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Abstract 

Sweetgum bark extract has been known to show biological activities such as antimicrobial and 

antioxidant capabilities. The storage capacity of the extract, however, was unknown and previously 

thought to diminish over time. However, upon experimentation, the freeze-dried sweetgum bark extract 

showed no signs that storage time or storage temperature had any significant effect on the biological 

activities. There was no significant difference across storage temperature over time in the experiment 

(ANOVA RM, P≥0.05). Therefore, the antioxidant capabilities of the sweetgum extract were not affected 

by the storage time or temperature treatments studied in this work. For the antimicrobial experiment, 

there was no significant difference across storage temperature over time in the experiment (ANOVA RM, 

P<0.95) and there were no different homogeneous groups. However, concentration had significance in 

the experiment (ANOVA RM, P<0.01 and Figure 3) showing that the zone of inhibition decreased with 

decreasing extract concentration. Overall, storage time and temperature did not have a negative effect 

on the biological activities of freeze-dried sweetgum bark extract.  
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Introduction 

Sweetgum (Liquidambar styraciflua L.) is a native tree species that grows in the understory of 

managed Arkansas pine forests, which must be removed prior to pine harvesting. Once harvested, the 

sweetgum understory is transformed to thermal energy via combustion of the biomass. However, 

combustion is not the only use for sweetgum understory, as multiple studies have reported that 

sweetgum extractives can be used medicinally, e.g. to help reduce pain (El-Readi et al., 2013) and treat 

the flu (Enrich et al., 2008; Martin et al., 2010).  

Sweetgum bark extracts have displayed antioxidant and antimicrobial capabilities (Djioleu, 2016). 

Unfortunately, many extraction methods involve the use of organic solvents, such as methanol, making 

subsequent biomass combustion operations hazardous. Yet, as shown by Carrier and Clausen (2008), 

water can be used as a solvent to create the extract which then allows the biomass to still be used in the 

bio-refining process. As such, there has been research into the application bark extract using water and 

its applications, which was shown to display antioxidant and antimicrobial properties (Djioleu, 2016). 

The antioxidant characteristics of the natural extracts, however, do not appear to be completely 

shelf stable such that the biological properties were noted to decrease as a function of time (Samad et al. 

2016). In addition, the sweetgum bark extract had been suspected of decreases in biological activities (i.e. 

antioxidant and antimicrobial) based on observed effects noticed by Dr. Kala Rajan in 2016 during her own 

research (personal communication, 4/15/16).  Not knowing the shelf-life of the water-based sweetgum 

extract limits its applications because the uncertainty of the effectiveness at the time of use. For example, 

the extract would then never be used as sterilizing agent in a hospital or food industry, because the 

bacteria must be killed which may not occur if the extract loses its efficacy.  

Therefore, the goal of this project was to determine if the antimicrobial and antioxidant 

capabilities of the sweetgum extract remain viable over a period of 9 months. The main objective was to 
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determine if the freeze-dried extract began to lose its effectiveness and if so at what time intervals and if 

storage temperature (22°C, 4°C, or -20°C) affected the efficacy during storage. I hypothesized that the 

sample stored at -22°C will maintain the effectiveness of the extract for the longest amount of time but 

will still show decreasing effectiveness after being stored for 9 months based on the work performed by 

Dr. Kala Rajan and Dr. Angele Djioleu.  

The research will determine shelf life of the water extract allowing industries to determine 

potential costs or benefits associated with switching from the traditional chemical extraction methods. 

This is because a company would be able to identify how much of the extract would be needed and when 

to buy new extract. In addition, researchers would benefit with knowledge of the shelf life so that accurate 

test results can be obtained when using the extract.  

Methods 

Preparation of Water Extract 

Finely ground bark from a mature sweetgum tree was extracted using 85°C de-ionized water 

based on Carrier and Clausen (2008) . The water, ground bark mixture was placed in a 2 L Parr reactor to 

maintain a constant temperature while being agitated for 60 min to ensure proper extraction. The slurry 

was filtered, via vacuum filtration, through a Whatman N° 1 filter paper and a Buchner funnel. The final 

liquid filtrate was then freeze dried and separated into three batches consisting of four individual portions 

of 0.8 g each and stored in small plastic sealable bottles at 22°C, 4°C, and -20°C until the time of testing 

for efficacy.  

