
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2017

A Study of Activation Functions for Neural Networks A Study of Activation Functions for Neural Networks

Meenakshi Manavazhahan
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

 Part of the Other Computer Engineering Commons

Citation Citation
Manavazhahan, M. (2017). A Study of Activation Functions for Neural Networks. Computer Science and
Computer Engineering Undergraduate Honors Theses Retrieved from https://scholarworks.uark.edu/
csceuht/44

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at
ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information,
please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csce
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.uark.edu%2Fcsceuht%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/44?utm_source=scholarworks.uark.edu%2Fcsceuht%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/44?utm_source=scholarworks.uark.edu%2Fcsceuht%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

	 1	

A Study of Activation Functions for Neural Networks

An undergraduate thesis

in partial fulfillment of the honors program at

University of Arkansas

College of Engineering

Department of Computer Science and Computer Engineering

by: Meena Mana

14 March, 2017

	 2	

Abstract:

Artificial neural networks are function-approximating models that can improve

themselves with experience. In order to work effectively, they rely on a nonlinearity, or

activation function, to transform the values between each layer. One question that

remains unanswered is, “Which non-linearity is optimal for learning with a particular

dataset?” This thesis seeks to answer this question with the MNIST dataset, a popular

dataset of handwritten digits, and vowel dataset, a dataset of vowel sounds. In order to

answer this question effectively, it must simultaneously determine near-optimal values

for several other meta-parameters, including the network topology, the optimization

algorithm, and the number of training epochs necessary for the model to converge to

good results.

Intro:

Machine learning is starting to enable a multitude of useful applications. A few

things that one could do with machine learning are image and sign recognition, predicting

an individual’s future shopping trends, and diagnose medical conditions. A neural

network is one model of machine learning and has recently been found as being

especially good at image recognition. We specifically study activation functions within

the neural network model that falls under machine learning.

On a similar note, patterns of digits can be trained by computers to be accurately

categorized and sorted. Machines could help recognize the digits, proving useful in many

	 3	

fields, such as sorting mail. Postal addresses and zipcodes are often difficult to read, but

with the help of optical character recognition (OCR), they may be easier to decipher and

then sort. One can picture the effects that sorting mail by computers would have in

today’s world…the hope is that the letters would be delivered to the receiver in a more

perfect, satisfying fashion.

The MNIST(Mixed National Institude of Standards and Technology) dataset,

widely used in the field of machine learning, consists of 70,000 handwritten digits,

consisting of 60,000 training images and 10,000 test images. The 60,000 training patterns

are inputted into the training model as features, and 10,000 patterns are outputted from

the testing model as labels. The models used to train and test labels and features are

neural networks. These neural networks consist of equations that are tuned by weights.

We want the neural networks that are trained and tested on the MNIST dataset to learn

well, so that they are able to accurately recognize patterns and be tuned to give almost

perfect results. In this way, the MNIST dataset could be used to accurately sort postal

mail.

The Vowel dataset contains automatically extracted audio features for recordings

from 11 different speakers making a variety of vowel sounds. The features are of

MFCC’s (Mel Frequency Cepstral Coefficient), as well as certain information about the

person making the recordings.

Artificial neural networks are function approximating models. They accept a

vector of input values, x, and compute a corresponding vector of output values, y:

	 4	

y = f(x; w)

Neural networks rely on an internal set of weights, w, that control the function that the

neural network represents. The process of adjusting the weights in a neural network to

make it approximate a particular function is called “training”.

 One of the more common types of neural networks are feed-forward neural

networks. In these neural networks, the weights are organized into “layers” that feed into

each other as illustrated in the following diagram:

In order to compute interesting functions, a non-linearity, also called an “activation

function” or “transfer function” is typically inserted between each layer in the neural

network. The activation function significantly increases the power of multi-layered neural

networks, enabling them to compute arbitrary functions [3].

	 5	

 The below picture gives a rough idea of how neural networks work.

• 60,000 samples are inputted as features which are trained by the neural network

and outputted as 60,000 labels.

• The 60,000 training input sample images have 784 pixels, therefore they are a size

of vector 784.

• The 60,000 training output images have 10 encodings each.

