younger individuals. 

 In bioarchaeological contexts, if cribrotic lesions, spinal lesions, and periosteal reactions 

are seen at high frequencies in a skeletal sample, it is likely that the overall population contained 

some cases of malaria.  This is due to the fact that the specificities of all of these lesions are 

above 80%, with the cribrotic lesions all over 90%.  To estimate overall prevalence of malaria at 

a site, the outcome algorithm should be used to score each skeleton individually for the 

combination of these lesions.  Additional demographical profiles of the sample population can 

provide evidence of the endemicity of the disease.  High proportions of women and children with 

skeletal markers of malaria at the site could reflect the higher malarial risk in these 

demographical groups within endemic areas.  Conversely, if all age and sex groups are affected 

by malaria equally, this could reflect the dynamics of epidemic malaria where all members of the 

population were at risk for disease. 

 

4.5.1 Etiological implications 

 Femoral cribra is a new name for an old feature (e.g. the “reaction area” or the “cervical 

fossa of Allen”) that has long undergone discussion amongst physical anthropologists in the last 

century as to its etiology (Angel 1964; Finnegan 1978; Meyer 1924; Radi et al. 2013a).  Under 

these names, femoral cribra tends to be viewed together with other features on the femoral neck 

(i.e. Poirier’s facet), and described as an activity-related morphological variant.  A wide range of 

specific activities have been suggested as to the causation of this feature (e.g. sleeping position, 
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walking downhill, squatting, etc.), but no consensus has ever been reached (Radi et al. 2013).  

Inconsistent naming schemes have led to confusion and miscommunication regarding what the 

feature entails.  Even more confusing, those publishing about the anemia etiology of “femoral 

cribra” failed to acknowledge the existence of the other proposed activity-related etiology and 

vice versa. 

 Considering the etiology of femoral cribra as it appears in the Galloway sample, this 

lesion appears to be related to anemia and linked with humeral cribra, and it appears 

predominantly in younger individuals.  From the positioning of lesions on the long bones at the 

region of epiphyseal fusion, it seems logical to assume that these two features arise during 

development, while the long bones are still growing at the metaphyses.  In anemic individuals, 

humeral and femoral cribra could be explained as cortical defects that form as the epiphyses fuse 

at the growth plate due to the increased need for red blood cell production (erythropoiesis).  

Cribra orbitalia and porotic hyperostosis have been explained by similar processes, where the 

need for increased erythropoiesis forces expansion of the medullary cavity in the cranium. 

 These epiphyseal defects may also be related to the extramedullary erythropoiesis known 

to occur in hematological diseases (i.e. splenomegaly in malaria), where the increased need for 

erythropoiesis results in the formation of a red blood cell producing tissue mass located outside 

of the medullary cavity (Johns and Christopher 2012).  This phenomenon sometimes appears in 

CT-scans of living individuals with thalassemia as variable, tumor-like tissue masses located just 

adjacent to the cortical surface of a bone, and feeding into it (Al-Aabassi and Murad 2005).  This 

interpretation must be taken with caution, however, due to a lack of consensus and need for 

further understanding of extramedullary erythropoiesis and its etiology in the current clinical 
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medical literature.  Nevertheless, this phenomenon could very well play a part in the skeletal 

markers that prevail in individuals from endemic areas for malaria. 

 The spinal porosity described in the Galloway collection was compared with, and 

determined to be similar to, lytic cavitation of vertebral bodies characteristic of brucellosis 

infection (Ortner 2003).  When comparing the spinal porosities common in anemic individuals to 

the spinal lesions present in an individual with known brucellosis infection at the time of death, 

the anemic individual’s spine porosity appears similar in morphology (i.e. sharp-edged 

cavitations with no associated reactive bone) but with smaller pores in general (see Figure 4.7).  

As brucellosis and malaria are similar in many attributes, including the induction of high, 

undulating fevers in their patients and hemolytic anemia, it is not surprising that they also share a 

similar skeletal manifestation.  A differential diagnosis of this lesion is the erosive lesion 

characteristic of spinal tuberculosis (“Pott’s disease”), however, this lesion tends to be focal, 

affecting only a few vertebrae as large cavitations of the vertebral bodies leading to eventual 

vertebral collapse (Mann and Hunt 2005).  The spinal lesions present in the Galloway collection 

individual with brucellosis were on the anterior aspects of the vertebral bodies and quite large in 

diameter (up to 12mm on the vertebrae and 17.5mm on the sacrum).  In contrast, the lesions seen 

on anemic individuals tended to be on the lateral aspects of the vertebral bodies and much 

smaller in diameter (up to 5.5mm). 
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Figure 4.7. Comparison of porous spinal lesions between brucellosis patient (left) and anemia 

patient (right) from the Galloway collection.  Photos by Nicole E. Smith. 
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4.5.2 Limitations 

  Paleopathological diagnoses are limited inherently by the inability to know the symptoms 

of the individuals by which to assign a particular disease.  Here, skeletal lesions were used 

instead of symptoms and tested through associations in known clinical cases.  The significant 

lesions were then used as a gold standard for testing the diagnostic power of the outcome 

algorithm, although they are not a true gold standard for many reasons.  The Galloway collection 

includes many individuals with other known and unknown health afflictions, such as 

tuberculosis, malnutrition, and hookworm anemia.  These conditions were not likely to be as 

prevalent in the LSU collection, and therefore, could have influenced the resulting lesion 

frequencies.  Nevertheless, the majority of the lesions assessed in the Galloway collection had 

been associated with malaria or anemia previously (although indirectly), providing more 

confidence in the associations reported in this study.  Further studies with different skeletal 

samples in endemic malarial areas are needed to provide more evidence toward the true gold 

standard of malaria’s skeletal manifestations. 

 As mentioned earlier, there are many diseases that co-infect with malaria, including 

tuberculosis and dysentery.  Recent aDNA studies have illuminated this subject by identifying 

tuberculosis and malaria co-infection from human mummified tissue in Egypt (Lalremruata et al. 

2013).  The presentation of these co-infections on the skeleton is unknown at the present, but 

may provide interesting avenues for future paleopathological studies of malaria. 

 

4.6 Conclusion 

 This study identified five skeletal markers of malaria through an epidemiological case-

control study approach using clinical samples of known cause of death or malaria exposure.  The 

prevalent lesions were then tested for diagnostic power through measures of sensitivity and 
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specificity.  An outcome algorithm was created from the associations of these markers that will 

provide a diagnostic tool for identifying malaria on unknown cases in archaeological contexts.  

Etiological interpretations of the causes for these skeletal lesions pointed to hemolytic anemia 

and general systemic stress as the main contributing factors leading to their manifestation in 

malarial individuals. 

 The use of this model for identifying malaria on human skeletal remains must be taken 

with caution until it has been repeated successfully with additional skeletal samples of known 

medical history.  Nevertheless, the diagnostic power estimates of the skeletal lesions identified in 

this study provide paleopathologists with a means for suggesting the potential presence and 

prevalence of malaria in ancient populations.  Future research will seek further validation of this 

diagnostic model through aDNA comparisons. 