The antioxidant and antimicrobial properties were tested at 45, 115, and 206 days from initial 

storage to determine efficacy at 22°C, 4°C, and -20°C storage temperatures. The antioxidant capabilities 

were tested using the thiobarbituric acid reactive substance (TBARS) assay and the antimicrobial capacity 

was tested through disc diffusion assay on Staphylococcus aureus (S. aureus) streaked agar plates Adams 
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et al. (2014) and Djioleu (2016). For each sample period, a portion of each batch was reconstituted to a 

concentration of 150 g L-1. The experiments were carried out in duplicate for each time period for each 

storage temperature.  

Thiobarbituric acid reactive substances (TBARS) Assay for Antioxidant Capacity 

Antioxidant capacity of the bark extract was tracked over a 9-month period and determined using 

copper induced TBARS assay on human low-density lipoproteins (LDL). The method was performed 

similarly as described by Uppugundla et al. (2009).  LDL was dialyzed using dialysis tubes in EDTA-free TRIS 

(pH 7.4) buffer for 34 hr at 4°C. Exactly 10 μL of the diluted (conc. 9.4 g L-1) reconstituted bark extract 

(control wells received 10 μL of TRIS Buffer), 100 μL of dialyzed LDL, and 10 μM of copper sulfate were 

pipetted into the wells of a 96-well-assay plate. Immediately after pipetting, half of the wells or "zero hour 

wells" received 10 μL of butylated hydroxytoluene (BHT) to stop oxidation reaction, and then the plates 

were incubated at 37°C for 24 hrs. 

 After the 24 hr incubation period at 37°C, the "24 hr" wells received 10 μL of BHT. Then, 50 μL of 

50% trichloroacetic acid (TCA) and 75 μL of 1.3% thiobarbituric acid (TBA) were then added to all wells 

and incubated for 40 min at 60°C. After incubation, absorbance of the plates was read in a microplate 

reader (BioTek, Winooski, VT) at 600 nm and 530 nm.  

The antioxidant capabilities were determined from the difference (i.e., delta) of the two 

absorbance readings. An oxidation value was then determined using a best fit equation developed from 

the 1,1,3,3-tetraethoxypropane (TEP) Standard Curve. The equation was determined for each testing 

period (see Appendix Figure 4 - 7) using Microsoft Excel. The difference between the blank and the 

measured value was then used to estimate the actual oxidation value. Where the higher the value meant, 

more oxidation had occurred.  Analysis of variance (ANOVA) with repeated measures (RM) across 
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treatment concentration, storage temperature, and time was used to evaluate differences (STATISTIX 

version 10 software, Tallahassee, Florida).   

Antimicrobial Plating 

Antimicrobial activity was monitored and tracked over the 9-month period using prepared agar 

plates and the disc diffusion assay in a similar process as Adams et al. (2014) and Djioleu (2016). Culture 

of S. aureus (see appendix on biological safety procedures) was grown for at least 48 hr before beginning 

the assay. The plates were inoculated with S. aureus from the culture via the streaking method using a 

sterile cotton-tipped applicator. The inoculated plates were then allowed to dry before applying the 6 mm 

diameter blank sterile paper disks using sterile forceps. The discs were gently pressed to ensure contact 

with the agar. The discs then had bark extract applied so that it can be absorbed into the paper; the extract 

was tested at four different concentrations 150 g L-1, 75 g L-1, 37.5 g L-1, and 18.75 g L-1. After incubating 

in an inverted position for 24 hr the plates were removed and the zones of inhibitions were measured 

using a ruler (Appendix Figure 8A).  

The S. aureus diameter of the ring of growth inhibition was measured for each concentration at 

all three storage temperatures for every data collection period. The data was then examined using two 

different methods. The first was determining the minimum concentration that would inhibit bacterial 

growth for each data collection period. The second method was utilizing the ANOVA RM to evaluate the 

effect of storage and temperature in antimicrobial activity. 