• There are 10,000 testing images which are inputted as features, and our

experiments give the final percent error, or misclassifications, out of 10,000 test

patterns.

 Although many activation functions have been studied, identifying the best

activation function for a particular task still remains an open question. This thesis seeks

to make progress toward understanding which activation functions are the best by

	 6	

systematically testing a collection of activation functions with the MNIST dataset and

vowel dataset.

 Of course, testing activation functions under sub-optimal conditions would not be

very meaningful. Therefore, in order to identify the best activation function, we propose

to sweep across a range of values for several other meta-parameters as well. These meta-

parameters include the number of artificial neurons in each layer, the optimization

method used to train the weights, and the number of training epochs performed to

optimize the weights. By testing a full set of combinations of values in these meta-

parameters, we seek to find the best activation function to use with this dataset under the

best possible conditions of other parameters.

 Ultimately, we found the best results for the MNIST dataset using the Leaky

Rectifier non-linearity when the neural network contained 316 nodes in each layer and

was trained with stochastic gradient descent at 75 training epochs. Our best model

achieved a misclassification rate of 1.29%. For the vowel dataset, we found the best

results using Gaussian non-linearity when the neural network contained 316 nodes in

each layer and was trained with stochastic gradient descent at 154 training epochs. Our

best model achieved a misclassification rate of 22.0779%.

Related Works:

 Single-layer regression models were studied as long ago as the late 1700’s by

Gauss and Legendre [1]. Unfortunately, these models lacked the power to approximate

complex functions. In the 1980’s, with the popularization of backpropagation, multi-

	 7	

layered neural networks began to gain wide acceptance [2]. In the late 1980’s, Cybenko

proved that a neural network with two layers of weights and just one layer of a non-linear

activation function formed a model that could approximate any function with arbitrary

precision [3]. The non-linearity is critical for the power of neural networks because

without it, the other layers of weights reduce to being equivalent to just a single layer.

 In 2006, Hinton presented a method for efficiently training deep neural networks,

or neural networks with many layers [4]. This started a resurgence of interest in neural

networks that has grown to become the buzzword that is now “deep learning” [5]. These

days, neural networks are starting to outperform even humans at complex learning tasks,

such as image recognition [6].

 One of the most common datasets for testing deep neural networks is the MNIST

(Mixed National Institute of Standards and Technology) dataset. This dataset trains a

neural network to perform optical character recognition (OCR). This is a significant task

for machine learning because vision has long been considered a task that was difficult for

machines [7]. It has 70,000 handwritten digits, consisting of 60,000 training images and

10,000 test images. The 60,000 training patterns are typically used to train the model, and

the remaining 10,000 patterns are used to evaluate the trained model. A model that can

accurately classify patterns in the MNIST dataset could be used to sort postal mail, for

example. However, in machine learning, it is often used simply as a test problem for

evaluating a model’s ability to learn.

 For the experiments in this paper, we used the Waffles machine learning toolkit

[8]. This toolkit provides many machine learning algorithms. For our study, however, we

restricted our experiments to artificial neural networks. Significantly, this toolkit provides

eleven non-linear activation functions, which we tested in our experiments.

	 8	

Procedure- Technical Approach:

 We first installed the latest version of Waffles, available on GitHub [9]. We also

obtained a copy of the MNIST dataset in ARFF format [10]. We compiled the code and

ran it successfully using these .arff files. Below is the display from the Terminal window:

In preliminary testing with the neural network from the Waffles toolkit, without

any parameter tuning, we obtained the results shown below:

In this plot, the horizontal axis represents epochs, or training passes. The vertical

axis represents model error. Out of 10000 labels outputted, less than 350 digits were

incorrectly recognized, resulting in an approximately 0.034 (3.4%) error, or 97.6%

accuracy rate. At epochs 4 and 7, the error rate increased, meaning it got temporarily

worse, but overall, the error rate decreased. The model improved in accuracy as it gained

experience.

	 9	

In machine learning, we typically consider accuracy to be more important than

training time, because training only needs to be done once. Training can be conducted as

many times as needed.