  



82 

 

Chapter 5 – The prevalence of malaria at Amarna, Egypt and its regional implications 

 

5.1 Introduction 

One of the most popular, mysterious moments in ancient Egyptian history is the Amarna 

Period (1349–1332 BCE), during which substantial shifts in religion and location of the capital 

city took place.  Some scholars have attributed this abrupt religious and geographical shift to 

epidemic disease occurring before, and perhaps continuing during, the reign of the pharaoh 

Akhenaten (Moran 1992; Nunn 1996; Assman 2003; Kozloff 2006).  Several members of 

Akhenaten’s royal family are known to have died early, and several had malarial infections at 

their time of death (Redford 1984; Tyldesley 2003; Hawass et al. 2010).  Though malaria is 

known to have been present in ancient Egypt, the prevalence and dynamics of this disease in the 

region remain largely unknown. 

 This paper explores the potential prevalence of malaria at Amarna as evidenced by the 

human skeletal remains of the people that lived in the capital city.  Skeletal manifestations of 

malarial infection are assessed by the presence of cribra orbitalia, humeral cribra, femoral cribra, 

spinal porosity, and periostitis.  These data are integrated into a diagnostic outcome algorithm 

and contextualized through demographic data and archaeological evidence of burial ritual.  This 

paleoepidemiological approach to malarial prevalence in the past broadens our understanding of 

factors leading to this distinctive period in history and malaria’s role in broader sociopolitical 

events in the Near East at the end of the Late Bronze Age. 
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5.2 Background 

 The ancient site of Amarna, Egypt represents a unique window into the life of ancient 

Egyptians as it is the only site in the Nile River Valley that remained unoccupied until the 

Amarna Period (1349–1332 BCE) and abandoned thereafter.  While other Egyptian locales 

tended to have multiple occupations at the same site, rebuilding upon the same structures 

repeatedly since predynastic times, Amarna is a single occupation site, decisively founded on 

unoccupied ground in a veritable wasteland for purification purposes with the newly founded 

cult of Aten (Kemp et al. 2013).  From a bioarchaeological prospective, this precisely dated 17-

year occupation period offers the opportunity to glean information about this exact time period in 

ancient Egypt, and study important aspects of individual and populational health trends that are 

not obfuscated by expansive time ranges or multiple generations in the same burial context. 

 Although the rock-cut tombs of the elite population at Amarna are immediately obvious 

in the cliffs nearby the city, no human remains were found inside, and no non-elite cemeteries 

were discovered before 2002 (Rose and Zabecki 2009).  The newly discovered non-elite 

cemetery, named the South Tombs cemetery was excavated from 2006 to 2013, and produced 

438 skeletal individuals.  These skeletal remains were then analyzed by a team of researchers and 

students associated with the University of Arkansas Bioarchaeology Field School at Amarna 

each summer until completion in 2014. 

 

5.2.1 Amarna and the Hittite Plague of 1320 – 1300 BCE 

 In ancient Turkey (Anatolia), at the end of the 14th Century BCE, the Hittite king wrote a 

series of prayers pleading with the gods for relief from a widespread, 20-year epidemic that had 

already killed the two preceding kings, and continued to ravage his country.  These ancient texts, 

known as the Plague Prayers of Mursili II, reveal that this deadly epidemic was brought by 
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Egyptian prisoners of war taken to the Hittite capital city (Singer 2002).  Amarna’s part in this 

ordeal involved a series of letters written by a prominent female widow in Egypt (generally 

accepted to be King Tutankhamun’s widow, Ankhesenamun) to the Mursili II’s father, King 

Suppiluliuma, in which she begged for a Hittite prince to marry (Schulman 1978).  The death of 

this prince on his way to marry the Egyptian queen instigated the battle in which the prisoners of 

war that caused the plague were taken.  With the lack of Hittite burials and the tendency of 

ancient Egyptians to omit negative historical events in their writings, the disease responsible for 

the epidemic has never been identified definitively (Emre 1991). 

 Tumultuous events in Egypt leading up to this point in history, as well as other evidence 

of epidemic disease mentioned in the ancient Amarna Letters texts, suggest Egypt may have 

been stricken by the same epidemic disease as the Hittite empire (Moran 1992; Assman 2003; 

Kozloff 2012; Dodson 2014).  The pharaoh Akhenaten suddenly changed the Egyptian religion 

and founded his new capital city of Amarna in a previously uninhabited area, which remained the 

capital for only 17 years (c. 1349–1332 BCE).  Some scholars have attributed this abrupt 

religious and geographical shift to epidemic disease, perhaps even polio or bubonic plague 

(Nunn 1996; Kozloff 2006).  Importantly, Akhenaten also defunded the Egyptian military, 

preferring diplomacy within the existing Egyptian borders than the widespread military 

campaigns in the borderlands that prevailed in previous dynasties. 

The end of this period in Egyptian history signified the abandonment of Amarna, 

scattering its occupants to the far reaches of the empire.  During Tutankhamun’s reign, the 

military campaigns were reinstated, with troop redeployment under Horemheb to re-establish 

territories in the Near East, including the Egyptian-Hittite border.  Along with the dispersion of 
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people, any epidemic disease present at Amarna could also have spread throughout the Egyptian 

empire, potentially affecting those Egyptian prisoners subsequently taken to the Hittite capital. 

 

5.2.2 Malaria in the Near East 

 Evidence of malaria’s presence in the Near East has been intimated both directly and 

indirectly.  Direct evidence using ancient DNA  (aDNA) and malarial antigen detection of the 

Plasmodium falciparum species has verified a malarial presence in Egypt as far back as 3200 

BCE (Miller et al. 1994; Cerutti et al. 1999; Rabino Massa et al. 2000; Bianucci et al. 2008; 

Nerlich et al. 2008; Hawass et al. 2010; Lalremruata et al. 2013).  Similarly, several independent 

researchers have found evidence of genetic polymorphisms conferring resistance to malaria in 

ancient Anatolia (Dogan Alakoc and Akar 2011).  These molecular methods, although useful, are 

fraught with limitations, including contamination, molecular non-survival, specimen destruction, 

and expense, that make their application difficult especially in archaeological contexts (Nielsen 

2001; Zink et al. 2002; Setzer 2014). 

 The indirect evidence of malaria in the Near East comes mainly from human skeletal 

remains with lesions characteristic of beta-thalassemia.  Thalassemia is a disease caused by a 

genetic deficiency of the hemoglobin that confers resistance to malaria.  Due to its prevalence in 

Mediterranean populations in modern times, thalassemia was originally thought to be responsible 

for the high frequencies of porotic lesions in crania from Near Eastern archaeological sites 

(Angel 1966; Angel 1972; Angel 1978).  However, more specific evidence is required to separate 

the true cases of thalassemia from the other disorders that may cause porotic cranial lesions 

(Caffey 1937).  Such confirmed cases with postcranial anomalies characteristic of thalassemia 

have been identified in a few Near Eastern sites dating as far back as approximately 6000 BCE 

off the coast of Israel (Hershkovitz and Edelson 1991).  This indirect evidence suggests the 
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widespread presence of one of the malarial parasites in the Near East; however, it is unknown 

whether this malarial presence was caused by the P. vivax or P. falciparum species. 