The minimum inhibition concentration (MIC) needed to prevent bacterial growth was determined 

by graphing the measured rings of inhibition versus the known concentration and creating a best fit 

equation. The MIC was determined by using 0.008 m as the independent variable in the best fit equation 

for each time-period. A ring of 0.008 m was used because it was determined to be the smallest 
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measurement that would show inhibition without being smaller than the 6 mm disc that held the extract. 

The MIC was then evaluated using ANOVA to evaluate the effects of storage and time.  

Results  

Antioxidation 

 The absorbance readings of the zero hour wells versus the 24-hour wells showed that oxidation 

reactions did occur during the incubation period in the 24-hour wells. This is indicative in the positive delta 

(24-hour well mean less the zero hour well mean) values (Table 1) because higher absorbance readings 

(i.e. darker colors) equate to more oxidation. In addition, when compared to the 24-hour control wells, 

the 24-hour test wells have smaller delta absorbance reading values indicating that oxidation was 

prevented by the presence of the bark extract (conc. 9.4 g L-1). This is true for all test periods except the 

115 days which could be attributable to random error since the 206 days continues the pattern shown at 

45 days.  

The initial oxidation value was 7.32 nM based on one measurement before storage (Table 2). The 

oxidation capacity varied over time across storage temperatures, ranging from <5 after 45 days of storage 

at 20°C to over 17 after 216 days of storage at 4°C. There was no significant effect of storage temperature 

(ANOVA RM, P=0.19), storage time (P=0.29) or the interaction of temperature and time (P=0.60) in this 

experiment.  

The means of the oxidation values increased numerically with time based on Figure 1. However, 

the mean for both 45 days and 115 days of storage are less than the zero-day storage oxidation value 

implying that storage of freeze dried sweetgum extract did not change antioxidant capacity. The oxidation 

value only increased slightly past the initial value for the 206 days of storage except for the 4°C oxidation 

value (17.81 nM). The quantity of 17.81 nM seems abnormally high based on the previous tests, and may 

be due to an error that was not noticed. The causes the error for 206 (Figure 1) to be very large; potentially 
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affecting quality control of the bark extract. Overall, the sweetgum extract does not seem to be affected 

by the time or temperature in these experiments over 206 days of storage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 of 22 
 

Table 1: Zero hour wells vs 24 hour wells: Comparison between control and test W=wells via delta absorbance reading (nm) for 
each storage temperature 

Storage Time (Days) 45 115 206 

Temperature 
Zero Hour 
Mean 
(nm) 

24 Hour 
Mean 
(nm) 

Delta 
(nm) 

Zero Hour 
Mean 
(nm) 

24 Hour 
Mean 
(nm) 

Delta 
(nm) 

Zero Hour 
Mean 
(nm) 

24 Hour 
Mean  
(nm) 

Delta 
(nm) 

Control 0.07 0.16 0.09 0.11 0.12 0.01 0.11 0.40 0.29 
-20°C 0.06 0.07 0.01 0.02 0.07 0.05 0.08 0.10 0.02 
4°C 0.05 0.07 0.02 0.02 0.09 0.08 0.08 0.15 0.07 

22°C 0.06 0.08 0.02 0.06 0.07 0.01 0.10 0.12 0.02 
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Table 2: Average Oxidation Values (nM) Days out from initial measurement date by storage temperature   

 Storage Time (days) 

Storage Temperature  0 45 115 206 

 Oxidation Value (TBARS present) nM 

-20°C 

7.32 

4.77 6.07 7.84 

4°C 5.32 5.87 17.81 

22°C 5.03 4.65 7.62 
 

 

 

Figure 1: Average oxidation values (nM) versus storage time (days) with error bars and ANOVA 
homogeneous groups. Error bars: 45 days +0.27, 115 days +0.77, 206 days + 5.82 
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Antimicrobial Plating  

The initial minimum inhibition concentration of microbial growth was 39 g L-1 based on one 

measurement before the freeze-dried material was stored at the three storage temperatures (Table 3). 

The minimum inhibition concentration for the sweetgum extract varied over time ranging, from 50 g L-1 

after 115 days of storage at 4°C to 72 g L-1 after 45 days at both 4°C and 22°C. There were no obvious 

effects of storage temperature (ANOVA, P=0.93) that would have impacted the ability of the sweetgum 

extract to prevent growth which is supported by the minimum inhibition concentration (Table 3, Figure 

2). However, the storage time did have considerable influence (P=0.04) but there was no pattern i.e., no 

consistent decrease over time.  