Several factors affect the shape of the curve above. The factors that we focused on are

activation functions (coded in non-linearity blocks), topology (coded in layer size), time

(measured in epochs), and datasets (MNIST, particularly, and vowel as a stretch goal).

This paper sweeps through the following metaparameters:

• Datasets MNIST and Vowel

• Topology 5 layer widths of 10, 31, 100, 316, and 1000.

• Activation Function 11 non-linear blocks

• Optimizer 1 optimizers

• Time 200 training epochs

We wrote an automated test suite that ran for 68 days to gather our results. The results

led to the conclusion that Leaky Rectifier activation function with a topology of 316 and

SGD Optimizer are the most optimal parameters in the MNIST dataset. In the Vowel

dataset, the best optimizer is SGD Optimizer with a layer width of 316 using Gaussian

nonlinear block. This paper describes the process of arriving at the two conclusions

stated.

 The datasets used are MNIST and Vowel.

 The 11 non-linear blocks are listed below:

 Tanh

	 10	

 Sine

 Bent Identity

 Gaussian

Identity

 Leaky Rectifier

 Logistic

 Rectifier

 SoftExp

 SoftPlus

 SoftRoot

 The optimizer used for training and testing are SGD Optimizer.

 Each training and testing period for the neural network takes 200 epochs.

Evidence

We wrote code to produce output data that gives the optimal nonlinear block with

the best activation and best optimizer. We did experiments with layers of size 10, 31,

100, 316, and 1000.

The results from the first experiment were split into 57 trial runs, each with

its own metadata header detailing the below:

a. dataset

b. nonlinearity block

c. training patterns

	 11	

d. test patterns

e. topology with the layer size

f. total weights used to tune the network

g. optimizer used.

Screenshot:

After printing the output data in console, it needed to be plotted effectively. We

chose Excel to graph the charts containing the output data.

We realized that plotting the results with the percent error would be useless

without quantifiable metrics to analyze them with. Therefore, we chose to focus on

finding the best nonlinearity block, which optimizer it used, with which topology, and at

	 12	

what epoch number (measuring time). Before identifying the best nonlinearity block, we

decided to identify the best optimizer and topology.

MNIST Dataset

Best Optimizer

I. Layer Width: 10

 We first decided to analyze the results using a layer width of 10 and the 3

different optimizers. We took the results from the 57 trial runs, and wrote a program to

print out the percent error using each optimizer.

 Our experiments were performed using the stochastic gradient descent optimizer.

As shown in the following graphs, it achieved an error rate of less than 1% in the

majority of cases.

	 13	

II. Layer Width: 31

 The percent error rates for SGD Optimizer using a layer width of 31 are graphed

above, showing a consistent low error rate.

0	 0.2	 0.4	 0.6	 0.8	 1	
1	
5	
9	
13	
17	

Percent	Error	

Tr
ia
l	R
un
	

Percent	Error	in	19	trials	using	
SGD	Optimizer,	layer	width	of	10		

0	
0.2	
0.4	
0.6	
0.8	

1	 2	 3	 4	 5	 6	 7	 8	 9	10	11	

Pe
rc
en
t	E
rr
or
	

Trial	Run	

Percent	Error	using	SGD	
Optimizer	with	layer	width	31	

	 14	

III. Layer Width: 100

We narrowed down that SGD Optimizer had a 1.29% percent error at layer width

of 316. After finding the lowest percent error rates among all of the layer widths (10, 31,

100, 316, and 1000), we found that SGD Optimizer was the best optimizer in these

experiments when training with a layer width of 316.

Vowel Dataset: Best Optimizer	

	

SGD	Optimizer	seemed	to	be	the	best	optimizer	for	the	vowel	dataset.		

Calculating	the	lowest	percent	error	for	each	layer	width	(10,	31,	100,	316,	

and	1000),	SGD	Optimizer	gave	the	lowest	percent	error,	22.08%	error	at	epoch	

154.		

MNIST: Best Topology (layer width)

Based on the above graphs calculated to find the best optimizer, the best topology

was a layer width of 316, which gives 1.29% error.

