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Abstract 

The content of this thesis has been originally reported in our published paper, “trans-Platinum (II) 

Thionate Complexes: Synthesis, Structural Characterization, and in vitro Biological Assessment 

as Potent Anticancer Agents” ChemPlusChem 2019 84, 1525-1535, DOI: 

10.1002/cplu.201900394, in which I served as coauthor. Cancer caused 9.6 million deaths in 2018 

worldwide, with 18.1 million new diagnoses during that same year. The most widely used metal 

in anticancer drugs is platinum (Pt), and these drugs are used to treat almost 50% of cancer patients. 

To optimize drug effectiveness, trans-configured Pt(II) complexes have been introduced as a 

strategy to potentially overcome the drawbacks that cis-configured Pt(II) have. Also, trans-

configured Pt(II) complexes may diminish severe side effects, drug resistance, poor selectivity, 

and serious toxicity of cisplatin. A series of Pt(II) complexes trans-[Pt(PPh2allyl)2(k1-S-

SR)2], 1, PPh2allyl = allyldiphenylphosphine, SR = pyridine-2-thiol (Spy, 1a), 5-(trifluoromethyl)-

pyridine-2-thiol (SpyCF3-5, 1b), pyrimidine-2-thiol (SpyN, 1c), benzothiazole-2-thiol (Sbt, 1d), 

benzimidazole-2-thiol (Sbi, 1e), were synthesized. They were characterized by NMR, HR ESI-MS 

and X-ray crystallography. These complexes were treated by human cancer cell lines (A549, 

SKOV3, MCF-7) and shown the promising antitumor effects in comparison with cisplatin. These 

compounds were showed suitable selectivity between tumorigenic and non-tumorigenic (MCF-

10A) cell lines. Analyses of cell cycle progression and apoptosis were conducted for 1a, the best 

cytotoxic compound, to screen dose/time response and to study the effects of the antiproliferative 

mechanism. The electrophoresis mobility shift assay was performed to assess the direct interaction 

of 1a with DNA and the strong genotoxic ability was indicated through comet assay method.  
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Introduction and Background 
 

Cancer caused 9.6 million deaths in 2018 worldwide, with 18.1 million new diagnoses 

during that same year. This makes cancer the second most frequent disease after cardiovascular 

disease. One in 5 men and one in 6 women worldwide will develop cancer during their lifetime, 

and one in 8 men and one in 11 women will die from the disease.1 Chemotherapy involves giving 

one or more cytotoxic drugs including metal-based drugs. The most widely used metal in these 

drugs is platinum (Pt). Pt anticancer agents are used to treat almost 50% of cancer patients. There 

are three main Pt-based drugs that are used throughout the world for the treatment of cancer: 

cisplatin, carboplatin, and oxaliplatin (Fig. 1).2  

 

 
 
Figure 1. Pt-based chemotherapy drugs.2 

 
 

Cisplatin is currently the leading metal-based antitumor drug in the field because of its 

effective activities against several human malignancies. However, cisplatin has major limitations 

in its clinical applications such as several side effects, drug resistance, and severe toxicity.3 

Therefore, there have been several continuous efforts to create new structures of platinum-based 

anticancer agents that have an improved therapeutic index. 
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Understanding the Coordination Complex 

 To design a potent metal-based therapeutic complex, it is essential to know what happens 

to the coordination complex under physiological conditions. Deoxyribonucleic acid (DNA) is 

considered the major pharmacological target for cisplatin and the other platinum-based anticancer 

complexes.4 Furthermore, the biological effectiveness of platinum complexes is derived from the 

formation of drug-DNA cross-link adducts, which has been widely studied.5 Platinum anticancer 

complexes coordinatively interact with DNA bases at the N7 positions of Guanine and Adenine 

residues, which then generate DNA lesions and ultimately cause cell death. The kinetic and 

thermodynamic interactions between these platinum(II) complexes and DNA have been widely 

investigated.6 The activity and toxicity of platinum drugs are both directly attributed to the nature 

of the ligand around the Pt center, particularly the kinetics of exchange reactions.7  

 To optimize drug effectiveness, trans-configured Pt(II) complexes have been introduced 

as a strategy to potentially overcome the drawbacks that cis-configured Pt(II) have. Also, trans-

configured Pt(II) complexes may diminish the severe side effects, drug resistance, poor selectivity, 

and serious toxicity of cisplatin.8 Trans-configured Pt(II) complexes have displayed considerable 

in vitro antiproliferative effects against a wide range of cancer cells.9  These platinum complexes 

are unique in that they have bulky planar ligands, which results in different structural and DNA-

binding properties in comparison with cisplatin analogues.10 In theory, sterically hindered Pt(II) 

should have reduced reactivity in a substitution reaction with all potential targets, such as 

nucleophiles on DNA, proteins, and small molecules. However, there is some evidence to suggest 

that the antitumor activities of platinum(II) complexes actually increases in the presence of 

sterically hindered ligands.11 These ligands have the ability to impeded the substitution reactions 

and inhibit the undesired interactions between Pt(II) centers and cellular components before the 
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platinum drugs bind to target DNA.12 Heterocyclic bulky ligands can provide appropriate high 

steric hindrance and subsequently thermodynamic stability that is desired, which will make the 

metal complex kinetically inert in nature.13 Aryl groups are able to facilitate transportation across 

the cell membrane by increasing lipophilicity, which thereby improves tumor uptake of drugs. The 

structure of metal-ligand complexes as well as ligand structure are thought to be significant 

parameters for the antitumor activity of metallodrugs.6  

Using Thionate Ligands 

Heterocyclic thiones or thionates are specific structural motives that combine soft and hard 

ends while also possessing rich coordination chemistry according to the diverse modes of action 

ends.14 In an effort to introduce potential antitumor metal-based complexes of new structure, we 

have designed a class of Pt(II)-phosphane complexes containing heterocyclic thionate ligands. 

