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1.0. Introduction 

1.1. Background 

 As indicated by University of California Berkeley professor Dr. David Sedlak in his book 

Water 4.0, “If water is the essential ingredient of life, then water supply is the essential 

ingredient of civilization.” While water is undoubtedly crucial, one-fifth of the population in the 

world currently lives in areas of physical water scarcity (UN 2015).  

 As both world population and industrial development increase, water consumption also 

increases. When combined with localized drought, these elements have led to predictions that 

there will be 1.8 billion people living in absolute water scarcity and nearly 70 percent of the 

world could be experiencing water-stressed conditions by 2025 (UN 2015). Currently, many 

water treatment plants rely on water intake from reservoirs or aquifers; however, under water-

stressed conditions, the reliability of reservoirs or aquifers could be jeopardized. To supplement 

water resources, water reuse may be utilized when confronted with water scarcity. 

1.2. Water Reuse 

 Recycling treated wastewater as a drinking water source may be necessary to meet future 

drinking water needs. Water reuse, or water recycling, can be classified in two different 
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categories: indirect and direct. Indirect reuse implies utilizing water downstream from a 

community’s wastewater discharge. In many countries, indirect water reuse is employed to 

augment drinking water supplies (Le-Minh et al. 2010). On the other hand, direct reuse involves 

treated wastewater being sent directly to the point of use, typically for non-potable purposes 

(Dishman et al. 1989).  

In the midst of water scarcity, direct reuse of wastewater effluent as potable water may be 

required. To accomplish this, wastewater treatment plants would require retrofitting for direct 

potable reuse. The quality of the reuse water must ensure safety, especially for public 

consumption purposes. 

1.3. Endocrine Disrupting Compounds 

 There are an estimated 70,000 compounds with endocrine disrupting potential (Gillesby 

et al. 1998). EDCs are typically found in personal care products, pharmaceuticals, and pesticides 

(Snyder et al. 2003), and can potentially cause detrimental health effects if consumed. Studies 

show EDCs have the potential to affect normal reproduction (Colborn et al. 1993, Rupnik et al. 

2011). However, little is known about the way in which EDCs affect humans (Rupnik et al. 

2011). Moreover, as documented by Falconer et al. (2006), due to lack of scientific knowledge 

and concerns expressed by the public, further assessment about the risks of EDCs to humans 

should be conducted.  

Disconcertingly, EDCs are currently found in wastewater effluents (Snyder et al. 2003). 

In fact, current wastewater treatment plants are not designed to remove EDCs from water 

(Lemanik et al. 2007), nor are there maximum contaminant limits for personal care products or 

pharmaceuticals in drinking water (Snyder et al. 2003). To recycle wastewater for drinking water 

purposes, a more complete understanding of the harmfulness of EDCs is required. Further, a 
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benchmark for EDCs in reuse water should be established. The toxicity of select EDCs was 

evaluated to further understand the adverse impact of EDCs in wastewater effluents. The results 

of the evaluation are documented herein. 

1.4. Selection of Endocrine Disrupting Compounds for Study 

 Within a wastewater treatment plant in Oklahoma, several EDCs were found within the 

effluent, including sucralose, amoxicillin, estrone, caffeine, triclosan, and atrazine, among others. 

This particular wastewater treatment plant employed primary and secondary clarifiers, biological 

nutrient removal, and post-aeration with ultraviolet disinfection. The EDCs and the respective 

concentrations within the wastewater effluent are reported in Table 1.  