A similar result occurred for the zone of inhibition caused by the antimicrobial activity (Table 4).  

It varied over time for each concentration and storage temperature, for example 150 g L -1 at 22°C ranged 

from 0.014 m to 0.020 m during the testing period. This occurred across all the various storage 

temperatures and concentrations. There was no significant difference in antimicrobial activities across 

storage temperature (ANOVA RM, P=0.78), storage time (P=0.12), or the interaction of temperature and 

time (P=0.95) in the experiment. However, the concentration of the extract had a major influence on the 

antimicrobial activity, (P<0.01, Figure 3) as well as the interaction of time, temperature, and concentration 

(P=0.03). There were four different homogeneous groups for concentration (Figure 3) where the mean 

zone of inhibition ranged from 0.016 m at 150 g L-1 to 0.000 m at 18.7 g L-1.  

The antimicrobial activities (minimum inhibition concentration and zone of inhibition) of the 

sweetgum extract were not affected by time or temperature. Yet, the antimicrobial activities are clearly 

affected by concentration especially the zone of inhibition where lower concentrations resulted in smaller 

zones of inhibition or even none.  
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Table 3: S. aureus average minimum inhibition concentration (g L-1) by measurement date and storage 
temperature 

 Storage Time (days) 

Storage Temperature 0  45 115 206 

 Concentration in g L-1 

-20°C 
39 

 

70 64 65 

4°C 72 50 71 

22°C 72 53 70 
 

 

 

Figure 2: Average minimum inhibition concentration (g L -1) versus storage time (days) for all storage 
temperatures with error bars and ANOVA homogenous groups 
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Table 4: Zone of inhibition (m) for each temperature and concentration with average of two replicate 
tests 

  
Storage Time (Days) 0  45 115 206 

Conc. 
Temperature 
Replicate 

Initial  
(m) 

A 
 (m) 

B 
 (m) 

Mean 
 (m) 

A  
(m) 

B  
(m) 

Mean 
(m) 

A  
(m) 

B  
(m) 

Mean 
(m) 

150 g L-1 

-20°C 
0.018 

0.015 0.016 0.016 0.020 0.018 0.019 0.016 0.017 0.017 
4°C 0.014 0.015 0.015 0.018 0.018 0.018 0.017 0.016 0.017 

22°C 0.016 0.014 0.015 0.017 0.017 0.017 0.016 0.016 0.016 

75 g L-1 

-20°C 
0.014 

0.011 0.011 0.011 0.012 0.014 0.013 0.010 0.000 0.005 
4°C 0.013 0.009 0.011 0.013 0.012 0.013 0.010 0.009 0.010 

22°C 0.013 0.000 0.007 0.017 0.013 0.015 0.018 0.017 0.018 

37.5 g L-1 

-20°C 
0.011 

0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.004 
4°C 0.000 0.000 0.000 0.007 0.000 0.004 0.000 0.000 0.000 

22°C 0.006 0.000 0.003 0.000 0.008 0.004 0.000 0.000 0.000 

18.7 g L-1 

-20°C 
0.000 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
4°C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

22°C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 

 

 

Figure 3: ANOVA groups and average zone of inhibition for each concentration across all temperatures 
and time with error bars 
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Discussion and Future Opportunities  

The results were different than what was expected. It was hypothesized that the biological 

activities of the sweetgum bark extract would decrease with time up to 9 months across all storage 

temperatures with the 22°C storage temperature showing the greatest decrease. It is very possible that 

the unexpected result was due to the change in the storage preparation, freeze drying the extract, before 

long term storage. This opens the availability to repeat the test where the variable is freeze drying before 

storage to determine if freeze drying allowed for better preservation of the extract.   

The results of the S. aureus inhibition initially showed an increase in the minimum inhibition 

concentration, but it then varied over time leveling off after 115 days of storage. This shows that both a 

shorter and longer testing period could be used to create further tests. The shorter test could be used to 

pinpoint more accurately when the extract’s antimicrobial capabilities begin to decline. The longer test 

would determine if the variability that occurred in the last three test dates were random, if the minimum 

inhibition concentration would eventually level out at a certain point between the two extremes, or if the 

MIC would decrease even further with more time. However, no matter the result of potential future 

experiments, the results did show that a concentration of 150 g L-1 could be used to effectively eliminate 

all S. aureus for a 206-day period.  