 

5.2.3 Malaria transmission dynamics 

 Teasing out the plausibility of malaria as a potential cause of the Hittite plague requires 

more information on the disease transmission dynamics in the region.  Malaria is a complex 

disease that requires multiple factors for its continued success within a region.  Primarily, a 

substantial population of the correct mosquito vector (genus Anopheles) must be present, with 

access to pools of standing water in which it can breed.  Though mosquitoes are difficult to find 

in the archaeological record, the near continuous belt of three Anopheles mosquito species 

known to be effective malaria vectors in the region today suggests their presence in antiquity 

(Alten et al. 2000; Sinka et al. 2010; Manguin 2013).  The paleoclimate data from the Late 

Bronze Age in the Near East suggests a warm and wet period during the time of the Hittite 

Plague, providing an even better niche for mosquito proliferation (Bernhardt et al. 2012; 

Kaniewski et al. 2013).  

 When the conditions are right, malaria can gain a foothold within a population.  

However, there are three types of malaria transmission which manifest differently in terms of at-

risk groups, immunity, and periodicity (see Table 5.1).  Areas of stable, or holoendemic, malaria 

transmission occur in tropical regions where temperature and rainfall levels are suitable for 

uninterrupted mosquitoes and malaria presence year-round.  Here, the groups at highest risk for 

infection include young children who have yet to build up an acquired immunity to the disease, 

and pregnant women who lose their acquired immunity during their term of pregnancy (Carter 

and Mendis 2002; Botez and Doughty 2014).  In areas of unstable (or hypo-endemic) malaria 

transmission, there are gaps in contact between mosquitoes and humans, leading to potential 
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partial losses of acquired immunity depending on the duration of the non-contact period.  Thus, 

this transmission dynamic can have serious health repercussions for all age groups, and lead to 

periodic epidemics of malaria within the endemic area (Carter and Mendis 2002; Botez and 

Doughty 2014).  Finally, in non-endemic areas where there is little or no malarial transmission 

under normal circumstances, an epidemic of malaria would have devastating health 

consequences for all members of the population due to the total lack of acquired immunity. 

  

Table 5.1. Carter and Mendis’ characteristics of malaria transmission chart (2002) 

Type of 

malaria 

Geographical 

location(s)a 

Malaria 

inoculation 

rates 

Protective 

immunity in the 

population 

Transmission 

characteristics 

Stable 

malaria 

Sub-Saharan Africa Regular, low 

to very high 

High in older 

age groups; low 

in children under 

5 years 

Perennial or 

seasonal; regular 

contact between 

vectors and human 

hosts 

Unstable 

malaria 

(Europe) and 

Mediterranean, Asia and 

Western Pacific, 

(North), Central and 

South America and 

Caribbean 

Irregular, low 

to medium 

Unreliable in 

older age 

groups; absent in 

children under 5 

year old 

Perennial or 

seasonal; irregular 

contact between 

vectors and human 

hosts 

Epidemic 

malaria 

Highland areas of 

tropical Africa; Central 

Asia and Caucuses; 

Asia and Latin America 

Rising 

suddenly, low 

to medium 

Low or absent in 

all age groups 

Very variable, 

subject to sudden 

and rapid change 

a Malaria is not at present endemic in the geographical locations shown in parenthesis. 

 

 These transmission types are intrinsic to the trifecta of environmental conditions, 

mosquito population density, and human population density.  From the paleoclimate 

reconstructions and large capital cities in Egypt and Anatolia at the end of the Late Bronze Age, 

it appears the conditions may have been right for endemic malaria.  This endemicity would likely 

have been unstable due to the cool winter weather precluding mosquito activity in both of these 
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regions.  This study will assess the human skeletal remains recovered at Amarna in order to 

clarify this theory of malarial endemicity in the region and shed light on the potential for malaria 

to have caused the Hittite Plague. 

 

5.3 Materials and methods 

 To determine the probability of endemic malaria at ancient Amarna, Egypt, 405 skeletons 

from the South Tombs Cemetery were analyzed for the features found to be associated with 

modern cases of malaria (see previous chapter). The cemetery is located in a dry channel, or 

wadi next to the elite South Tombs carved into the cliffs, and was excavated in roughly four 

clusters of units to probe the extent of the cemetery and sample its differential burial practices 

during use (see Figure 5.1 for plan of the site). These sections of the cemetery seem to have been 

populated in chronological order as follows: the Wadi Mouth Site (the closest to the elite tombs 

and, therefore, assumed to be oldest section), Lower Site, Middle Site, Upper Site, and Wadi End 

site. As the Wadi Mouth Site abuts and appears similar to the Lower Site (no significant 

differences), these sections are combined and subsumed under “Lower Site” for the rest of this 

chapter. The Wadi End site had too few individuals to be representative (n=8) and was, therefore, 

excluded from statistical testing.  
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Figure 5.1. Plan of the Amarna South Tombs Cemetery 



90 

 

 Demographic and stature data calculated by the Amarna bioarchaeology team, as well as 

burial characteristics noted by the excavation team, were assessed for differences by cemetery 

section in order to determine potential changes over the time during which the cemetery was 

used.  Early patterns at the Wadi Mouth and Lower cemetery sites probably reflect health during 

the time just prior to the Amarna period because the people buried here would not have spent 

many years at Amarna before their time of death.  However, later patterns at the Middle and 

Upper sites should reflect health of people who spent many years of their lives at Amarna. 

 Each individual was assessed for the presence of cribra orbitalia and periosteal reactions 

by the bioarchaeological field school team.  Heidi Davis gratefully undertook the assessment of 

38 individuals for humeral cribra, femoral cribra, and spinal porosity during the 2014 field 

season.  Further femoral cribra data was obtained through photographs and datasheets of 

individuals from previous seasons in which the antero-inferior neck was visible or noted as 

having a “reaction area.”  The lack of data for the individuals other than the 38 scored by Davis 

forced conservative statistical analysis.  Prevalence of malaria was determined by inputting the 

individuals into an outcome algorithm shown to be effective in diagnosing malaria from the 

skeleton: 

𝐶𝑖 = 1 if {(CO or HC or FC = 1) AND (SP or P = 1)}; else 𝐶𝑖 = 0 

where 𝐶𝑖 is case i  in a skeletal sample and the diagnosis is coded in binary classification: ‘1’ 

denotes positive diagnosis for malaria, whereas a ‘0’ value denotes a negative diagnosis. The 

skeletal markers are scored similarly (1 for presence of the lesion; 0 for absence of the lesion) 

and abbreviated as CO: cribra orbitalia; HC: humeral cribra; FC: femoral cribra; SP: spinal 

porosity; and P: periostitis.  This diagnostic estimate was performed twice; once with all 

individuals included, and once with just the 38 individuals observed by Davis for all of the 
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lesions.  The crude prevalence rate (CPR) was determined by the proportion of positive 

diagnoses versus (observable) negative diagnoses, and the confidence intervals determined 

according to Brown and coworkers (2001).  The true prevalence rate (TPR) for each sample was 

estimated according to Rogan and Gladen’s (1978) methods. 

 All statistical analysis was performed in IBM SPSS 22.01.  It is important to note that 

when confronted with missing variables in logical expressions, SPSS can determine true values, 

but never false values.  In other words, if enough markers are present that the individual would 

be determined to be positive anyway, the missing values are irrelevant.  However, in the case 

that the observable markers fail to determine a positive outcome and there are missing variables 

that could have led to a positive diagnosis, the individual is not diagnosed.  This method is 

conservative, but may lead to an overestimation of true prevalence. 