Table 1. Occurrence of EDCs in Wastewater Treatment Plant Effluent 

Compounds Occurrence of Compounds 
(parts per trillion) (ng/L) 

Sucralose 49000 
Amoxicillin 4600 

Acesulfame-K 4100 
Estrone 130 
Caffeine 60 
Triclosan 43 
Atrazine 16 

 

 Based on the effluent data from the wastewater treatment plant in Oklahoma and the EDC 

classification that was present, five compounds were selected for this particular study: 

amoxicillin, estrone, triclosan, atrazine, and acetaminophen. Although acetaminophen was not 

found in this particular wastewater discharge, the compound was chosen because of its recent 

popularity in pharmaceutical products such as Dayquil® and Tylenol®. Sucralose and caffeine 

were not selected because of previous studies regarding their toxicity and removal from 

wastewater (Heberer 2002, Mawhinney et al. 2011, Soh et al. 2011).  
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Amoxicillin, or C16H19N3O5S, is a common pharmaceutical compound. Amoxicillin is a 

penicillin antibiotic used to treat illness such as pneumonia, ear infection, and tonsillitis. In a 

study conducted by Andreozzi et al. (2004), algal assays were utilized to show amoxicillin as 

non-toxic to eukaryotic organisms. However, little is known about the toxicity of the compound 

to ecosystems and human health. 

Estrone, or C18H22O2, is a hormone and a steroid. The compound is a known female 

carcinogen. Additionally, the compound is thought to potentially cause anorexia, nausea, 

vomiting, and other health effects among men (OSHA 2016). 

Triclosan, or C12H7Cl3O2, is a common antibacterial soap and a household and personal 

care product. Triclosan has shown irreversible toxic effects to DNA at concentrations above 0.25 

mg/L, and it also poses a potential risk to the environment (Ciniglia et al. 2005). Triclosan has 

little acute toxicity to estuarine organisms, but has a potential to possess chronic, sub-lethal, or 

metabolite toxicity (DeLorenzo et al. 2008).  

Atrazine, or C8H14ClN5, is an herbicide. Among the compounds within this study, 

atrazine is the most researched, and therefore, atrazine is the most regulated. In fact, atrazine is 

regulated under water statutes from the United States Environmental Protection Agency (US 

EPA). More specifically, the US EPA has placed a maximum contaminant level for atrazine at 3 

parts per billion. The US EPA has also declared that atrazine has relatively low acute toxicity 

and is not likely a human carcinogen (EPA 2016). 

Acetaminophen, or C8H9NO2, is a pharmaceutical product found in brand name products 

such as Tylenol® and DayQuil®. The compound is often utilized to treat the common cold, flu, 

and allergies, as well as to ease pain and decrease fever. The Food and Drug Administration 

emphasizes that customers strictly adhere to the dosage recommendations for acetaminophen 
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because of the toxicity of the compound. More specifically, ingesting amounts of 4,000 mg in a 

24-hour period acetaminophen can cause liver damage (FDA 2016). 

1.5. Microtox Assay 

The objective of this study was to assess the relative acute cytotoxicity of the 

aforementioned five EDCs in wastewater effluent for the purpose of direct reuse. The Microtox 

assay was chosen for the cytotoxicity assessment. Microtox is an in vitro test that inversely 

correlates luminescence and toxicity. For this experimental purpose, the naturally luminescent 

marine bacterium V. fischeri was used because the bacteria naturally emit light as a result of their 

metabolic processes. The assay functions on the principle that exposure to a toxic substance 

inhibits the amount of light emerging from the bacteria as a function of the degree of toxicity of 

the substance. In other words, as the toxicity of an EDC increases, the luminescence of the 

bacteria decreases, and vice versa. Therefore, by measuring the amount of light inhibited by the 

bacteria, a relative toxicity of compounds can be determined. 

2.0. Procedures 

2.1. Laboratory Procedures  

 Analytical grades of the five selected EDCs were purchased from Sigma Aldrich (St. 

Louis, MO), and the Microtox® test system was purchased from Modern Water Inc. (New 

Castle, DE). Stock solutions of each EDC were prepared in a sodium chloride buffer solution 

(i.e., diluent provided in the Microtox® kit, in order to maintain a pH between 6 and 8, an 

innocuous range for V. fischeri according to Modern Water). For the EDCs with low solubility 

limits (particularly atrazine and estrone), extra measures were taken to achieve higher 

concentrations that inhibit light from the bacteria. Although not preferred when compared to a 

sodium chloride buffer, a dimethylsulfoxide (DMSO) solution was utilized to dissolve atrazine 
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and estrone at higher concentrations. DMSO was selected because of the low acute toxicity of 

DMSO (IC50 of 54,900 ppm) to V. fischeri and the adequacy of DMSO as a solvent (Jennings et 

al. 2001). After the compounds were dissolved in the DMSO, the solution was mixed into a 

sodium chloride buffer (1:10) to achieve a desired concentration. Furthermore, the standard 

curve for estrone and atrazine was adjusted by adding proportional DMSO to draw a more 

accurate representation of the relative toxicity of the compounds.  