Previous investigations have previously revealed that phosphane ligands would render the 

platinum complexes more stable in the physiological environment, leading to lower required drug 

doses and potentially reduced toxicity.15 Furthermore, the presence of weakly coordinating carbon 

moieties in the structure of phosphane ligands can donate different steric and electronic properties 

to the complex, making it capable of new biological features.  

The Proposed Complexes  
 

In this study, we describe the reaction of multiple thionate ligands (pyridine-2-thiol, a; 5-

(trifluoromethyl)-pyridine-2-thiol, b; pyrimidine-2-thiol, c; benzothiazole-2-thiol, d; and 

benzimidazole-2-thiol, e) with starting complex cis-[Pt(PPh2allyl)2Cl2], A, bearing 

allydiphenylphosphane (PPh2allyl) ligand.   

The preparation of the newly synthesized Pt(II) thionate complexes was confirmed by 

NMR spectroscopy. Structural information has been extracted by the X-ray crystallographic 
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method. Thionates, as a source of sulfur donor ligands, coordinated to the platinum center in trans-

configuration modes. To investigate the antitumor activity of the complexes, the new trans-Pt(II) 

complexes were evaluated against three human cancer cell lines (lung, A549, ovarian, SKOV3, 

and breast, MCF-7) by means of the MTT assay. Furthermore, the ability of complex 1a to inhibit 

the proliferation of MCF-7 was assessed by measuring cell death via induction of apoptosis. Cell 

cycle analysis was also applied to study the mechanism of antiproliferative effects of 1a. To predict 

the genotoxic effect of complexes on MCF-7 cancer cells, comet assay was used. However, the 

interaction ability of complexes with DNA was investigated by gel mobility-shift analysis as a 

valuable method.  

 

Methodology 

General Procedures and Materials  

1H NMR (400 MHz), 19F{1H} (376.6 MHz), 31P{1H} NMR (162 MHz) and 195Pt{1H} (85.6 

MHz) spectra were recorded on a Bruker Avance DPX 400 MHz instrument at room 

temperature. All chemical shifts (δ) are reported in parts per million (ppm) relative to their 

corresponding external standards (SiMe4 for 1H, CFCl3 for 19F{1H}, 85% H3PO4 for 31P{1H}, 

Na2PtCl6 for 195Pt{1H}) and their coupling constants (J) have been expressed in Hz. The 

microanalyses were performed using a vario EL CHNS elemental analyzer. The instrument for HR 

ESI-Mass measurement was a Shimadzu IT-Tof with an electrospray ionization source, which is 

part of the Arkansas Statewide Mass Spectrometry Facility. The allyldiphenylphosphane 

(PPh2allyl), pyridine-2-thiol (HSpy), 5-(trifluoromethyl)-pyridine-2-thiol (HSpyCF3-5), 

pyrimidine-2-thiol (HSpyN), benzothiazole-2-thiol (HSBt), benzimidazole-2-thiol (HSBi) and all 

the other chemicals were purchased from commercial resources. All the reactions were carried out 
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under Argon atmosphere and in the common solvents and all solvents were purified and dried 

according to standard procedures.16 Precursor complexes cis,trans-[PtCl2(SMe2)2]17 or cis-

[PtCl2(dmso)2]18  were synthesized as reported in the literature. 

 

Synthesis of the Complexes  

cis-[Pt(PPh2allyl)2CI2], A 

To a solution of cis-[PtCl2(dmso)2] (450 mg, 1.07 mmol) or cis,trans-[PtCl2(SMe2)2] (418 

mg, 1.07 mmol) in CH2Cl2 (20 mL), two equivalents of PPh2allyl (461 μL, 2.14 mmol) was 

added. The mixture was stirred at room temperature for 3 h and then the solvent was concentrated 

to small volume (~ 1 mL) under vacuum, and diethyl ether (3 mL) was added to give A as a white 

solid, which was filtered and washed with diethyl ether (3 x 3 mL) and dried. Yield: 669 mg, 87% 

Elm. Anal. Calcd. for C30H30Cl2P2Pt (718.49): C, 50.15; H, 4.21. Found: C, 50.22; H, 4.26. HR 

ESI-MS(+) m/z Cacld. for [M - 2Cl]2+ 323.5731; Found 323.5737. NMR data in CDCl3: δ (1H) 

7.43 (dd, 3JHH = 8.0 Hz, 3JPH = 10.1 Hz, 8H, H°), 7.35 (t, 3JHH = 7.6 Hz, 4H, Hp), 7.18 (t, 3JHH = 

8.0 Hz, 8H, Hm), 5.98-5.90 (m, 2H, Hb), 5.09 (d, 3JHc-cisHb = 9.7 Hz, 2H, diastereotopic Hc), 4.84 

(dd, 3JHc-transHb = 16.6 Hz, 4JHc-transHa = 3.1 Hz, 2H, diastereotopic Hc), 3.32 (dd, 3JHH = 7.6 

Hz, 2JPH = 12.3 Hz, 3JPrH = 35.3 Hz, 4H, Ha); δ (31P{1H}) 4.6 (s, 1JPtP = 3671 Hz, 2P); δ (195Pt{1H}) 

−4420.1 (t, 1JPtP = 3679 Hz, 1Pt). 

 

trans-[Pt(PPh2allyl)2(k1-S-Spy)2], 1a 

Two equimolar amounts of KSpy (21 mg, 0.14 mmol) were dissolved in ethanol (15 mL) 

and added to a solution of A (50 mg, 0.07 mmol) in CH2Cl2 (1 mL). The reaction mixture was 

removed under reduced pressure and the residue was extracted with CH2Cl2 (10 mL). The obtained 



 11 

green solution was filtered through celite, and the filtrate was concentrated to a small volume (~ 1 

mL) under vacuum, and n-hexane (5 mL) was added to give 1a as a green solid, which was filtered 

and washed with n-hexane (3 x 3 mL) and dried. Yield: 45 mg, 74%. Elem. Anal. Calcd. for 

C40H38N2P2PtS2 (867.90): C, 55.36; H, 4.41; N, 3.23; S, 7.39. Found: C, 55.48; H, 4.38; N, 3.28; S, 