In a similar disc diffusion assay, performed by Dr. Angele Djioleu, the antimicrobial activity of the 

sweetgum bark extract was recorded to have a zone of inhibition of 15 mm at a concentration of                 

160 g L-1 (Djioleu, 2016). Another study found that water extracted sweetgum bark at a concentration of 

150 g L-1 had a zone of inhibition of 13 mm against S. aureus (Rajan et al., 2017). These zones of inhibition 

are less than the measured values (14 mm – 20 mm)  for this experiment at the 150 g L-1 concentration. 

However, the values obtained in this experiment range at most by 5 mm.  
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In comparison to other research that looked at antioxidant capabilities the oxidation of the LDL 

was completely prevented at a concentration of 12.5 g L-1 and had a little over 21 nmol mg-1 protein 

oxidized at an extract concentration of 6.25 g L-1 (Hurd, 2012). This experiment used 9.4 g L-1 and had 

oxidized protein levels that fall within the range established by Hurd.  The results of the TBARS did show 

some initial decrease but then increased with time back up but the effect of temperature and storage 

time was not significant in this study.  This could have been due to many factors such as incomplete mixing 

of the sample before storing resulting in an uneven distribution of the antioxidant agents in the extract 

but is most likely due to random variability in the biological agent effectiveness.  However, there was only 

one initial measurement which limited the ability to statistically compare the effects of initial storage.  

 The hypothesis was incorrect. Despite that, the experiment showed there is some variability in 

the biological activities that was uncontrollable i.e., the unpredictable variance between each test period. 

This could present problems for the product being commercialized, because there would still be 

uncertainty of the effectiveness of the extract due to the unpredictability. However, the experiment did 

prove that the extract has a longer shelf life than previously thought (personal communication, 4/15/16) 

with active biological agents that prevent oxidation and growth of S. aureus. Going forward, an extensive 

test that breaks down variability in the extract for both the oxidation and the inhibition abilities would 

need to be tested to market the product. This experiment would determine a range of effectiveness and 

therefore establish a minimum concentration which would guarantee a known result i.e., eliminating all 

S. aureus that the 150 g L-1 extract encounters.  

The results also showed that storage temperature had negligible effect on the biological activities 

of the freeze-dried extract. This is promising because it allows the extract to be stored wherever a 

consumer prefers without decreasing the effectiveness of the extract. This helps increase its marketability 

as it is cheaper, easier, and more convenient to store a product at room temperature than in the freezer. 

Further testing should be performed if the sweetgum bark extract were to be created into a 
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commercialized product, but the results of this experiment are promising because biological activities of 

the extract do not diminish in a 9-month period. 
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Appendix  

Biological Safety Procedures for Staphylococcus aureus (BioSafety Manual) 

The S. aureus must be carefully contained, handled, and stored to prevent contamination. Containment 

during use involved a BSC with UV light, high Efficiency Particulate Air (HEPA) filters, and glass shielding 

only raised 4 inches when S. aureus was present. The S. aureus when mixing had to have the test tube lid 

tightly secured to prevent any pathogens escaping via airborne method.  After use of bacteria the space 

had to be properly wiped down with an appropriate disinfectant. When not in use the S. aureus was to be 

locked in the storage refrigerator with proper identification labels. Any contaminated waste was to be 

properly disposed of as a biological hazard. Protective clothing and gear was to be used and 

removed/disposed of properly before leaving the room. 
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Figure 4A: May TEP standard curve with best fit equation to determine oxidation value based on readings 

 

 

 
Figure 5A: July TEP standard curve with best fit equation to determine oxidation value based on readings 
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Figure 6A: September TEP standard curve with best fit equation to determine oxidation value based on 
readings 

 

  
Figure 7A: December TEP standard curve with best fit equation to determine oxidation value based on 
readings 
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Figure 8A: S. aureus plating with four discs showing zone of inhibition for each concertation and example measurement bar 
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