 The toxicity of the selected EDCs was also assessed in wastewater collected from the 

Westside Wastewater Treatment Plant (Fayetteville, AR) after primary treatment. Toxicity was 

first compared between wastewater and EDC-spiked wastewater. The spiked wastewater 

contained 1 ppm of each of the five selected EDCs. Concentrations of 1 ppm were considered an 

appropriate upper limit of EDCs found in wastewater for the toxicity tests, as determined by the 

Oklahoma wastewater treatment plant effluent. The spiked wastewater was then treated using a 

membrane bioreactor (MBR) and samples were taken throughout a 24-hour treatment process. 

These samples were taken from both the anoxic and aerobic tanks in the secondary treatment 

process and tested for toxicity. Lastly, the cytotoxicity of wastewater effluent was also assessed.  

For quality control, a pH meter was periodically used to check the acidity of solutions. 

Then the stock solutions were pipetted into a 96 well u-bottom culture plate (Corning, Inc., 

Corning, NY) and serially diluted. The reagent vials of V. fischeri, initially freeze-dried at -20 

°C, were reconstituted with 1 mL of ultra-pure water, which is provided within the Microtox® 

kit as Reconstitution Solution. After pipette mixing, a portion of the reagent solutions were 

aliquoted and diluted from 100,000 bacteria/µL to 2,000 bacteria/µL as the stock solution. The 

reagent solutions were then pipetted into a white wall, flat bottom 96 well plate (Thermo Fischer 

Scientific, Waltham, MA). Each plate well received 50 µL of solution; therefore, each well 
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contained 100,000 bacteria per well. When not in use, the remainder of the reagent was placed 

on ice and removed from light to increase preservation time of the bacteria (luminescent 

sensitivity of the reagent only remains for approximately one to two hours). Once both the EDCs 

and bacteria were prepared in their respective plates, the EDC solutions were transferred from 

the u-bottom plate to the white wall, flat bottom plate using a multi-channel pipette.  

 Three replicates of each EDC solution and positive and negative controls were employed 

for quality control purposes. After completing the transfer of the EDC solutions to the bacteria 

using multi-channel pipettes, the plates were immediately taken to a BioTek Synergy H1 

microplate reader (BioTek, Winooski, VT) with a pre-established protocol. The luminescence of 

the bacteria was monitored over an exposure interval of 30 minutes. The bacteria were generally 

not monitored for a prolonged period due to bacterial luminescence inconsistency in trials longer 

than one hour.  

2.2. Data Analysis 

 Luminescence data were analyzed utilizing a standard curve with varying bacteria counts 

per well. For each new reagent vial, a new standard curve was created due to variances in 

bacteria luminescence across vials. Additionally, because the Microtox test measures relative 

toxicity, luminescence results were only compared within one reagent vial for accuracy.  

 To assess the toxicity of the tested EDCs, concentrations of each EDC that inhibited 50% 

(IC50) of the bacterial luminescence after 15 minutes of exposure were determined. Based on the 

IC50 value, a toxicity unit of each EDC was calculated based on the Empirical Toxicity Scale, a 

measure approved by the European Community Commission (Persoone et al. 1993). The 

Empirical Toxicity Scale as presented in Table 2 and the toxicity units are derived from Equation 

1 below. 
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          𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇𝑈𝑈 = 1
𝐼𝐼𝐼𝐼50

∗ 100    EQ. 1  

 
Table 2. Empirical Toxicity Scale 

Toxicity Units (TU) Classification 
= 0 Non-Toxic 

0  ≤ 1 Weakly Toxic 
1  ≤ 10 Toxic 
1  ≤ 100 Very Toxic 
1  ≤ ∞ Extremely Toxic 

 

To check the accuracy of the experimental procedure before proceeding with the toxicity 

testing of the selected EDCs, a compound with a known toxicity unit (zinc sulfate with a toxicity 

unit between 10 and 50) was tested using the Microtox assay. The experimental procedure 

produced a toxicity unit of 43.3, which falls within the acceptable range, and verified the 

accuracy of the laboratory methods. 