7.48. HR ESI-MS(+) m/z Cacld. for [M + 2H]2+ 434.5874; Found 434.5865. NMR data in CDCl3: 

δ (1H) 7.93 (m, 2H, Hg), 7.62 (m, 8H, H°), 7.40-7.09 (m, 14H, Hd, Hmand Hp), 6.80 (t, 3JHH = 7.8 

HZ, 2H, He), 6.54 (t, 3JHH = 7.4 Hz, 2H, Hf), 5.83-5.71 (m, 2H, Hb), 4.90 (d, 3JHc-cisHb = 9.4 Hz, 2H, 

diastereotopic Hc), 4.71 (d, 3JHc-transHb = 15.9 Hz, 2H, diastereotopic Hc), 3.38 (m, 4H, Ha); δ 

(31P{1H}) 10.3 (s, 1JPtP = 2732 Hz, 2P); δ (195Pt{1H}) - 4747.0 (t, 1JPtP = 2737 Hz, 1Pt). 

 The other new complexes were made similarly using A and the appropriate potassium 

thionate ligands.  

 

trans-[Pt(PPh2allyl)2(k1-S-SpyCF3-5)2], 1b 

Yield: 60 mg, 86%. Elem. Anal. Calcd. for C42H36F6N2P2PtS2 (1003.89): C, 50.25; H, 3.61; 

N, 2.79; S, 6.39. Found: C, 50.33; H, 3.67; N, 2.74; S, 6.44. HR ESI-MS(+) m/z Cacld. for [M + 

2H]2+ 502.5747; Found 502.5741. NMR data in CDCl3: δ (1H) 8.07 (s, 2H, Hf), 7.58 (dd, 3JHH = 

7.6 Hz, 3JPH = 11.1 Hz, 8H, H°), 7.29 (t, 3JHH = 7.4 Hz, 4H, Hp), 7.19 (t, 3JHH = 7.4 Hz, 8H, Hm), 

7.08 (d, 3JHH = 8.3 Hz, 2H, Hd), 6.93 (dd, 3JHH = 8.3 Hz, 4JHH = 2.2 Hz, 2H, He), 5.87-5.77 (m, 2H, 

Hb), 4.98 (d, 3JHc-cisHb = 10.2 Hz, 2H, diastereotopic Hc), 4.81 (d, 3JHc-transHb = 17.0 Hz, 2H, 

diastereotopic Hc), 3.39 (m, 4H, Ha); δ (19F{1H}) −61.8 (s, 6F); δ (31P{1H}) 10.1 (s, 1JPtP = 2687 

Hz, 2P); δ (195Pt{1H}) −4747.4 (t, 1JPtP = 2686 Hz, 1Pt). 
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trans-[Pt(PPh2allyl)2(k1-S-SpyN)2], 1c 

Yield: 49 mg, 81%. Elem. Anal. Calcd. for C38H36N4P2PtS2 (869.87): C, 52.47; H, 4.17; N, 

6.44; S, 7.37. Found: C, 52.32; H, 4.21; N, 6.49; S, 7.41. HR ESI-MS(+) m/z Cacld. for [M + 

2H]2+ 435.5827; Found 435.5826. NMR data in CDCl3: δ (1H) 7.85 (d, 3JHH = 4.6 Hz, 4H, Hd), 

7.74 (dd, 3JHH = 7.9 Hz, 3JPH = 10.6 Hz, 8H, H°), 7.28-7.19 (m, 12H, Hm and Hp), 6.44 (t, 3JHH = 

4.6 Hz, 2H, Hf, 6.00-5.91 (m, 2H, Hb), 5.00 (d, 3JHc-cisHb = 10.3 Hz, 2H, diastereotopic Hc), 4.88 

(d, 3JHc-transHb = 16.4 Hz, 2H, diastereotopic Hc), 3.43 (m, 4H, Ha); δ (31P{1H}) 10.8 (s, 1JPtP = 2766 

Hz, 2P); δ (195Pt{1HJ) - 4787.3 (t, 1JPtP = 2771 Hz, 1Pt). 

 

trans-[Pt(PPh2allyl)2(k1-S-Sbt)2], 1d 

Yield: 58 mg, 84%. Elem. Anal. Calcd. for C44H38N2P2PtS4 (980.07): C, 53.92; H, 3.91; N, 

2.86; S, 13.09. Found: C, 53.98; H, 3.87; N, 2.81; S, 13.16. HR ESI-MS(+) m/z Cacld. for [M + 

2H]2+ 491.0594; Found 491.0598. NMR data in CDCl3: δ (1H) 7.68 (dd, 3JHH = 8.1 Hz, 3JPH = 9.8 

Hz, 8H, H°), 7.55 (d, 3JHH = 8.0 Hz, 2H, H9), 7.45 (d, 3JHH = 7.9 Hz, 2H, Hd), 7.28-7.16 (m, 14H, 

Hf, Hm and Hp), 7.11 (t, 3JHH = 7.9 Hz, 2H, He), 5.79-5.68 (m, 2H, Hb), 4.93 (d, 3JHc-cisHb = 10.2 

Hz, 2H, diastereotopic Hc), 4.78 (d, 3JHc-transHb = 16.8 Hz, 2H, diastereotopic Hc), 3.47 (m, 4H, Ha); 

δ (31P{1H}) 10.9 (s, 1JPtP = 2591 Hz, 2P); δ (195Pt{1H}) −4641.4 (t, 1JPtP = 2589 Hz, 1Pt). 

