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Project Summary 
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Title of Project: The Effects of Aggregate Size on Shear Dynamic Modulus from Torsion Bar  

 

Summary: 

PavementME Design is based on mechanistic-empirical principles, which take the properties of 

layer materials into account in predicting pavement responses and performance. Of these 

principles, dynamic modulus is one of the most important. Dynamic modulus measures strain in 

response to the applied stress, which mimics loads from traffic and the corresponding 

deformation of the asphalt pavement. The traditional test for dynamic modulus in the uniaxial 

configuration cannot be performed on field cores due to lift thickness. Owing to that, the Indirect 

Tension and torsion bar configuration were developed. This research will focus on the torsion bar, 

which requires specimens that are 10x12x50mm per ASTM D7552-09. The smaller size of 

torsion bar specimens is convenient for forensic evaluation. However, due to the small size of 

specimens, there are challenges with obtaining a sample that is representative of the global 

properties of the test material when the nominal maximum aggregate size, NMAS, is 12.5mm or 

greater.  

The goal of this project is to determine if using aggregates of larger NMAS in asphalt concrete 

mixtures influences the shear dynamic modulus. Mixtures with a NMAS of 9.5mm and 25mm 

were tested. The results from the Torsion Bar test were used to generate master curves for each 

mix design using the time-temperature superposition technique. The results were analyzed by 

comparing test results from torsion bar test to other specimens of different NMAS and asphalt 

binders. Based on the analysis, the conclusion is the shear dynamic modulus from the torsion bar 

configuration is affected by the nominal maximum aggregate size used in asphalt concrete 

mixtures, `and the binder does not influence the results. RVE for torsion bar specimens falls 

between 9.5mm and 25mm, or even smaller. 
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                                 Undergraduate Researcher: Farida I. Mahmud 

                                                Mentor: Dr. Andrew Braham 

 

Introduction 

Dynamic modulus measures strain in response to the applied stress, which mimics loads 

from traffic and the corresponding deformation of the asphalt pavement (Yang et al., 2015). 

However, asphalt concrete is a viscoelastic material, so the rate of strain application, frequency, 

and testing temperature influence the modulus. Dynamic modulus is a very important input for 

PavementME Design, and can be used to predict pavement performance such as the potential of 

asphalt concrete to rut and to crack (Yang et al., 2015). The traditional test for dynamic modulus 

in the uniaxial configuration according to AASHTO T342 cannot be performed on field cores due 

to lift thickness requirement of 150mm. Owing to that, the Indirect Tension dynamic modulus 

(IDT |E*|) and torsion bar shear modulus (torsion bar |G*|) were developed as alternative test 

methods. The Indirect Tension test is performed on specimens of 150mm diameter and a 

thickness of 50mm, while the torsion bar requires specimens that are 10x12x50mm per ASTM 

D7552-09, as shown in Figure 1. 

   
Figure 1: Dynamic modulus configurations: indirect tension (center), torsion bar (right) (Yang et 
al., 2015). 

 

The smaller size of torsion bar specimens is advantageous for forensic evaluation of in service 

pavements, especially when material quantities are limited (Yang et al., 2015). However, due to 
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the small size of torsion bar specimens, there are challenges with obtaining a representative 

volume element when large aggregates are used. This research seeks to determine if larger 

aggregates influence the tests results from the torsion bar configuration. 

Background and Motivation 

The torsion bar configuration is extremely helpful for forensic evaluation of in-service 

pavements, especially when material quantities are limited (Yang et al., 2015). This is because of 

the reduced size of test specimens. However, when the nominal maximum aggregate size used in 

the asphalt concrete mixture is 12.5mm or greater, one aggregate can span the size of the 

specimen. In such instances, there could be problems with obtaining a sample that is 

representative of the global properties of the test material, as shown in Figure 2. In the Figure 2, 

A1 is not representative of the overall properties and behavior of the asphalt concrete, and may 

influence results if used for testing. A test specimen is expected to satisfy established theoretical 

requirements, and is called a representative volume element (RVE) (Romero and Masad, 2001).  

  

Figure 2: Representative Volume Element of Asphalt Concrete (Adapted from Velasquez, 2009). 

 

The shear dynamic modulus is determined by using specimens of torsion rectangular 

geometry on a dynamic shear rheometer (DSR) (ASTM D7552). A shear stress is applied to the 

test specimen. According to the ASTM standards, ten frequencies and four temperatures are 

tested.  

A1 
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Determining if aggregate size affects the test results of the torsion bar configuration can 

lead to a better understanding of the limitations of the test method for determining shear modulus. 

The torsion bar configuration is advantageous because a significantly smaller number of cores are 

needed to perform tests, which is important because when cores are obtained from in service 

pavements, the pavements are weakened. In addition, collecting material from in service 

pavements is very time and cost intensive, including mobilizing work crews, closing roads, and 

reducing traffic flow.  

Objective 

The objective of this research is to determine if using aggregates of larger nominal 

maximum aggregate sizes in asphalt concrete mixtures influences the shear dynamic modulus 

obtained from the torsion bar configuration by potentially violating the RVE. This was achieved 

by comparing test results from torsion bar specimens with different nominal maximum aggregate 

size and different asphalt binders. 

Materials and Methods   

Four asphalt concrete mixtures were used for this research. Two mixtures had a PG 64-22 asphalt 

binder with a nominal maximum aggregate size of 9.5mm and 25mm. The other two mixtures had 

the same nominal maximum aggregate size mentioned above, but a PG 76-22 asphalt binder. A 

total of 12 samples were tested, three replicates from each of the four mix designs, and are 

summarized in Table 1. 