 

5.4 Results 

 As a way to evaluate the possible existence of endemic or epidemic malaria at Amarna, 

the demographic variables, stature, burial patterns, and skeletal lesions indicative of malaria are 

assessed here.  Assessment of demography consisted of 353 individuals grouped into ten-year 

ranges.  The largest age group (42%) contains children under the age of 16 (Figure 5.2), and of 

this age group, childhood mortality peaks around birth and two years of age (Figure 5.3).   These 

trends did not differ significantly across the three cemetery sections (χ2, df=10, p=0.063). 
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Figure 5.2. Amarna age-at-death frequencies by group 

 

 
Figure 5.3. Childhood age at death at Amarna 
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 In adults of determined sex, a total of 124 females and 87 males were assessed.  Adults of 

indeterminate sex were excluded from the statistical assessment.  Females were more common 

(59%) than males at the site in general (Figure 5.4), but this difference was not statistically 

significant.   

 

 
Figure 5.4. Sex frequencies at Amarna’s South Tombs Cemetery 

  

 

 Multiple burials, in which more than one person was found buried in the same burial pit, 

increased incrementally over time of the cemetery’s use (Figure 5.5; χ2, df=2, p<0.000).  

Multiple burials were also more likely to contain females than males (χ2, df=1, p=0.025).  There 

was no significant difference observed for the age group frequencies associated with single 

versus multiple burials.  Interestingly, there was also no significant difference in burial treatment 
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between single and multiple burials, with similar frequencies of people buried in wood or mud 

coffins and plant material matting in single and multiple burials. 

 

 
Figure 5.5.  Frequencies of multiple burials by section of the South Tombs Cemetery at Amarna 

 

 

Table 5.2.  Frequencies of multiple burials by sex at Amarna 

 Females Males Total 

Single burial 85(54%) 72(46%) 157 

Multiple burial 38(72%) 15(28%) 53 

Total 123 87 210 

 

 

 Stature was assessed as a proxy for overall health (Table 5.3).  Female stature decreased 
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cemetery.  This stature difference was not significant statistically; however, unequal sizes of the 

three samples constrain accurate statistical assessment. 

 

Table 5.3. Average stature (cm) at Amarna 

 Females    Males   

 Length sd n  Length sd n 

Lower Site 153.70 5.30 46  163.05 5.71 47 

Middle Site 153.54 4.54 14  162.60 2.03 7 

Upper Site 153.42 5.11 54  163.83 4.66 25 

 

 

 
Figure 5.6. Female differences in average stature at Amarna by site section 
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frequencies, as shown in Figure 5.7.  When the lesions for the total sample were entered into the 

diagnostic outcome algorithm (n=31), 68% of observable individuals were diagnosed as having 

malaria.  However, when considering a conservative sample of only the 38 individuals scored for 

all lesions by Davis (n=20), this prevalence dropped to 50%.  The data for diagnosing malaria 

per each individual appears in Table 5.4.  The calculated prevalence rates and their confidence 

intervals for each sample are shown in Figure 5.8 and listed in Table 5.5.  Confidence intervals 

took into consideration the sample size for sensitivity and specificity of the gold standard 

population (Rogan and Gladen 1978).  Individuals diagnosed as positive for malaria did not 

differ significantly from those diagnosed as negative in any demographical category or burial 

custom. 
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Figure 5.7. Frequencies of skeletal markers of malaria at Amarna compared with known modern 

malarial/non-malarial samples 
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Table 5.4. Diagnostic data by individual for determination of malaria prevalence at Amarna 

 CO* HC FC SP P Ci (total) Ci (conserv) 

Ind 9 0 - 1 - 1 1 - 

Ind 28 1 - 0 - 1 1 - 

Ind 153 1 - - - 1 1 - 

Ind 154 0 - 1 - 1 1 - 

Ind 180 1 - 0 - 1 1 - 

Ind 206 1 - 0 - 1 1 - 

Ind 218 1 - - - 1 1 - 

Ind 222 1 - 0 - 1 1 - 

Ind 240 0 1 0 1 0 1 1 

Ind 243 0 0 0 1 1 0 0 

Ind 248 0 0 0 1 0 0 0 

Ind 256 1 0 0 1 0 1 1 

Ind 284 0 0 0 1 0 0 0 

Ind 288 0 0 0 1 0 0 0 

Ind 297 1 0 - 1 0 1 1 

Ind 299 - 0 1 1 0 1 1 

Ind 317 1 - 0 - 1 1 - 

Ind 321 1 - 0 - 1 1 - 

Ind 328 0 0 0 1 0 0 0 

Ind 336 - 0 1 1 0 1 1 

Ind 357 1 0 0 1 1 1 1 

Ind 358 0 0 1 1 0 1 1 

Ind 359 0 0 0 1 0 0 0 

Ind 360 - 0 1 1 0 1 1 

Ind 361 1 - 0 - 1 1 - 

Ind 362 0 0 1 1 0 1 1 

Ind 363 0 0 0 1 1 0 0 

Ind 364 0 0 1 1 0 1 1 

Ind 375 0 0 0 1 0 0 0 

Ind 384 0 0 0 1 0 0 0 

Ind 386 0 0 0 1 0 0 0 
* Skeletal markers are scored as 0: not present, 1: present, or - : unobservable, and abbreviated as 

follows: CO: cribra orbitalia; HC: humeral cribra; FC: femoral cribra, SP: spinal porosity; P: 

periosteal reaction.  Ci (total) and Ci (conserv) indicate the diagnosis of the total sample and 

conservative sample, respectively, where 0 denotes negative and 1 denotes positive for malaria. 
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Figure 5.8. Estimated prevalence of malaria at Amarna's South Tombs Cemetery: crude 

prevalence rate (CPR) and calculated true prevalence rate (TPR) with 95% CI error bars. 
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Total sample 31 67.7% 50.1% - 81.4%  79.0% 53.8% - 104.1% 
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5.5 Discussion 

 Though the presence of multiple strains of falciparum malaria aDNA in individuals 

known to have lived at Amarna suggested the widespread presence of malaria during the Amarna 

Period, the prevalence of the disease at Amarna has remained unknown (Hawass et al. 2010: 

646).  This study supports this theory of widespread malaria.  The skeletal evidence at Amarna’s 

South Tombs Cemetery revealed high frequencies of lesions associated with malaria, which fell 

into a range between known holoendemic and non-endemic areas for malaria.  When entered into 

an outcome algorithm that combined these lesions to make a diagnosis (see Methods and 

Materials), approximately 50% of individuals were diagnosed as having had a recent malarial 

infection. 

 Does this high prevalence of malaria at Amarna represent endemic or epidemic malaria?  

The frequencies of malarial indicators fell generally below those of individuals known to have 

lived in an area holoendemic for malaria.  One explanation for this lower rate could be that an 

epidemic of malaria hit late in the occupation of the site, thereby affecting only a subset of the 

population buried in the cemetery.  Alternatively, this discrepancy could represent the difference 

between endemic versus epidemic malaria; the latter of which would tend to kill off its victims 

before their bodies began to show skeletal signs of the disease.  In order to elucidate the nature of 

malaria at Amarna, we must consider the demography of the site as it relates to risk factors and 

disease patterns in modern endemic and epidemic malaria. 