 

trans-[Pt(PPh2allyl)2(k1-S-Sbi)2], 1e 

Yield: 46 mg, 69%. Elem. Anal. Calcd. for C44H40N4P2PtS2 (945.97): C, 55.87; H, 4.26; N, 

5.92; S, 6.78. Found: C, 55.98; H, 4.31; N, 5.87; S, 6.72. HR ESI-MS(+) m/z Cacld. for [M + 

2H]2+ 473.5983; Found 473.5966. NMR data in CDCl3: δ (1H) 10.32 (brs, 2H, NH), 7.45 
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(dd, 3JHH = 7.7, 3JPH = 9.6 Hz, 8H, H°), 7.24 (d, 3JHH = 7.8 Hz, 2H, Hg), 7.21 (d, 3JHH = 7.6 Hz, 

2H, Hd), 7.18-7.04 (m, 12H, Hm and Hp), 7.01-6.87 (m, 4H, He and Hf), 5.74-5.63 (m, 2H, Hb), 

4.97 (d, 3JHc-cisHb = 10.0 Hz, 2H, diastereotopic Hc), 4.79 (d, 3JHc-transHb = 16.2 Hz, 2H, 

diastereotopic Hc), 3.48 (m, 4H, Ha); δ (31P{1H}) 10.6 (s, 1JPtP = 2643 Hz, 2P); δ (195Pt{1H}) 

−4684.8 (t, 1JPtP = 2651 Hz, 1Pt). 

 

Single-Crystal Structure Determination  

Intensity data for these compounds were collected using a D8 Quest k-geometry 

diffractometer with a Bruker Photon II ccd area detector19 and an Incoatec Iμs microfocus Mo Kα 

source (λ = 0.71073 Å). The data was corrected for absorption by the empirical method. 20 The 

crystal system and the space group were determined by systematic absences and statistical tests 

and verified by subsequent refinement. The structure was solved by direct methods and refined by 

full-matrix least-squares methods on F2.20 The positions of hydrogens were initially determined 

by geometry and were refined using a riding model. Non-hydrogen atoms were refined with 

anisotropic displacement parameters. Hydrogen atom displacement parameters were set to 1.2 

times the isotropic equivalent displacement parameters of the bonded atoms. 

The molecules in the structure of 1a are located on the inversion centers; thus, one half of 

the atoms in the two molecules are unique. The selected crystal for complex 1b was slightly split 

(~ 4°), requiring that the intensity data be processed as if the sample were a twin. The molecule 

was found to sit on a center of symmetry; thus, only one half of the atoms were unique. Also, the 

metal complex 1c was located on an inversion center; thus, one half of the atoms are unique. The 

solvent molecule was in a general position. The CH2Cl2 solvent molecule was disordered. The 
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occupancies of the CH2Cl2 refined to 0.73(3) and 0.27(3) for the S and T orientations, respectively. 

Restraints on the positional and displacement parameters of the solvent were required. 

 

Computational Details  

Density functional calculations were performed with the program suite Guassian0922 using 

the B3LYP level of theory.23 The LANL2DZ basis set was chosen to describe Pt24 and the 6-

31G(d) basis set was chosen for other atoms. The geometries of complexes were fully optimized 

by employing the density functional theory without imposing any symmetry constraints. In order 

to ensure the optimized geometries, frequency calculations were performed employing analytical 

second derivatives. Solvent effects have been considered by the conductor-like polarizable 

continuum model (CPCM).25   

The crystal structure of 1c was directly or indirectly employed in order to make input files 

for the software. The ground state (S0) of 1c and 1c” were optimized in gas phase or 

CH2Cl2 solvent and their optimized coordinates were collected.  

 

Biological Assay 

Cell lines and cell culture 

Human cancer cell lines, MCF-7 (breast cancer), SKOV3 (ovarian cancer), and A549 (non-

small cell lung cancer) were purchased from the National Cell Bank of Iran (NCBI, Pasteur 

Institute, Tehran, Iran). The cells were grown in complete culture media containing RPMI 1640 

(Biosera, France), 10% fetal bovine serum (FBS; Gibco, USA), and 1% penicillin-streptomycin 

(Biosera, France) and kept at 37 °C in a humidified CO2 incubator. MCF-10A cells (human breast 

epithelial cell line) were cultured in DMEM/Ham's F-12 (GIBCO-Invitrogen, Carlsbad, CA) 
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supplemented with 100 ng/ml cholera toxin, 20 ng/ml epidermal growth factor (EGF), 0.01 mg/ml 

insulin, 500 ng/ml hydrocortisone, and 5% chelex-treated horse serum. 

Cytotoxic activities of trans-Pt(II) compounds were investigated using a standard 3-(4,5-

dimethylthiazol-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, as previously described.4 To 

do this, the cells with a density of 0.8 × 104 cells per well were seeded in 96-well microplates and 

kept for 24h to recover. The cells were then treated with compounds series A and 1a-e in different 

concentrations ranging from 1 to 100 μM in a triplicate manner and incubated for at least 72 hours 

at 37 °C in humidified CO2 incubator. Following incubation, the media was completely discarded 

and replaced with 150 μl of RPMI 1640 containing 0.5 mg/mL MTT solution and incubated at 

room temperature for 3h. To dissolve the formazan crystals, the media containing MTT was 

discarded again and 150 μl of DMSO was added to each well and incubated for at least 30 min at 

37 °C in the dark. The absorbance of individual well was then read at 490 nm with an ELISA 

reader. The 50% inhibitory concentration of each compound, representing IC50, was calculated 

with CurveExpert 1.4. Data are presented as mean ± SD. 

 

Apoptosis assay 

BioLegend's PE Annexin V Apoptosis Detection Kit with 7AAD (Biolegend, USA) was 

used to assess the apoptotic effect of 1a compound as previously described.4e Briefly, 0.5 x 

105 cells per 1 ml of complete culture medium were seeded in a 24-well culture plate, treated 

with 1a compound in different concentrations (2.5, 5 and 10 μM) for 72 h. An untreated sample 

was also included as a negative control. Treated and untreated cells were then harvested and 

washed twice with cold BioLegend's Cell Staining Buffer, transferred to the polystyrene round-

bottom tubes (BD Bioscience, USA) and stained with 2 μl of PE-conjugated Annexin V and 2 μl 
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of 7-AAD solution for 15 min at room temperature in the dark. 300 μl of Binding Buffer was added 

to each tube and analyzed immediately by four-color FACSCalibur flow cytometer (BD 

Bioscience, USA) with proper setting. The data were analyzed by FlowJo software packages. 