Statistical analyses were utilized to determine correlations between toxicity data sets. 

More specifically, wastewater toxicity sampled from aerobic and anoxic tanks during the 

laboratory treatment process was compared using a paired t-test. Another paired t-test evaluated 

if non-spiked wastewater is equally toxic as EDC-spiked wastewater. P-values were calculated to 

gauge the strength of all t-tests performed. 

3.0. Results and Discussion 

 The cytotoxicities of amoxicillin, estrone, triclosan, atrazine, and acetaminophen were 

first assessed individually through the Microtox assay. The relationship between the 

concentration of acetaminophen exposed to V. fischeri and the percentage of light inhibited of 

the bacteria after 15 minutes of exposure is shown in Figure 1. As displayed in Figure 1, 

acetaminophen yielded an IC50 value of 3504 parts per million (ppm). Graphs similar to Figure 1 

for the other four selected compounds are presented in the appendix. 
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Figure 1. The relationship between the concentration of acetaminophen exposed to V. fischeri 
for 15 minutes and the percentage light inhibited by the bacteria as a result of the compound. 
 

Toxicity can also vary as a function of the amount of time the bacteria are exposed to 

toxic environments. Although V. fischeri only remains sensitive for one to two hours, some 

compounds demonstrated amplified toxicity even over a short interval. Acetaminophen, as 

displayed below in Figure 2, did not intensify in toxicity during the 30-minute interval. However, 

amoxicillin and triclosan did inhibit an additional 22% and 28% of bacterial luminescence after 

30 minutes of exposure, respectively. Graphs for the relationship between exposure time and 

bacteria luminescence for the other four chosen compounds (namely, amoxicillin, triclosan, 

estrone, and atrazine) are accessible in the appendix. 
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Figure 2. The luminescence response of V. fischeri over 30 minutes of exposure to 
acetaminophen at select concentrations. 

 
 The compilation of the toxicity units for each of the five selected EDCs is presented in 

Table 3. From highest toxicity unit to least toxicity unit, the compounds ranked in the following 

order: triclosan, estrone, atrazine, amoxicillin, acetaminophen. Estrone and atrazine were 

dissolved in a DMSO solution. Therefore, a direct comparison in toxicity units between these 

two compounds with the others must be taken with caution. Though DMSO has a low toxicity 

unit of 54,900 ppm to V. fischeri, an extra variable was introduced that may have caused a 

discrepancy. 

 
Table 3. Toxicity Units of EDCs 

Compound Toxicity Units IC50 (ppm) 
Acetaminophen 0.029 2776 

Triclosan 8.00 12.5 
Amoxicillin 0.042 2401 

Estrone 1.73 57.8 
Atrazine 0.36 277.8 
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 Due to the relative luminescence intensity, Microtox acute toxicity assay is only 

beneficial when comparing to compounds with known toxicities. Consequently, a comparison 

between compounds of known toxicity and the five selected EDCs was performed. As shown in 

Figure 3, triclosan has a similar cytotoxicity to formaldehyde, estrone and atrazine have 

cytotoxicities in a range between phenol and chloroform, and amoxicillin and acetaminophen 

have cytotoxicities in a range between chloroform and ethanol.  

Based on information published by the US Department of Health and Human Services, 

formaldehyde has shown to have high acute toxicity on rats and rabbits (US DHHS 1993). In 

fact, formaldehyde is likely carcinogenic to humans (Gupta et al. 1982). With triclosan 

possessing a toxicity unit similar to formaldehyde from the Microtox assay, triclosan raises 

concerns for directly reusing wastewater as drinking water.  