 Several interpretations can be made from the observed differences in demography at 

Amarna.  Since females tended to be buried in multiple burials more frequently than males, and 

they also declined in stature across the cemetery, it seems reasonable to infer that the health of 

women at Amarna was impacted to a higher degree than that of men.  Additionally, children 
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under the age of 16 are abundant at the site in general, with a greater proportion of children 

under the age of five.  Both of these demographic patterns at Amarna seem to indicate a health-

related preferential mortality burden for women and children.  Such a preferential disease burden 

exists in areas where malaria is endemic due to the lack or loss of acquired immunity and 

associated increased malaria risk for these two demographic groups, specifically pregnant 

women who lose their immunity and children under five years (Gilles et al. 1969; Lusingu et al. 

2004; World Health Organization 2007; Billig et al. 2012).  The spike in child mortality around 

age two is very similar to what we would expect in cases of severe malarial anemia and cerebral 

malaria in children who lose maternal immunity after weaning (Botez and Doughty 2014). 

 The pattern of progressively more multiple burials along the cemetery suggests a gradual 

increase in the number of people dying simultaneously during the Amarna Period.  This could 

reflect an increase in mortality from infectious cause, perhaps including malaria.  Although the 

malarial individuals did not associate with any burial type or section of the cemetery, malaria is 

known to co-infect with many other infectious diseases, such as tuberculosis and dysentery, to 

increase all-cause mortality (Shanks et al. 2008).  If malaria was endemic at Amarna, it could 

have easily opened the door for such high-mortality syndemics (i.e. epidemics of increased 

disease burden due to the synergistic association between multiple disease co-infections, as 

defined by Barrett (2010: 86)).  One of the ways to test this hypothesis in the future may be to 

identify other specific diseases present at Amarna.  This process is ongoing but has indicated 

evidence of scurvy in several individuals thus far.  The presence of scurvy and malaria at 

Amarna is intriguing in light of the purported anti-malarial effect of Vitamin C (Sabbatani et al. 

2010). 
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 Considering the impact of malaria on Amarna, the data assessed in this study match more 

closely to a situation of hypo-endemic malaria, with skeletal signs of malaria present and greater 

morbidity and mortality falling on non-immune children and women who lose their acquired 

immunity during pregnancy.  This interpretation is reinforced by the spatial comparison of cribra 

orbitalia in Chapter 3, which showed ancient Egypt to have had high rates of anemia throughout 

time and space, and by Tutankhamun’s multiple-strain malaria infection at the time of his death.  

Future aDNA testing of Amarna skeletons for P. falciparum DNA will seek to further strengthen 

the malarial diagnoses made in this study. 

 At this time, the cause of the Hittite Plague of 1320 BCE cannot be pointed to with 

certainty.  However, this study has shown that the malaria present at Amarna, Egypt in the years 

leading up to this plague was quite prevalent, and aligns with hypo-endemic models of 

transmission.  This finding agrees with theoretical models that suggested malaria would have 

thrived in the environment of natural seasonal flooding and man-made irrigation technology 

along the Nile River in ancient Egypt (Scheidel 2001; Scheidel 2012).  This study also noted a 

pattern suggesting higher mortality for women over time of the cemetery’s use at Amarna, which 

arguably could represent an epidemic of malaria co-infecting with another infection, or multiple 

strains of malaria piggybacking on one another in the immunocompromised host, to create a 

heightened mortality event (Scheidel 2001; Shanks et al. 2008; Engelkirk et al. 2011). 

 Such an epidemic at Amarna could very well have spread to the Hittite empire at the end 

of the Amarna Period due to the increased diplomatic and military interactions between the two 

kingdoms (Cohen and Vestbrook 2000; Assman 2003).  Therefore, it is reasonable to conclude 

that malaria at the very least played a part in the Hittite Plague.  More concrete evidence could 

be obtained through continued assessment of malarial prevalence at other sites in the Near East 
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with similar occupation dates.  For now, this study has shown the considerable plausibility of 

malaria’s role in the epidemics noted in ancient texts at the end of the Late Bronze Age. 

 

5.6 Conclusion 

 This study has examined the skeletal remains from the South Tombs Cemetery at Amarna 

for patterns of malarial prevalence at the precisely dated Egyptian capital city between 1349 and 

1332 BCE.  Skeletal lesions evidenced the recent impact of malarial infection on around half of 

the population.  Demographic, burial pattern, and stature analyses showed a greater mortality risk 

for women and children, with declining health and abnormal burial patterns especially for 

women over time.  These patterns align with models of unstable endemic malaria, which likely 

co-infected with other diseases present at Amarna to increase total mortality.  This malarial 

disease state at Amarna undoubtedly affected other densely populated Near Eastern regions, 

contributing to the epidemics noted in ancient texts, predominantly the Hittite Plague of 1320 

BCE.  Additional analyses of human skeletal remains in other Near Eastern sites dating to this 

time may lead to additional evidence of malaria’s role in the region at the end of the Late Bronze 

Age. 
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Chapter 6 – Summary and Future Directions 

 

 The ancient Near East has an important place in the history of the origins of ancient 

agriculture and complex societies, which go hand in hand with the history of ancient disease 

spread (McNeill 1977).  This environment of increased human population density, decreased 

sanitation, and increased standing water in agricultural fields provided a launching pad for some 

of the most deadly diseases that continue to wreak havoc on human populations today.  Malaria 

is one of these diseases, representing a severe global health problem and evading repeated 

attempts at prevention and eradication (World Health Organization 2014).  Anthropology can 

contribute to the efforts to combat malaria by reconstructing malarial disease dynamics in the 

past so that we can make inferences into how to best respond to the disease in the future (Brown 

et al. 1997). 

 Previous theoretical studies have linked the spread of malaria out of Africa to the marshy 

corridor of the Nile River Valley, exacerbated by human irrigation activities and population 

density of Pharaonic Egypt to provide an excellent niche for the mosquito malaria vector (Bruce-

Chwatt 1965; Bruce-Chwatt and de Zulueta 1980; De Zulueta 1987; Scheidel 2001; Hawass et 

al. 2010; Scheidel 2012; Sallares 2013).  Though there has been ample direct and indirect 

evidence to suggest a malarial presence in ancient Egypt (Hershkovitz and Edelson 1991; Miller 

et al. 1994; Bianucci et al. 2008; Hawass et al. 2010; Lalremruata et al. 2013), much about the 

antiquity, prevalence, and behavior of malaria in the region remained unknown. 

 Malaria is a complex disease, the impacts of which are difficult to assess even in modern 

populations, which may indicate why paleopathologists have tended to ignore its impacts on past 

populations until very recently (Webb 2009; Setzer 2014).  Though malaria was originally 
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believed to leave no trace on the skeleton by which to identify it in ancient human remains 

(Nunn and Tapp 2000; Roberts 2000), recent research has provided evidence to the contrary 

(Rabino Massa et al. 2000; Gowland and Western 2012).  Unfortunately, the cranial lesions 

shown to associate with malaria are believed to have a complex etiology, with many factors other 

than malaria also leading to their appearance (Walker et al. 2009; Oxenham and Cavill 2010; 

McIlvaine 2013). 