0	
0.2	
0.4	
0.6	
0.8	

1	 2	 3	 4	 5	 6	 7	 8	 9	10	11	

Pe
rc
en
t	E
rr
or
	

Trial	Run	

Percent	Error	using	SGD	
Optimizer,	layer	width	of	

100	

	 15	

Vowel: Best Topology (layer width)

	 	

	 Based	on	the	above	graphs	calculated	to	find	the	best	optimizer,	the	best	

topology	was	a	layer	width	of	316,	which	gives	22.0779%	error.	The	below	graph	

illustrates	this	result.	

	

	

	

	 After	extensive	data	analysis,	the	lowest	error	was	found	for	each	of	the	6	

layer	widths-	ranging	from	10	to	3162.	The	optimal	layer	width	for	the	vowel	

dataset	was	316,	giving	the	lowest	overall	percent	error	of	22.08%.	The	second	best	

layer	width	was	100,	with	a	percent	error	of	24.46%.	A	layer	width	of	3162	was	the	

worst	out	of	the	6,	giving	a	high	percent	error	of	81.81%.		

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

 10	 31	 	
100	

	
316	

 1000	 3162	

Pe
rc
en
t	E
rr
or
	

Topology	(Layer	width)	

Lowest	Percent	Error	using	6	layer	
widths,		

Vowel	dataset	

	 16	

MNIST: Best Nonlinear Block

 Before analyzing the results of our experiments, we would like to present the

pictures of each of the activation functions and what they look like on a graph [12].

Tanh

Sinusoid

Bent Identity

Gaussian

Identity

	 17	

Leaky Rectifier (Rectified Linear)

Logistic

Rectifier

SoftExp

SoftPlus

	 18	

SoftRoot

We analyzed the results of the experiments, specifically, the non-linear block. The

below graph shows training and testing using a layer width of 10. Initially, it appeared

that SoftRoot is the best nonlinear block, with a 10.88% error…

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	

Pe
rc
en
t	E
rr
or
	

Nonlinear	Block	

Percent	Error	with	each	Nonlinear	Block	
using	layer	width	of	10	

	 19	

To test the initial hypothesis, we went further and plotted percent errors with

deeper layers of 31, 100, 316, and 1000. error.	

 Plotting the average percent error with 11 non-linearities and a layer width of 31,

SoftPlus proved to be the best nonlinearity, giving a percent error of 3.77%.

Interestingly, tanh proved to be the worst non-linearity block, with a percent error of

7.28%. One noteworthy point is that though it appears that the differences in percent error

are great, the range between the best percent error and worst percent error is 3.51%,

which is relatively small.

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

Pe
rc
en
t	E
rr
or
	

Non-linear	Block	

Percent	Error	using	11	Nonlinearities,	
layer	width	of	31	

	 20	

 Using a layer width of 100, the best activation function proved to be sine, with a

percent error of 31.66%. The worst activation function was Gaussian with a percent error

of 84.97%. The other activation functions ranged evenly, approximately 55.00%,

between the two.

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	

Pe
rc
en
t	E
rr
or
	

Non-linear	Block	

Percent	Error	with	11	non-linearities,	layer	
width	of	100	

	 21	

Plotting the results with a layer width of 316, I found that Leaky Rectifier

appeared to be the best nonlinear block, with a percent error of 1.29%. It clearly beat the

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

Ta
nh
	

Ta
nh
	

Ta
nh
	

Si
ne
	

Si
ne
	

Si
ne
	

Be
nt
Id
en
tit
y	

Be
nt
Id
en
tit
y	

Be
nt
Id
en
tit
y	

Ga
us
si
an
	

Ga
us
si
an
	

Ga
us
si
an
	

Id
en
tit
y	

Id
en
tit
y	

Id
en
tit
y	

Le
ak
y	
Re
ct
iUi
er
	

Le
ak
y	
Re
ct
iUi
er
	

Le
ak
y	
Re
ct
iUi
er
	

Lo
gi
st
ic
	

Lo
gi
st
ic
	

Lo
gi
st
ic
	

Re
ct
iUi
er
	

Re
ct
iUi
er
	

Re
ct
iUi
er
	

Pe
rc
en
t	E
rr
or
	

Nonlinear	Block	

Percent	Error	using	8	Nonlinear	Blocks,	
layer	width	of	316	

0	
0.02	
0.04	
0.06	
0.08	
0.1	
0.12	
0.14	
0.16	

Pe
rc
en
t	E
rr
or
	

Nonlinear	Block	

Minimum	Percent	Error	using	11	
Nonlinear	Blocks,	layer	width	of	316		

	 22	

other activation functions tested. Though it is hard to tell, Rectifier was the worst

activation function using a layer width of 316, with a percent error of 90.20%.