Chloroform, according to Figure 3, has a slightly less cytotoxicity than atrazine, estrone, 

and triclosan. Yet, chloroform has shown capability of producing cancer in rat kidneys 

(Jorgenson et al. 1985). Ethanol has even shown to promote tumor progression or to cause 

gonadal atrophy with prolonged exposure (Yirmiya et al. 2002, Gavaler et al. 1980), yet ethanol 

is less cytotoxic to V. fischeri than the five EDCs studied herein. Therefore, the presence of all 

five of the tested EDCs (namely, atrazine, estrone, acetaminophen, triclosan, and amoxicillin) in 

wastewater effluents is a concern, even at small concentrations. As the EDCs tested within this 

study possess similar toxicity units to compounds with detrimental health effects to humans, 

further study into the health effects of EDCs is warranted. Although cytotoxicity was confirmed 

for these selected EDC compounds, the IC50 for all compounds are in the parts per million range, 

which is several orders of magnitude higher than the concentrations in wastewater effluent. This 
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indicates that the cytotoxicity of EDCs to V. fischeri may be insignificant at concentrations 

typically found in wastewater effluents.  

 

Figure 3. A comparison between acute toxicity of selected EDCs and other common compounds 
based on the Empirical Toxicity Scale. 

 
As observed in Figure 4, the wastewater, both spiked and non-spiked, was sampled 

before the wastewater treatment process began. The relative toxicities of spiked and non-spiked 

wastewater to V. fischeri are nearly identical as the exposure time to V. fischeri increases. The 

results show the addition of EDCs at 1 ppm did not induce additional cytotoxicity in wastewater.  
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Figure 4. A toxicity comparison of EDC-spiked and non-spiked wastewater. Luminescence of V. 
fischeri was monitored over a 30-minute time interval. 
 

The toxicity of EDC-spiked wastewater was also tested from samples taken during the 

treatment process. The treatment process included an anoxic tank, aerobic tank, and a MBR. In 

Figure 5, a filtered sample from each of the anoxic and aerobic tanks was taken after 4, 8, 12, 

and 24 hours of treatment. The luminescence of the bacteria was recorded after 15 minutes of 

exposure to the wastewater and recorded as a function of the time that the samples were taken in 

the treatment process. 

A paired t-test was performed to examine whether non-spiked wastewater is equally toxic 

to V. fischeri as wastewater spiked with 1 ppm of each of the selected EDCs. A p-value of 0.288 

was determined, which establishes considerable statistical support for the null hypothesis—

wastewater spiked at a total concentration of 5 ppm of EDCs has equal toxicity as non-spiked 

wastewater. 
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Figure 5. EDC-spiked wastewater was treated for a period of 24 hours. Over this time, the 
wastewater in the anoxic and aerobic tanks was sampled and later tested for cytotoxicity. After 
15 minutes of exposure to EDCs, the luminescence of V. fischeri was measured for each of the 
samples taken from the treatment process. 
 

A slight reduction in cytotoxicity of the wastewater was observed as the treatment 

process continued (Figure 5). However, even after 24 hours of treatment time the spiked 

wastewater still inhibited about 80% of light emitted from the bacteria. A paired t-test was 

conducted on the toxicity of the wastewater in the anoxic and aerobic tanks. The light inhibition 

of the anoxic tank falls between -0.26% and 2.78% of the light inhibition of the aerobic tank with 

99% confidence. The t-test yielded a p-value of 0.03. Assuming a level of significance of 0.05, 

the mean toxicity in the anoxic and aerobic tanks are not equivalent. 

To further assess the toxicity of EDCs without toxicity caused by the wastewater itself, 

EDC-spiked non-wastewater solutions were created at various concentrations. A sodium chloride 

buffer solution was spiked with triclosan, acetaminophen, atrazine, and amoxicillin in equivalent 

concentrations. These solutions were exposed to V. fischeri over a period of 30 minutes as the 

luminescence was monitored. 
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Figure 6. A toxicity comparison between a buffer spiked with various equivalent concentrations 
of triclosan, acetaminophen, amoxicillin, and atrazine (estrone was excluded due to solubility 
restraints) and wastewater effluent from a 24-hour treatment process. The light inhibition of V. 
fischeri was measured after 15 minutes of exposure to the EDC solutions and wastewater 
effluent. 
 