 This dissertation takes a multidisciplinary approach to these issues in past malarial impact 

in the Near East by applying methods from anthropology, climatology, epidemiology, 

microbiology, and entomology.  In this way, this study tests the plausibility of theoretical models 

of malaria’s origin and spread with existing associated skeletal indicators of the cranium.  New 

information on the postcranial manifestation of malaria on the skeleton are gleaned from clinical 

skeletons with known malarial histories, and the power of these skeletal indicators tested in 

correctly diagnosing individuals with malarial infections.  To test the hypothesized impact of 

malaria’s involvement at the tempestuous end of the Late Bronze Age, the new skeletal 

diagnostic criteria is applied to skeletal remains of a precisely dated cemetery at Amarna, Egypt; 

the population from which a massive epidemic in ancient Anatolia purportedly spawned. 

 

6.1 Project Objectives 

 This dissertation project had three primary objectives toward its goal of determining the 

skeletal manifestation of malaria and its impact on the ancient Near East.  First, theoretical 

models of malaria’s spread up the Nile River Valley during Dynastic Egypt were tested through 

a meta-analysis of cribra orbitalia (one of the skeletal indicators previously associated with 

malarial infection).  The meta-analysis used cribra orbitalia frequencies at 29 ancient Nile Valley 
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sites, representing 4,760 individuals ranging from prehistoric to Christian periods and situated 

between the 3rd Cataract and Nile Delta.  This study represents the largest inter-site comparison 

of cribra orbitalia in the Near East to date. 

 The second objective was to refine the known skeletal indicators of malaria by 

conducting a case-control study of modern individuals from malarial and non-malarial areas.  

This study analyzed skeletal lesions present on 98 East Africans of known age, sex, tribe, and 

cause of death.  As a control sample, 352 North Americans from forensic contexts were analyzed 

for similar lesions.  This study represents the only large-scale clinical assessment of malaria’s 

skeletal manifestation, and one of very few studies in paleopathology in which epidemiological 

tests of diagnostic power are reported. 

 The third objective was to use the verified skeletal manifestation of malaria to assess the 

disease’s impact at Amarna, Egypt and its inferred impact on the broader Near East.  This study 

used skeletal lesion data from 405 skeletons from the South Tombs Cemetery at Amarna Egypt 

to diagnose malaria presence and calculate prevalence from these diagnoses.  It also examined 

data on demography, stature, and burial patterns at the different sections of the cemetery to 

assess patterns of disease dynamics.  This study is the first to use direct evidence from human 

skeletal remains to suggest a disease contributing to the Hittite Plague of 1320 BCE. 

 Brief summaries and concluding remarks for each objective are presented in the sub-

sections below. 

 

6.1.1 Objective 1: Testing models of malaria spread in the ancient Nile Valley 

 Cribra orbitalia is one of the most common skeletal lesions noted in ancient human 

skeletal remains excavated from the Nile Valley.  Long thought to be a sign of iron-deficiency 

anemia, understanding of cribra orbitalia etiology has shifted recently to cast doubt on this iron-
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deficiency hypothesis, instead indicating megaloblastic and hemolytic anemia to be the more 

likely factors leading to the appearance of this lesion (Walker et al. 2009).  One of the main 

causes of acquired hemolytic anemia is malaria infection.  Recent research has provided 

evidence supporting the link between cribra orbitalia and malaria infection.  One study found 

cribra orbitalia to be present in 92% of skeletons testing positive for Plasmodium falciparum 

antigens (Rabino Massa et al. 2000).  Another study found higher rates of cribra orbitalia lesions 

on skeletons buried near locations of greater Anopheles mosquito distribution and known malaria 

infection from historical records (Gowland and Western 2012). 

 Some theoretical models have pointed to the Nile Valley as the pathway of malaria from 

Africa to Europe within the time frame of Dynastic Egypt (Bruce-Chwatt and de Zulueta 1980).  

Through ancient DNA  and antigenic analysis of Egyptian mummies, direct evidence of 

malaria’s presence in the Nile Valley dates as far back as 3200 BC (Cerutti et al. 1999); 

however, the prevalence, spread, or endemic/epidemic status of the disease in this region in 

antiquity remains unknown. 

 The objectives of the present study were as follows: (1) to test the theoretical Dynastic 

Egyptian time frame for the spread of malaria up the Nile Valley and out of Africa; (2) to use 

variability in levels of cribra orbitalia present on ancient Egyptian and Nubian remains to track 

the spread of malaria; (3) to test a hypothesized increasing trend in cribra orbitalia frequency 

over time from South to North in the Nile Valley. 

 This study surveyed cribra orbitalia frequencies tallied in site reports from 29 ancient 

Nile Valley sites, representing 4,760 individuals ranging from prehistoric to Christian periods 

(4400 BC – 1500 AD) and situated between upper Nubia and the Nile delta.  See Appendix A for 

the sources of data used in this meta-analysis.  To avoid potential sources of statistical error, 
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samples of fewer than 15 individuals were excluded from analysis, as well as sites reporting poor 

skeletal preservation.  Analysis of the data consisted of comparison of overall distribution of the 

data to other existing cribra orbitalia meta-analyses, and determination of associations through 

Spearman’s rank and Kendall’s tau correlations. 

 Results showed generally high cribra orbitalia rates between 10.8% and 78.7% of the 

total population affected, with an overall mean of 42.8%.  There were greater overall rates of 

cribra orbitalia in the Nile Valley sample compared with other global cribra orbitalia meta-

analyses.  Interestingly, the Nile Valley cribra orbitalia distribution only overlaps slightly with 

the English sample associated with P. vivax malaria infection.  The data showed no significant 

correlation over time and geographical location, suggesting that high levels of hemolytic anemia 

affected individuals in the Nile Valley equally from pre-dynastic to Christian periods.  No 

association was found between the frequency of cribra orbitalia present at the sites and 

proportion of females or non-adults in the sample, or year of report publication. 

 The gradual increase in cribra orbitalia over space and time that was hypothesized for this 

study was not confirmed by the results.  Rates of cribra orbitalia in the Nile Valley were 

generally high throughout time and space when compared with New World samples, and showed 

no association with location, estimated date, proportion of females or non-adults, or date of 

report publication.  From these results, the following interpretations can be made.  First, contrary 

to small-scale comparisons between sites, cribra orbitalia did not increase or decrease in 

frequency, but stayed prominent over time throughout the Nile Valley.  Second, the failure to 

associate cribra orbitalia frequency with sex or age suggests that the main cause of the high 

cribra orbitalia rates is not sex-specific or age-specific (like diet, exposure to parasitic worms, or 

nutritional stress caused by weaning). 
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 Assuming that cribra orbitalia is strongly influenced by malarial infection, this study 

suggests the disease was already endemic in the Nile Valley during the Neolithic period (c. 6000 

BCE).  This interpretation is supported by ancient DNA evidence, and pushes back the date for 

theoretical models of malaria’s spread out of Africa.  This study has shed new light on the 

patterns of health in the ancient Nile Valley by providing a more holistic view of anemia present 

throughout time and space.  Through comparison with Gowland and Western’s (2012) English 

malarial sample, this study has also potentially provided the first interspecific malarial 

comparison through large-scale cribra orbitalia frequencies. 

 

6.1.2 Objective 2: Identifying skeletal markers of malaria in a clinical case-control study 

approach 

Unlike some other infectious diseases, malaria’s skeletal manifestation has never been 

confirmed using a large sample from a clinical setting with known individual medical histories.  