Below is the screenshot of the results:

4

0.5	

0.52	

0.54	

0.56	

0.58	

0.6	

0.62	

Pe
rc
en
t	E
rr
or
	

Nonlinear	Block	

Average	Percent	Error	using	8	
Nonlinear	Blocks,	layer	width	of	316	

	 23	

Further analyzing the results with layer width of 316, I found that Leaky Rectifier proves

to be the best activation function, giving 54.22% average percent error. Bent Identity

came in as a close second, with an average percent error of 54.83%.

I found that using a layer width of 1000, tanh is the best nonlinear block, with a

1.48% error. However, this considered results with only tanh block, because the

experiment takes a considerable amount of time to run through 200 epochs of each

nonlinearity block. Given that the experiment ran for about a month, it had time to train

and test samples using SGD Optimizer and Adam Optimizer. The program did not yet

print results for RMS Prop Optimizer.

Layer Width Best Activation Function Percent Error

10 SoftRoot 10.88%

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

SGD	 Adam	

Pe
rc
en
t	E
rr
or
	

Optimizer	

Percent	Error	using	2	Optimizers,	
layer	width	of	1000	

	 24	

31 SoftPlus 3.77%

316 Leaky Rectifier 1.29%

1000 Tanh 1.48%

Clearly, in the MNIST dataset, using the neural network of layer width 316, Leaky

Rectifier block, and SGD Optimizer gives the lowest percent error at 1.29%.

Vowel Dataset: Best Nonlinear Block

	

		

Layer	Width:	10	

	 	

		

	

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	

Pe
rc
en
t	E
rr
or
	

Nonlinear	Block	

Average	Percent	Error,	using	layer	
width	10,	11	nonlinearity	blocks	

	 25	

		 Plotting	the	11	nonlinear	blocks	with	a	layer	width	of	10,	we	found	that	

Leaky	Rectifier	provided	the	best	percent	error,	with	35.71%	error.	

	

We	decided	to	plot	the	nonlinear	blocks’	percent	error,	similary	to	MNIST	dataset,	in	

each	of	the	layer	widths.	Below	are	the	results.	

	

Layer	Width-	31	

	

	

		

	

Plotting	the	11	nonlinearities	with	a	layer	width	of	31,	we	found	that	Logistic	was	the	

best	activation	function,	with	a	percent	error	of	32.3954%	error.	

	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

Pe
rc
en
t	E
rr
or
	

Nonlinear	Block	

Average	Percent	Error,	using	layer	width	
31,	with	11	nonlinear	blocks	

	

	 26	

	

	

	

After	plotting	the	11	nonlinear	blocks	using	a	layer	width	of	100,	SoftPlus	was	found	to	be	

the	best	nonlinear	block,	with	a	percent	error	of	35.57%.	

	

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	

Pe
rc
en
t	E
rr
or
	

Nonlinear	Block	

Average	Percent	Error	using	layer	
width	of	100,	11	nonlinear	blocks	

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	

Pe
rc
en
t	E
rr
or
	

Nonlinear	Block	

Average	Percent	Error,	using	layer	width	
of	316,	11	nonlinearity	blocks	

	 27	

	

	

Plotting	the	average	percent	error	using	a	layer	width	of	316,	the	best	activation	

function	proved	to	be	SoftPlus,	with	a	percent	error	of	47.8355%	error.	

	

	

	

Using	a	layer	width	of	1000,	we	plotted	the	average	percent	error	of	the	11	

nonlinear	blocks,	and	found	that	SoftPlus	was	the	best	activation	function,	with	a	

percent	error	of	35.57%.	