Table 1 – Experimental Matrix  

 9.5mm 25mm 

PG 64-22 3 replicates 3 replicates 

PG 76-22 3 replicates 3 replicates 

 

Test specimens had an average size of 12.5x6.5x50mm. Test specimens were obtained from 

samples of a superpave mix design, and the binder content of the mix design are shown in Table 
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2. The gyratory compacted lab samples achieved 7% air voids having a 150mm diameter. 

12.5mm thick slices were cut from the samples, from which test specimens of 50mm height were 

obtained.  

Table 2 – Asphalt Binder Content 

NMAS Binder Content* 

9.5mm 5.70% 

25mm 4.02% 

  (*binder content applies for both PG 64-22 and PG76-22) 

The tests were performed in accordance to ASTM D7552-09: Standard Test for 

determining the complex shear modulus (G*) of Bituminous mixtures using Dynamic Shear 

Rheometer, along with some modifications. A TA Instruments Discovery Hybrid Rheometer 

(DHR) in oscillatory mode was used to run the test and collect data. Specimens were tested at 

fifteen frequencies, (0.2, 0.3, 0.4, 0.6, 1.0, 1.6, 2.5, 4.0, 6.3, 10.0, 15.8, 25.1, 39.8, 63.1, and 100 

rad/s) at eight temperatures (-10˚C, -0 ˚C, 20˚C, 30˚C, 40˚C, 50˚C and 60˚C). Strain levels of 

0.01%, 0.05%, 0.1% and 0.2% were used. A normal force within 2N +-0.5 N was applied on the 

test specimens. For testing, one of the fixtures of the DHR was rotated with respect to the other 

“at a pre-selected % strain and a range of frequencies at the selected temperatures” (ASTM 

D7552-09). The test specimen was maintained within +- 0.1˚C of the testing temperature by 

encompassing the upper and lower fixtures in a thermally controlled chamber (ASTM D7552-

09).  

Discussion of Results 

After obtaining data from the DHR, the data was exported to excel and used to make a master 

curve for each mix design using shift factors. Figures 3-6 are the master curves for each mix 

design. The techniques used in developing these master curves is time-temperature superposition. 

Initially, the graph for each temperature is stacked, but this technique is used to overlap the 

temperatures by shifting the curves. To do this, the curve corresponding to 30 ˚C was left in 

position, while the other curves were shifted using Equation 1 in 10.1.1 of AASHTO R62-13. The 
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curves corresponding to lower temperatures are on top because asphalt is stiffer at low 

temperatures. Different fitting parameters and coefficients were used to minimize the error 

associated with shifting. 

 

 

Figure 3: Master Curve of PG 64-22 with NMAS of 9.5mm 
 

 

 
Figure 4: Master Curve of PG 64-22 with NMAS of 25mm 
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Figure 5: Master Curve of PG 76-22 with NMAS of 9.5mm 

 

 
Figure 6: Master Curve of PG 76-22 with NMAS of 25mm 

 

In general, the data shifted nicely and the fitted curve lays on top of the raw data. 0-
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To determine if the aggregate size had an effect of the shear dynamic modulus values, a 

graph comparing the values obtained from specimens with a NMAS size of 25mm versus 9.5mm 
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Figure 7: Aggregate Comparison of Shear Dynamic Modulus Values  

In order to account for the variation between the data of the three replicates per mix 

design, the G* values within  1 standard deviation were also plotted, as shown in Figure 8. The 

values for PG 64-22 had a large standard deviation, whereas PG76-22 had almost no spread. Both 

graphs still plotted well above the line of equality. Therefore, using a NMAS of 25mm produced 

larger G* values, perhaps violating RVE. Based on the data, RVE may be either between these 

two NMAS or even smaller than 9.5mm. 

 

Figure 8: Aggregate Comparison of Data Within  1 Standard Deviation 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2000 4000 6000 8000 10000

2
5
m

m
 G

*

9.5mm G*

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2000 4000 6000 8000 10000

2
5
m

m
 G

*

9.5mm G*



 9 

Furthermore, to determine if the binder influences the shear dynamic modulus, the values 

from the mix designs of PG 64-22 versus PG 76-22 were plotted, as shown in Figure 9. For the 

mix design with a NMAS of 9.5mm, PG 64-22 binder was stiffer, while with the 25mm NMAS, 

PG 76-22 was stiffer. It is not possible to draw any conclusions because there is no general trend 

since the conclusion varies with the NMAS. As such, the data was analyzed within  1 standard 

deviation, as shown in Figure 10. From the graph, all values for mix design with 9.5mm NMAS 

are included within the cone of the values for 25mm. Therefore, neither binder is significantly 

stiffer than the other, and the binder does not influence G* values like aggregate size does.  

                          

Figure 9: Binder Comparison of Shear Dynamic Modulus Values 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2000 4000 6000 8000 10000

P
G

 6
4
-2

2

PG 76-22



 10 

 

Figure 10: Binder Comparison of Data Within  1 Standard Deviation 
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project, specimens of two different binders with a NMAS of 9.5mm and 25mm were tested to 

determine if the aggregate size and binder affect the G* values. 

Based on the data analysis, the mixtures with a NMAS of 25mm are stiffer than 9.5mm, 

and RVE may be between 9.5mm and 25mm or even smaller. While the size of the aggregate 

affects the shear dynamic modulus values obtained, the binder type did not.  In the binder 

analysis, neither binder was necessarily stiffer than the other, as no general trends were observed. 

However, the results from the torsion bar test need to be compared to the IDT and/or uniaxial 

configuration test results to see the trends in the aggregate and binder analysis before a strong 

conclusion about the effects of aggregate size on shear dynamic modulus from torsion bar can be 

made.  
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