Currently, paleopathologists can only suggest malarial infection in gross analyses of human 

skeletal remains from the presence of cribra orbitalia and porotic hyperostosis under the 

assumption that these lesions are indicators of the hemolytic anemia caused by malaria (Setzer 

2014).  This study sought to refine these existing skeletal indicators of malaria through clinical 

comparisons and epidemiological diagnostic testing. 

To pinpoint evidence of malaria infection on ancient skeletal remains, this study 

compared skeletal lesions in a modern reference sample from Uganda where malaria is 

holoendemic to a similar modern sample from a malaria-free area.  The malarial sample 

consisted of 98 East Africans, separated by those who died of malaria or anemia and matched 

cases for age and sex.  The non-malarial sample consisted of 106 African Americans with 

estimated frequencies of sickle cell trait that are similar to those of Ugandans. 
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 Five porous skeletal lesions were identified that appear more frequently in the malarial 

sample (p<0.01), especially in anemic individuals.  These appeared on the cranium, vertebral 

column, and humeral and femoral necks.  Periostitis also associated strongly with individuals in 

the malarial sample (p<0.01); however, linear enamel hypoplasias showed the converse 

association (p=0.017).  The identified lesions were tested for their association with each other, 

and then tested individually for their diagnostic power through measures of sensitivity and 

specificity.  At this point, porotic hyperostosis was excluded as a useful indicator of malaria due 

to its low specificity and diagnostic odds ratio below unity.  From the remaining skeletal lesions 

(i.e. cribra orbitalia, humeral cribra, femoral cribra, spinal porosity, and periostitis) and their 

inter-lesion associations, an outcome algorithm was formed to diagnose individuals for malarial 

infections.  If an individual had at least one of the cribrous lesions and either spinal porosity or 

periostitis, the individual was diagnosed as positive for malaria.  Otherwise, the individual was 

diagnosed as negative. 

 Several etiological explanations for the characteristic malarial skeletal lesions were 

explored.  High rates of porous lesions in malarial individuals were reasoned to be attributed to 

three potential causes from clinical observations: (1) severe malarial anemia causing expansion 

of marrow space; (2) an imbalance in bone remodeling due to chemical release during hemolysis; 

or (3) extramedullary erythropoiesis, which is known to cause cortical thinning and coarse 

trabeculation in clinical cases of genetic hemolytic anemia.  The importance of careful 

differential diagnoses between other infectious and non-infectious causes of these lesions was 

discussed, including the potential for co-infection of malaria with other infectious diseases.  

These findings are pivotal in establishing diagnostic criteria by which we can identify the 

prevalence and impact of malaria on past populations. 
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6.1.3 Objective 3: Estimating the prevalence of malaria at Amarna, Egypt and its 

implications for the Near East 

 The Amarna Period in ancient Egypt represents a unique time in which major social and 

political changes occurred suddenly and with little explanation.  From the ancient literary texts 

recovered at various Near Eastern sites during this period, there is ample mention of epidemic 

disease (Moran 1992; Singer 2002; Assman 2003), which some believe may have contributed to 

these extreme shifts (Kozloff 2006; Dodson 2009).  Ancient DNA evidence lends to the 

hypothesis that malaria may have contributed to these ancient epidemics and could have had a 

substantial impact on the politics, interactions, and rise and fall of empires in the Near East at the 

end of the Late Bronze Age (Hawass et al. 2010). 

 To consider the impact of malaria on the Near East during this tumultuous time, his study 

assessed 405 skeletons buried at Amarna for malarial prevalence and patterns of endemicity.  

Pathology data indicating skeletal lesions of malaria were tallied and entered into an outcome 

algorithm for diagnosis of malaria by individual.  From these diagnoses, prevalence of malaria at 

the site was calculated.  Data on demography, stature, and burial types were used to infer 

transmission type for malaria endemicity. 

 Results of this study revealed high rates of skeletal indicators of malaria, which were 

positioned between those of populations in known non-endemic and holoendemic areas for 

malaria.  The diagnostic individuals for malarial lesions were prevalent in around half of the 

population tested.  Demographic trends showed higher proportions of women and children than 

men, suggesting a higher mortality rate for these demographic groups.  Similarly, women were 

significantly more likely to be buried in multiple burials than men, and the average stature 

measurements in women had a decreasing trend throughout the duration of the cemetery use.   
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 This differential mortality burden that was higher in women and children aligned with the 

higher risk of infection and mortality due to issues of acquired immunity in endemic areas for 

malaria.  The rates of skeletal indicators of malaria that were lower than the hypo-endemic area 

for malaria suggests an unstable transmission type of endemicity, where individuals partially lose 

their acquired immunity periodically, leading to small epidemic cycles.  The increasing rates of 

multiple burials and decreasing stature in women suggests an event of lowered general health 

states for women, which arguably could represent the co-infection of malaria with other diseases 

at Amarna. 

 In sum, this study showed malaria to have had a high prevalence and wide impact on the 

population at Amarna, which bolsters Hawass and coworkers’ (2010) suggestions based on their 

ancient DNA analyses.  Thus, it would be difficult to believe that malaria did not play a part in 

the epidemics and rise and fall of empires in the Near East at the end of the Late Bronze Age, 

predominantly including the Hittite Plague of 1320 BCE.  More research into the prevalence of 

malaria at other Late Bronze Age sites in the Near East is needed to further explore the impact of 

malaria on these ancient civilizations. 

 

6.2 Future Goals 

 My future goals related to this project are manifold.  Primarily, I intend to refine the 

techniques for diagnosing malaria developed in this dissertation through the inclusion of more 

clinical samples of malaria’s skeletal manifestation.  I am aware of many other reference 

collections available for study in malarial areas, including some that are already being studied for 

this exact purpose.  There is a small but growing group of researchers in the field of 

paleopathology interested specifically in the detection of malaria in ancient human remains.  
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Plans are already underway for a symposium focused on this subject, which will incite 

communication between researchers and hopefully lead to more collaboration.  Through this 

collaboration, a deeper knowledge of the ways in which this complex disease affects bone can be 

achieved. 

 One of the major ways in which this research can be tested further is through a 

combination of gross skeletal lesion analysis and ancient DNA testing to verify the lesion’s 

association with malaria.  Such testing is planned and has been given governmental approval for 

the skeletons at Amarna.  It is hoped that this future study will be able to identify the pathogen 

DNA; however, this will rely on the preservation of the DNA within bone more than 3,000 years 

old.  Ancient pathogen DNA testing has been successful in Egyptian mummies, but may prove 

challenging on dry bone recovered from a dry, desert environment. 

 One of the interests sparked by this project regards the interspecific differences in 

malarial infection on human bone.  From Gowland and Western’s (2012) study, it seems likely 

that vivax malaria manifests itself in similar ways to falciparum malaria on the skeleton, but 

perhaps to a lesser extent of severity.  This hypothesis seems reasonable given the pattern of 

symptomatic severity between the two Plasmodium species, but requires more conclusive 

evidence.  Such conclusions could be made possible if the diagnosis of malaria and reporting of 

its disease prevalence becomes more widespread in future bioarchaeological research. 