 

Cell cycle analysis 

The MCF-7 cells in a total number of 50 × 103 were seeded in a 24-well cell culture plate 

and treated with two different concentrations of 1a (1.5 and 2.5 μM). Following 72 hours of 

incubation, the cells were harvested and washed in PBS 1x. The cells were then fixed in cold 70% 

ethanol with overnight incubation at 4°C. The fixed cells were washed two times in PBS 1x and 

centrifuged at 850 ×g. Afterwards, the cells were treated with 50 μl ribonuclease A (100 μg/ml) to 

ensure only DNA, not RNA, is stained. At the end, 200 μl Propidium Iodide (PI, 50 μg/ml) solution 

were added to stain DNA. The cells were finally acquired on four-color FACSCalibur flow 

cytometer (BD Bioscience, USA) with proper setting and analyzed by FlowJo software. 

 

Shift mobility assay 

The shift mobility assay was applied to assess the direct interaction of 1a with DNA. For 

this purpose, as previously described,6 the same aliquots of circular form of pGEM-FT plasmid 

was diluted in a buffer containing Tris-HCl (pH=8.5) in the presence of different concentrations 

of 1a (100, 200 and 400 μm) and then incubated at 37 °C for 24h. Cisplatin in the same 

concentrations as well as untreated DNA were also included as positive and negative controls, 

respectively. Afterward, 10 μl of each sample were mixed with 5 μl KBC loading dye (Kawsar 
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Biotec, Iran) and electrophoresed for 3 hours at 70 V in 0.5% TEA buffer in 1 % agarose gel 

(Invitrogen, USA) and then visualized by a UV detector. 

 

Comet assay 

We also assessed the genotoxic ability of 1a compound using comet assay. To do this, 5 × 

105 MCF7 cells in 2 ml complete culture medium were prepared and treated with two different 

concentrations of 1a (10 and 50 μM). Untreated as well as Doxorubicin treated (1 μM) cells were 

also included as negative and positive controls, respectively. The cells were incubated for 20 min 

at 37°C in a humidified incubator with 5% CO2. The cells were then participated, re-suspended in 

100 μl 1× PBS, mixed with low melting point agarose (LMPA) and dropped on a slide pre-coated 

slide with normal melting point agarose (NMPA) layer. A coverslip was placed over the gel and 

set at 4°C for 15 min. The coverslip was then removed and 100 μl of LMPA was added onto the 

agarose gel mixture layer, covered with a new coverslip, and placed at 4°C for 15 min. The 

coverslip was then removed, and the slides were immersed into cold lysis solution and refrigerated 

overnight and then in fresh cold alkaline electrophoresis buffer for 40 min. The slides were 

electrophoresed with the adjusted voltage (24 V) and current (300 mA). Afterward, the slides were 

flooded with neutralizing Tris buffer (pH=7.4) and distilled water for 5 min, and then in 70%, 90% 

and 100% Ethanol (Merck, Germany) sequentially. The slides were lastly stained with 100 μl PI 

(50μg/ml) and visualized by a high resolution fluorescent microscopy (BX61, Olympus). The 

images were taken at 20× magnification and analyzed by the Olympus micro imaging software 

CellSens (Olympus, Japan). 
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Determination of Intracellular Reactive Oxygen Species (ROS) 

Cellular Reactive Oxygen Species Detection Assay Kit (TEB PAZHOUHAN RAZI, Iran) 

was used to determine the oxidative stress response in SKOV3 cell lines following treatment 

with 1a according to manufacture instruction with a little modification. Briefly, SKOV3 cells were 

grown in complete culture media, harvested as a single cell suspension with a density of 300 × 

103 and treated with 10, 20 and 40 μM for 2 h at 37°C. Untreated cells were also included as 

negative control. After incubation, the cells were washed two times with buffer R1 and stained 

with R2 buffer containing 2’,7’-Dichlorodihydrofluorescein diacetate (DCFH-DA) prepared in 

phenol red negative RPMI culture media (Biosera, France) for 1 h at 37°C. The H2O2 (1000 μM) 

were added to the control positive tube and incubated for more 20 min. The cells were then washed 

with R1 buffer and subjected to flow cytometry analysis immediately. At least 15000 events were 

acquired on four color FACSCalibur flow cytometer (BD Biosciences, USA) and analyzed by 

FlowJo software v10.  

 

Results and Discussion 

Synthesis and characterization  

Figure 2 clearly demonstrates the general synthetic route for the new complexes. The 

starting complex cis-[Pt(PPh2allyl)2Cl2], A, was synthesized through ligand exchange, by the 

reaction of allydiphenylphosphane (PPh2allyl) with known complex cis,trans-[PtCl2(SMe2)2]17 

or cis-[PtCl2(dmso)2]18. The dimethyl sulfide (SMe2) and dimethyl sulfoxide (dmso) displace with 

monodentate phosphane ligand under mild conditions. Treatment of A (in CH2Cl2) with ethanolic 

solution of potassium thionate salts (KSR) produced new platinum(II) complexes of general 
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formula trans-[Pt(PPh2allyl)2(k1-S-SR)2], SR = deprotonated form of pyridine-2-thiol (Spy, 1a), 5-

(trifluoromethyl)-pyridine-2-thiol (SpyCF3-5, 1b), pyrimidine-2-thiol (SpyN, 1c), benzothiazole-

2-thiol (Sbt, 1d) and benzimidazole-2-thiol (Sbi, 1e). 

 

 

Figure 2. Preparation of trans-Pt(II) complexes with heterocyclic thionate ligand.  

 

 The cis-trans isomerization (from A to 1a-e) was previously detected in some Pt(II) 

complexes during the chloride ligand replacement with bulky thiolate ligands. However, density 

functional theory (DFT) was used to support this observation and get more insight into this 

isomerization. DFT was applied by the optimization of the lowest energy structures, either gas 

phase or CH2Cl2 solution, of the proposed cis and trans geometries for 1c as a case study in this 

calculation, which is shown in Figure 3.  