Compared to the toxicity of wastewater effluent shown in Figure 6, the EDC samples 

(spiked at 5 ppm of each included compound) showed significantly less toxicity. The EDC-

spiked water inhibited less than 10% of light from V. fischeri, while EDC-spiked wastewater 

effluent inhibited as much as 98% of light. Therefore, the toxic effects of other constituents (non-

EDCs) from the laboratory MBR wastewater effluent in the study was far greater than the 

toxicity caused by the EDCs alone. 

4.0. Conclusions 

 Based on the toxicity units of the five tested EDCs, the cytotoxicity of endocrine 

disruptors is variable. From most to least toxic, the toxicities of the selected EDC compounds 

rank in the following order: triclosan, estrone, atrazine, amoxicillin, acetaminophen. 

Additionally, based on the Empirical Toxicity Scale, triclosan and estrone classify as toxic; 
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amoxicillin, acetaminophen, and atrazine categorize as weakly toxic. Of the five EDCs assessed, 

the toxicity of the compounds can be compared to a range of other compounds, from 

formaldehyde to ethanol.  

While the studied EDCs are characterized as toxic or weakly toxic, the concentrations of 

EDCs required to inhibit bacterial luminescence substantially exceeded the concentrations found 

in wastewater. In fact, the IC50 of all the selected EDCs were several orders of magnitude higher 

than the concentrations of EDCs found in the Oklahoma wastewater treatment effluent. 

Therefore, the acute toxicity of EDCs to V. fischeri is insignificant at concentrations typically 

found in wastewater.  

Wastewater has shown significant cytotoxicity, however, based on this research the 

primary source of cytotoxicity in wastewater is not credited to EDCs. Rather, the cytotoxicity to 

the bacteria is likely caused by other contaminants within wastewater. After the secondary 

treatment process, the wastewater still showed significant toxicity. In fact, 24 hours of treatment 

only decreased toxicity by less than 10% compared to the untreated wastewater. Therefore, the 

laboratory MBR was inadequate at removing cytotoxicity from wastewater. 

While a relative idea of the toxicity of these compounds can be determined , the scope of 

this paper only covers the toxicity of five EDCs to one strain of marine bacterium. Hence, more 

studies are needed to fully assess the toxicity of the selected compounds, as well as other EDCs. 

Specifically, further research regarding the mutagenicity and genotoxicity should be conducted, 

such as the Ames Fluctuation Test and the Comet Assay, respectively. More cytotoxicity assays 

utilizing alternative strains of bacteria should also be considered. 
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Appendix 

A.1. Triclosan 

 

Figure A1. Correlation between percent of light inhibited of V. fischeri after 15 minutes of 
exposure and the concentration of triclosan exposed to the bacteria.  
 

 

Figure A2. Percent light inhibited of V. fischeri over 30 minutes of exposure to a 1:1.5 serial 
dilution of triclosan. 
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A.2. Estrone 
 

 

Figure A3. Percent of light inhibited of V. fischeri after 15 minutes of exposure to increasing 
concentrations of estrone in a DMSO solution. 
 

 

Figure A4. The effect of luminescence of V. fischeri over 30 minutes of exposure to estrone at 
different concentrations in a DMSO solution. 
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A.3. Atrazine 
 

 

Figure A5. The relationship between light inhibited of V. fischeri after 15 minutes of exposure to 
various concentrations of atrazine presented to the bacteria. 
 

 

Figure A6. Percent of light inhibited of V. fischeri as a function of time with respect to the 
concentration of atrazine exposed to the bacteria. 
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A.4. Amoxicillin 

 

Figure A7. Percent of light inhibited of V. fischeri after 15 minutes of exposure as it relates to 
the concentration of amoxicillin in contact with the bacteria. 
 

 

Figure A8. Luminescence of V. fischeri over 30 minutes of exposure to amoxicillin at various 
concentrations. 
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