Finally,	we	decided	to	plot,	using	a	layer	width	of	3162,	the	average	percent	

error	using	11	nonlinear	blocks.	However,	as	the	experiments	hadn’t	completed,	we	

decided	not	to	use	the	results	from	these	tests,	as	they	only	tested	tanh	nonlinear	

block.	

	

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

Pe
rc
en
t	E
rr
or
	

Nonlinear	Block	

Percent	Error	using	Layer	Width	of	
1000,	11	nonlinear	blocks	

	 28	

	 	

	

	

	

	 	 SoftPlus	was	the	best	average	nonlinear	block	for	the	vowel	dataset,	with	an	

average	percent	error	of	46.58%.	Leaky	Rectifier	came	in	second,	with	an	average	percent	

error	of	49.86%.	On	the	other	hand,	Rectifier	seemed	to	be	the	worst	nonlinear	block	for	

the	vowel	dataset,	giving	an	average	percent	error	of	71.13%.	The	second	worst	nonlinear	

block	was	Logistic,	with	an	average	percent	error	of	70.62%.		

	 Graphing	the	minimum	error	of	each	of	the	nonlinear	blocks,	we	found	the	below	

graph:	

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	

Pe
rc
en
t	E
rr
or
	

Nonlinear	Block	

Average	Percent	Error	using	11	
Nonlinear	Blocks,	Vowel	dataset	

	 29	

	

	

	 Considering	the	above	average	percent	errors	in	each	layer	width,	we	must	consider	

the	best	optimizer	and	topology	that	gives	the	lowest	percent	error.	Gaussian	nonlinear	

block	was	the	best	nonlinear	block	for	the	vowel	dataset,	with	a	22.0779%	error.	

	

	

Conclusion

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

0.45	

Pe
rc
en
t	E
rr
or
	

Non-linear	Block	

	 30	

 We analyzed 3 optimizers, 12 non-linearities, 4 topologies, and 2 datasets. With

the MNIST dataset, each experiment ran for 200 epochs over 60,000 training patterns and

10,000 test patterns. There were a total of 330 permutations, and these experiments took

68 days to run. With this in-depth analysis of the optimal optimizer, topology, and non-

linearities, we found Leaky Rectifier, with Stochastic Gradient Descent Optimizer, using

a layer width of 316, at 75 epochs, gives 1.29% error, proving to be the best nonlinear

block for the MNIST dataset. For the Vowel dataset, we found that Gaussian nonlinear

block, tested using Stochastic Gradient Descent optimizer and a layer width of 316, was

found to be the best nonlinear block, giving a percent error of 22.0779%.

References

[1] Stigler, Stephen M. "Gauss and the invention of least squares." The Annals of

Statistics (1981): 465-474.

[2] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning

representations by back-propagating errors." Cognitive modeling 5, no. 3 (1988): 1.

[3] Cybenko, George. "Approximation by superpositions of a sigmoidal function."

Mathematics of Control, Signals, and Systems (MCSS) 2, no. 4 (1989): 303-314.

[4] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm

for deep belief nets." Neural computation 18, no. 7 (2006): 1527-1554.

	 31	

[5] Schmidhuber, Jürgen. "Deep learning in neural networks: An overview." Neural

networks 61 (2015): 85-117.

[6] Cireşan, Dan, Ueli Meier, Jonathan Masci, and Jürgen Schmidhuber. "A committee of

neural networks for traffic sign classification." In Neural Networks (IJCNN), The 2011

International Joint Conference on, pp. 1918-1921. IEEE, 2011.

[7] Pinto, Nicolas, David D. Cox, and James J. DiCarlo. "Why is real-world visual object

recognition hard?." PLoS Comput Biol 4, no. 1 (2008): e27.

[8] Gashler, Michael. "Waffles: A machine learning toolkit." Journal of Machine

Learning Research 12, no. Jul (2011): 2383-2387.

[9] https://github.com/mikegashler/waffles

[10] http://uaf46365.ddns.uark.edu/data/mnist/

[11] http://uaf46365.ddns.uark.edu/lab/ml.pdf

[12] https://en.wikipedia.org/wiki/Activation_function

	A Study of Activation Functions for Neural Networks
	Citation

	Microsoft Word - Thesis.docx