 

Figure 3. The energy difference between 1c and its corresponding cis isomer 1c’ in (a) gas phase and (b) 
CH2Cl2 solution.  
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 The DFT calculation indicated that the trans isomer 1c is much more stable than the 

suggested cis isomer 1c’ in both states. In gas phase, 1c is more stable than 1c’ by 23.051 kJ/mol. 

In the CH2Cl2 solution, the difference between 1c and 1c’ is equal to 10.787 kJ/mol (Figure 3). 

Additionally, the NMR spectra and X-ray crystallography supported that the theoretical 

calculations correctly predicted the preferred trans configuration.  

The formulae proposed for A and 1a-e were confirmed by HR ESI-Mass analysis. The 

ESI-Mass spectra of these complexes were recorded in the positive mode and in a dilute 

acetonitrile solution. The HR ESI-Mass(+) spectrum for A displayed the presence of molecular 

ion [M - 2CI]2+, whereas the HR ESI-Mass(+) spectra for 1a-e revealed the molecular ion [M + 

2H]2+ as the most intense peak in the complexes. The NMR labeling of ligand moieties are depicted 

in Figure 2, for clarifying the chemical shift assignments. The main resonances of functional 

groups for phosphane ligand in A are derived from 1H NMR spectroscopy. The 31P{1H} NMR 

spectrum of A has revealed one singlet resonance at δ = 4.6 ppm flanked by Pt satellites (1JPtP= 

3671 Hz) which is attributed to the PPh2allyl moieties in cis-dipositions. This signal has been 

cleanly shifted to the lower fields in trans-configured Pt(II) complexes accompanied by decreasing 

in the coupling constant between platinum atom and phosphorus atom, for instance, in the case of 

complex 1c, δ = 10.8 ppm (1JPtP= 2766 Hz). The 1JPtP value is indicative of the electron-donating 

character of the cis- or trans-positioned ligands. The lowering of this value is good evidence to 

rule out the formation of the cis configuration in the thiolate complexes and is consistent with 

a trans feature (1a-e). Confirming earlier observations in the 31P{1H} NMR spectra by 

the 195Pt{1H} NMR spectra of complexes A and 1c (selected as case study) demonstrated a triplet 

resonance at δ = −4420.1 ppm with 1JPtP value of 3679 Hz and δ = −4787.3 ppm with 1JPtP = 2771 

Hz, respectively, corresponding to the coupling among Pt(II) center and PPh2allyl ligand. In the 1H 
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NMR spectra of 1a-e, all the characteristic resonances of PPh2allyl ligands as well as S-

coordinated thionate moieties have been clearly distinguished. The colorless (A and 1c) or yellow 

(1a and 1b) single crystals, suitable for X-ray diffraction, were obtained by slow diffusion of n-

hexane into a CH2Cl2 solution of each product at room temperature. An ORTEP representation 

of A and 1a-c are determined in Figure 4.  A crystallized in the monoclinic (space group P21/n), 

while 1a-c crystallized in the triclinic (space group P 1‒) crystal systems. The molecular structure 

of precursor A evidently shows two PPh2allyl ligands in a cis configuration while the molecular 

structures of 1a-c display two PPh2allyl ligands in a trans position. Two allydiphenylphosphanes 

(P1, P2) and two chloride ligands (Cl1, Cl2) in A or two PPh2allyl (P1, P#1) and two sulfur atoms 

(S1, S#1) in 1a-c entirely surrounded the Pt(II) center (Figure 4). The geometry around the 

platinum center in A and 1a-c is considered a slightly distorted square-planar. The angle 

subtended by the phosphane ligands at the Pt(II) center in A (P1-R1-P2 = 99.65(8)°), deviates from 

the 90° indicative of a distorted planar environment. The angles of P1-Pt1-P P#1 and S1-Pt1-S#1 

in 1a-c are 180.0° but other angles between thiolates and phosphane ligands are deviated from the 

90°. As depicted by perspective ORTEP view of the structures (Figure 4), the allyl substituents of 

the PPh2allyl phosphane ligands are obviously detected to be perpendicular to the molecule plane 

in each structure. The distances between Pt(II) and the PPh2allyl moieties (Pt1-P1 = 2.241(2) Å 

and Pt1-P2= 2.238(3) Å) in A, (Pt1A-P1A = 2.2980(4) Å and Pt1 B-P1B 2.3129(4) Å) in 1a, or 

(Pt1-P1 = 2.3015(6) Å) in 1b and (Pt1-P1 = 2.3031(5) Å) in 1c, are in the same range as those 

found in similar Pt(II)-phosphane complexes. The distances of the Pt–S bonds are almost equal 

in 1a-c (~2.33 Å). It is notable that the pyridyl moiety in the k1-S-SR ligand is approximately 

perpendicular to the metal plane. 
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Figure 4. ORTEP plot molecular structures of A and 1 a-c drawn at 50 % probability level. Selected bond lengths (Å) 
and angles (deg) for complexes: (a) A: Pt1-35 Cl1 2.352(2), Pt1-Cl2 2.346(3), Pt1-P1 2.241(2), Pt1-P2 2.238(3); Cl1-
Pt1-Cl2 88.50(9), P1-Pt1-P2 99.65(8), Cl1-Pt1-P1 151.57(8), Cl2-Pt1-P2 168.14(9); (b) 1 a: Pt1A- P1A 2.2980(4), 
Pt1B-P1B 2.3129(4), Pt1A-S1A 2.3261(4), Pt1B-S1B 2.3310(4), P1A-Pt1A-P#1 A 180.0, P1B-Pt1B-P#1B 180.0, 
S1A-Pt1A-S#1 A 180.0, S1B-Pt1B-S#1B 180.0; (c) 1 b: Pt1-P1 2.3015(6), Pt1-S1 2.3313(5), P1-Pt1-P#1 180.0, S1-
Pt1-S#1 180.0, P1-Pt1-S1 84.840(18), P1-Pt1-S#1 95.160(18); (d) 1 c: Pt1-P1 2.3031(5), Pt1-S1 2.3328(5), P1-Pt1-
P#1 180.0, S1-Pt1-S#1 180.0, P1-Pt1-S1 94.710(16), P1-Pt1-S#1 85.289(16), P#1-Pt1-S1 85.291(16), P#1-Pt1-S#1 
94.710(16). Hydrogen atoms and CH2Cl2 solvent molecules (A and 1 c) were omitted for clarity.  