 Finally, much is still unknown about the origin and spread of the four human malarial 

parasite species within the Old and New World.  Malaria is assumed to never have entered the 

New World prior to European contact based on the lack of genetic polymorphisms conferring 

resistance to malaria in indigenous populations.  However, this assumption fails to address the 

traditional ethnobotanical knowledge of one of the preeminent antimalarial plants known to exist 
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in the world: cinchona bark, or quinine.  The fact that this plant remedy was used by ancient 

South Americans to treat fevers suggests the presence of at least one of the malarial species in 

the Pre-Columbian New World.  The identification of malaria on archaeological skeletons from 

New World sites would address this question of malaria diaspora more definitively. 
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Appendix A: Cribra Orbitalia Data Compiled for Nile Valley Meta-Analysis 

Site x̄ Years 

BP 

Latitude 

(DD) 

n CO 

(%) 

Female

s (%) 

Nonadult

s (%) 

Source 

Abusir 

(Mastaba of 

Ptahshepses) 

2312 (± 

400) 

29.9 142 26.8 44.7 46.3 Strouhal & 

Bares 1993 

Abydos 4905 (± 

207) 

26.2 106 49.1 - - Duhig 2000 

Abydos 4446 (± 

253) 

26.2 28 78.6 - - Duhig 2000 

Abydos 3875 (± 

163) 

26.2 41 68.3 - - Duhig 2000 

Abydos ('Tombs 

of the 

Courtiers') 

4887 (± 

125) 

26.2 30 40.0 - - Musselwhite 

2011 

Adaïma 5012 25.3 272 26.5 - 100.0 Dabernat et 

al. 2005 

Amarna (STC) 3340 (± 

8) 

27.7 103 42.7 - - Kemp et al 

2013 

Aswan 4446 (± 

253) 

24.1 18 61.1 - - Duhig 2000 

Aswan 3875 (± 

163) 

24.1 47 63.8 - - Duhig 2000 

Dendara 4115 (± 

78) 

26.2 76 53.9 - - Duhig 2000 

Dishasha 4446 (± 

253) 

29.0 21 42.9 - - Duhig 2000 

El-Badari 

(Badarian 

graves) 

6212 (± 

200) 

27.0 30 63.3 - - Musselwhite 

2011 

Elephantine 4115 (± 

78) 

24.1 32 75.0 68.3 26.7 Pecotte 1986 

el-Raqaqna 4446 (± 

253) 

26.3 17 52.9 - - Duhig 2000 

el-Tarif 3875 (± 

163) 

25.7 54 55.6 - - Duhig 2000 

Gebelein 4446 (± 

253) 

25.5 23 73.9 43.3 8.6 Pecotte 1986 

Gebelein 4115 (± 

78) 

25.5 47 78.7 43.6 20.8 Pecotte 1986 

Gebelein 2607 (± 

70) 

25.5 17 52.9 - - Pecotte 1986 

Hierakonpolis 

(HK27C) 

3902 (± 

190) 

25.1 21 28.6 65.4 29.7 Judd 2007 

Hierakonpolis 

(HK43) 

5662 (± 

150) 

25.1 145 13.1 59.5 20.9 Kumar 2009; 

Larsen 2009 
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Site x̄ Years 

BP 

Latitude 

(DD) 

n CO 

(%) 

Female

s (%) 

Nonadult

s (%) 

Source 

Hierakonpolis 

(Prehistoric & 

'Fort' 

cemeteries) 

5512 (± 

500) 

25.1 39 71.8 - - Musselwhite 

2011 

Kerma 3627 (± 

65) 

19.6 306 13.7 61.5 4.2 Buzon 2004 

Kulubnarti (21-

R-2) 

887 (± 

375) 

21.1 164 39.0 - - Mittler & Van 

Gerven 1994 

Kulubnarti (21-

S-46) 

1362 (± 

100) 

21.1 170 51.8 - - Mittler & Van 

Gerven 1994 

Memphis 3428 (± 

124) 

29.9 306 24.8 44.3 3.9 Buzon 2004 

Missiminia 1662 (± 

250) 

20.5 333 27.9 48.3 - Wapler et al 

2004 

Naqada (Great, 

B, and T 

cemeteries) 

5712 (± 

700) 

25.9 97 40.2 35.7 0.0 Bartell 1994; 

Kumar 2009 

Naqada B 

cemetery 

5362 (± 

150) 

25.9 20 60.0 - - Musselwhite 

2011 

Naqada T 

cemetery 

5262 (± 

250) 

25.9 23 43.5 - - Musselwhite 

2011 

Qaw el-Kebir 4446 (± 

253) 

26.9 27 70.4 - - Duhig 2000 

Qaw el-Kebir 4115 (± 

78) 

26.9 69 63.8 - - Duhig 2000 

Qubbet el Hawa 4446 (± 

253) 

24.1 156 48.7 39.4 19.2 Rosing 1990 

Qubbet el Hawa 4115 (± 

78) 

24.1 32 34.4 27.8 18.2 Rosing 1990 

Qubbet el Hawa 3875 (± 

163) 

24.1 18 50.0 46.7 28.6 Rosing 1990 

Qubbet el Hawa 3637 (± 

75) 

24.1 60 63.3 45.0 31.0 Rosing 1990 

Qubbet el Hawa 2607 (± 

70) 

24.1 146 36.3 45.4 17.0 Rosing 1990 

Qurneh 3312 (± 

250) 

24.9 172 16.3 52.0 7.5 Buzon 2004 

Shellal 3312 (± 

250) 

24.1 154 20.1 47.7 3.8 Buzon 2004 

Sidmant 4115 (± 

78) 

29.1 55 67.3 - - Duhig 2000 

Sidmant 3875 (± 

163) 

29.1 15 53.3 - - Duhig 2000 

SJE (C-Group) 3812 (± 24.0 205 14.1 64.8 12.9 Buzon 2004 
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Site x̄ Years 

BP 

Latitude 

(DD) 

n CO 

(%) 

Female

s (%) 

Nonadult

s (%) 

Source 

200) 

SJE (Pharaonic) 3512 (± 

150) 

24.0 73 23.3 55.1 15.2 Buzon 2004 

Tarkhan 5012 29.5 29 72.4 - - Musselwhite 

2011 

Tarkhan 4905 (± 

207) 

29.5 26 34.6 - - Duhig 2000 

Tell el-Dab'a 3682 (± 

130) 

30.8 41 26.8 40.8 48.1 Winkler & 

Wilfing 1991 

Thebes-West 2927 (± 

585) 

25.7 168 29.2 45.5 20.2 Nerlich et al 

2000 

Thebes-West 

(Valley of the 

Queens) 

1812 (± 

200) 

25.7 212 18.4 48.0 19.2 Macke & 

Macke-Ribet 

1994 

Tombos 3337 (± 

75) 

19.4 83 10.8 59.5 15.0 Buzon 2004 

Wadi Halfa 

(24I3) 

1562 (± 

100) 

21.8 45 26.7 50.0 29.6 Armelagos 

1968 

Wadi Halfa 

(6B13) 

1037 (± 

425) 

21.8 28 14.3 - 32.4 Armelagos 

1968 

Wadi Halfa 

(6B16) 

2012 (± 

350) 

21.8 62 11.3 58.3 17.1 Armelagos 

1968 

Wadi Halfa 

(6G8) 

1037 (± 

425) 

21.8 29 13.8 - 39.4 Armelagos 

1968 

Wadi Halfa 

(NAX) 

1562 (± 

100) 

21.8 127 26.7 56.6 14.1 Armelagos 

1968 
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