 
Biological activity studies  
 

The in vitro cytotoxic activity of A and 1a-e were evaluated on three cancer cell lines 

including human lung (A549), ovarian (SKOV3), and breast (MCF-7) carcinoma. As shown in 

Table 1, 1a, showed higher anti-proliferative activity than cisplatin on the studied cell lines. It 

showed a good anti-proliferative activity with IC50 of 4.31, 6.23 and 4.80 μM comparing with 

those measured for cisplatin (9.71, 14.48 μM and 11.59 μM, against A549, SKOV3 and MCF-7 

cell lines, respectively). One-way ANOVA statistical analysis showed that the differences between 
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1a and cisplatin is statistically significant. 1b also displayed better in vitro cytotoxicity than 

cisplatin on SKOV3 cell line with IC50 of 12.38 μM, however this difference is not statistically 

significant. 1b and cisplatin IC50 on A549 cell line was also not statistically significant. 1c and 

cisplatin IC50 on SKOV3 cells was also not statistically significant. Complexes A, 1b, 

1c, and 1e also showed antitumor activity against MCF-7 cell line in comparison with cisplatin. It 

should be mentioned that the cytotoxicity of all the ligands including Spy, Spy-5-CF3, SpyN, Sbt, 

Sbi and allydiphenylphosphane (PPh2allyl) was evaluated against A549 cell line and the IC50 of 

all the ligands was more than 100 μM. 

 

Complex (IC50 ± SD) μM 

 A549 SKOV3 MCF-7 MCF-10A 

A 22.49 ± 1.62 34.50 ± 1.53 19.01 ± 1.24 68.74 ± 1.21 

1a 4.31 ±0.72 6.23 ± 0.74 4.80 ± 0.71 38.42 ± 2.06 

1b 12.59 ± 1.09 17.49 ± 1.21 19.68± 1.59 53.26 ± 1.13 

1c 16.01 ± 1.12 12.38 ± 1.17 15.64 ± 1.37 44.71 ±1.42 

1d 20.15 ± 1.47 22.14 ± 1.67 34.65 ± 0.83 88.42 ±1.39 

1e 18.62 ± 1.55 21.73 ± 1.19 17.45 ± 1.71 47.06 ± 0.83 

Cisplatin 9.71 ± 1.70 14.48 ± 1.54 11.59 ± 1.66 29.47 ± 1.03 
 

Table 1. In vitro cytotoxicity of all the synthesized compounds against cancerous and non-cancerous cell lines  

 

Furthermore, to verify the selectivity between cancer and normal cell lines, the effects of 

these compounds on the proliferation on non-cancerous cell line (MCF-10A; normal human 

epithelial breast cell line) were also determined. As shown in Table 1, all these compounds 
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displayed reasonable selectivity between tumorigenic and non-tumorigenic cell lines and showed 

less cytotoxicity than cisplatin on MCF-10A cell line. Structure-activity relationship studies 

revealed that, generally, the complex A which includes a chloro group instead of a thionate ligand, 

showed lower anti-proliferative activity than other. Among thiolated ligands, 1b with a thiolated 

pyrimidine ring and especially, 1a with a thiolated pyridine ring showed the highest potency.  

 

Determining apoptotic effect of 1a on MCF-7 cell line.  

BioLegend’s PE Annexin V Apoptosis Detection Kit was used with 7AAD to specifically 

determine the dose-dependent apoptotic effect of complex 1a on cancerous cells. To determine 

this, 1a with three concentrations (2.5, 5, and 10 μM) was applied onto MCF-7 cells. As illustrated 

in Figure 5, with the increase in the concentration of 1a from 2.5 to 10 μM, the percentage of the 

cells in early apoptotic phase significantly increases from 7.8% in untreated cells to 11.0%, 40.8%, 

and 62.9% in the treated cells. This observation indicates that compound 1a as a representative of 

the new trans-Pt(II) complexes is able to effectively induce apoptosis in cancerous cells in a dose 

dependent manner. Also, the observed antiproliferative/cytotoxic effect for 1a in cytotoxic assay 

could be partly mediated through inducing apoptosis in cancer cells.  
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Figure 5. Flow cytometric analysis of apoptotic effect of 1a. MCF-7 cells (Human breast carcinoma) were left 
untreated (A) or treated for 48 h with 2.5, 5, and 10 μM of 1a. Q1: necrotic cells, Q2: late apoptotic cells, Q3: early 
apoptotic cells, and Q4: living cells.  
 
The potential effect of 1a on MCF-7 cells’ cell cycle 

Quantitation of DNA content using flow cytometry or cell cycle analysis is a basic method 

which is commonly used to assess the mechanisms of antiproliferative effects of anticancer drugs. 

In this method, a fluorescent DNA binding dye (in this study: propidium iodide, PI) is used to stain 

DNA and measure the amount of DNA present in the cell. The cells in the G2 phase are expected 

to absorb approximately twice the amount of color compared to the cells in G1 as their DNA 

content has been doubled during S phase. Therefore, the cells in S phase have more DNA than G1 

cells but less than G2 ones. Therefore, we were able to check whether our compound exerts its 

antitumor effects thorough modifying cell cycle or not. As observed in Figure 6, comparing to 
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untreated cells, no obvious change in different cycle phases could be observed which probably 

shows that 1a has no clear effect on the cell cycle of cancerous cells. 

 
Figure 6. The effect of 1a on the cell cycle in MCF-7 cells.  

 

Genotoxicity and DNA interaction 

Comet assay was used as a valuable method to predict the genotoxic effect of new 

synthesized trans-Pt(II) complexes on cancerous cells. In this single cell microgel electrophoresis 

method, following the DNA damage, the migration of chromosomal DNA from the nucleus 

increases and resembles the shape of a tail or comet. The longer tails display the more genotoxicity, 

whilst untreated cells as un-fragmented cells, represent a little or no tail. In the current study, we 

checked the genotoxicity of 1a as the best cytotoxic compound in the 1 series through comet assay. 

As could be observed Figure 7, treatment of MCF-7 cells with both low and high concentrations 
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of 1a (10 and 50μM), results in the appearance a relatively long tail following the electrophoresed 

cells in the concentration of 10 μM, which shows strong genotoxic ability of 1a. In the case of a 

concentration of 50, as displayed in Figure 7D, no nucleus remained and only a blurry tail of 

degraded DNA could be seen. These observations collectively showed that 1a compound intensely 

targets the genome content of cancerous cells. However, in electrophoresis mobility shift assay 

which used to further show the direct interaction of 1a compound with DNA, a little shift was 

observed comparing to cisplatin as positive control in Figure 8. It could also be seen that compared 

to the untreated control, 1a could make a nick in DNA and subsequently slightly shift the mobility 

of the plasmid in a dose dependent manner. These observations confirm the direct interaction 

of 1a with DNA through genotoxic effect as observed in comet assay. This clearly indicates that 

the effective mechanisms of these compounds have a direct interaction with DNA and probably 

other molecules as well. These results are collectively consistent with previous studies which have 

described platinum compounds as DNA-targeting metal-based anticancer agents.14  

 

Figure 7. Genotoxic effect of 1a on MCF-7 cell line. The percentage of degraded DNA in the tail has remarkably 
increased following treatment with doxorubicin (B: Docorubicin) as a positive control and different concentrations 
of 1a (C and D) in comparison to untreated cells (A: negative control). For better resolution, the same pictures from 
CometScore software are also shown.  
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Figure 8. Mobility shift assay of 1a compound. pGEM-FT plasmid in circular form was incubated with different 
concentrations of cisplatin (positive controls) as well as compound 1a for 24h.   
 

In order to determine the binding mode and binding site of the trans-Pt(II) complexes in 

interaction with DNA, molecular docking studies was also employed. As shown in Figure 9, 1d 

fitted into the minor groove of DNA and interacts through its sulfur groups via weak hydrogen 

bonding with G4 and C11 base pairs in the minor groove of DNA.  

 

Figure 9. Molecular docking studies of 1d in binding with DNA (PDB ID: 1BNA) 
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Intracellular Reactive Oxygen Species (ROS) Determination 

A flow cytometry based method was used for determination of cellular reactive oxygen 

species (ROS) in SKOV3 cell line after treatment with 1a. In this highly sensitive method, to 

consider ROS formation, SKOV3 cells were treated with 1a and H2O2 (positive control) and 

stained with 2’,7’-Dichlorodihydrofluorescein diacetate (DCFH-DA), a cell-permanent non-

fluorescent dye which is oxidized by cellular ROS and produce 2’,7’- dichlorofluorescein (DCF) 

fluorescent component. The intensity of DCF is a direct estimate of the amount of ROS within the 

cells. As illustrated in Figure 10, treatment of SKOV3 cells with 1a moderately induce ROS in a 

relatively dose dependent manner, however the production of ROS was higher in lower 

concentration of 1a (10 μM) comparing to higher concentration (40 μM) (Figure 10). 

 

Figure 10. Generation of ROS in SKOV3 cells induced by various concentrations of 1a and H2O2 as positive 
control. Changes in ROS levels were expressed as a ratio of the mean fluorescence intensity (MFI) in each condition 
divided by the basal intensity of the ROS at the untreated cells (negative controls, MFI0). H2O2 could induce ROS 
production within 20 minutes (light blue line). Compound 1a at all concentrations could induce ROS production in 
SKOV3 cell line. However in lower concentrations, 10 μM (dark-blue line) 1a is more efficient than higher 
concentrations, 20 μM (green line) and 40 μM (orange line), in comparison to untreated cells (red filled).  
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Conclusions and Future Directions 

Ultimately, a synthetic approach has been introduced to obtain a class of platinum 

complexes with the general formula trans-[Pt(PPh2allyl)2(k1-S-SR)2], 1, PPh2allyl = 

allyldiphenylphosphine, SR = deprotonated form of pyridine-2-thiol (Spy, 1a), 5-

(trifluoromethyl)-pyridine-2-thiol (SpyCF3-5, 1b), pyrimidine-2-thiol (SpyN, 1c), benzothiazole-

2-thiol (Sbt, 1d) and benzimidazole-2-thiol (Sbi, 1e). NMR spectroscopy was an important tool to 

accurately characterize the new Pt(II) complexes. Furthermore, single X-ray crystallography was 

used to confirm the cis-configuration of PPh2allyl ligands in starting complex A. The X-ray crystal 

structure determined that the heterocyclic thionate ligands are bound to the Pt(II) center with S-

coordinating mode with trans-positioned to each other. Also, all newly synthesized Pt(II) 

complexes were tested against three human cancer cell lines including lung (A549), ovarian 

(SKOV3) and breast (MCF-7), which showed potent antitumor activities. In vitro studies 

introduced 1a as a therapeutic agent due to the inhibition growth of MCF-7 cancer cell, mediated 

through inducing apoptosis. According to the observations, 1a has the highest affinity to the DNA 

in vitro and considerable potential for additional development as an anticancer agent. Further 

studies are needed to provide new insights into accurately exploring the mechanism of action of 

platinum drugs within biological systems, which will lead to the development of new effective 

anticancer metallodrugs.  

By utilizing this new and reliable strategy for the preparation of trans-Pt(II) complexes, 

resistance to conventional Pt treatment may be overcome. Changing the configuration of Pt(II) 

complexes and utilizing thionate ligands is an excellent approach to bring cytotoxic effects and 

bioactivity to cancerous cells. These new Pt(II) drugs have great potential in the area of anticancer 

therapy and treatment.  
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