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Abstract: 

 

Artificial neural networks are function-approximating models that can improve 

themselves with experience. In order to work effectively, they rely on a nonlinearity, or 

activation function, to transform the values between each layer. One question that 

remains unanswered is,  “Which non-linearity is optimal for learning with a particular 

dataset?” This thesis seeks to answer this question with the MNIST dataset, a popular 

dataset of handwritten digits, and vowel dataset, a dataset of vowel sounds. In order to 

answer this question effectively, it must simultaneously determine near-optimal values 

for several other meta-parameters, including the network topology, the optimization 

algorithm, and the number of training epochs necessary for the model to converge to 

good results.  

Intro: 

 

Machine learning is starting to enable a multitude of useful applications. A few 

things that one could do with machine learning are image and sign recognition, predicting 

an individual’s future shopping trends,  and diagnose medical conditions. A neural 

network is one model of machine learning and has recently been found as being 

especially good at image recognition. We specifically study activation functions within 

the neural network model that falls under machine learning. 

 

On a similar note, patterns of digits can be trained by computers to be accurately 

categorized and sorted. Machines could help recognize the digits, proving useful in many 
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fields, such as sorting mail. Postal addresses and zipcodes are often difficult to read, but 

with the help of optical character recognition (OCR), they may be easier to decipher and 

then sort. One can picture the effects that sorting mail by computers would have in 

today’s world…the hope is that the letters would be delivered to the receiver in a more 

perfect, satisfying fashion.  

 

The MNIST(Mixed National Institude of Standards and Technology) dataset, 

widely used in the field of machine learning, consists of 70,000 handwritten digits, 

consisting of 60,000 training images and 10,000 test images. The 60,000 training patterns 

are inputted into the training model as features, and 10,000 patterns are outputted from 

the testing model as labels. The models used to train and test labels and features are 

neural networks. These neural networks consist of equations that are tuned by weights. 

We want the neural networks that are trained and tested on the MNIST dataset to learn 

well, so that they are able to accurately recognize patterns and be tuned to give almost 

perfect results. In this way, the MNIST dataset could be used to accurately sort postal 

mail. 

 

The Vowel dataset contains automatically extracted audio features for recordings 

from 11 different speakers making a variety of vowel sounds. The features are of 

MFCC’s (Mel Frequency Cepstral Coefficient), as well as certain information about the 

person making the recordings. 

 

Artificial neural networks are function approximating models. They accept a 

vector of input values, x, and compute a corresponding vector of output values, y: 
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y = f(x; w) 

 

Neural networks rely on an internal set of weights, w, that control the function that the 

neural network represents. The process of adjusting the weights in a neural network to 

make it approximate a particular function is called “training”. 

 One of the more common types of neural networks are feed-forward neural 

networks. In these neural networks, the weights are organized into “layers” that feed into 

each other as illustrated in the following diagram: 

 

 

 

 

 

 

In order to compute interesting functions, a non-linearity, also called an “activation 

function” or “transfer function” is typically inserted between each layer in the neural 

network. The activation function significantly increases the power of multi-layered neural 

networks, enabling them to compute arbitrary functions [3]. 
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 The below picture gives a rough idea of how neural networks work.

 

 

• 60,000 samples are inputted as features which are trained by the neural network 

and outputted as 60,000 labels. 

• The 60,000 training input sample images have 784 pixels, therefore they are a size 

of vector 784. 

• The 60,000 training output images have 10 encodings each. 

• There are 10,000 testing images which are inputted as features, and our 

experiments give the final percent error, or misclassifications, out of 10,000 test 

patterns. 

 

 Although many activation functions have been studied, identifying the best 

activation function for a particular task still remains an open question. This thesis seeks 

to make progress toward understanding which activation functions are the best by 
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systematically testing a collection of activation functions with the MNIST dataset and 

vowel dataset. 

 Of course, testing activation functions under sub-optimal conditions would not be 

very meaningful. Therefore, in order to identify the best activation function, we propose 

to sweep across a range of values for several other meta-parameters as well. These meta-

parameters include the number of artificial neurons in each layer, the optimization 

method used to train the weights, and the number of training epochs performed to 

optimize the weights. By testing a full set of combinations of values in these meta-

parameters, we seek to find the best activation function to use with this dataset under the 

best possible conditions of other parameters. 

 Ultimately, we found the best results for the MNIST dataset using the Leaky 

Rectifier non-linearity when the neural network contained 316 nodes in each layer and 

was trained with stochastic gradient descent at 75 training epochs. Our best model 

achieved a misclassification rate of 1.29%. For the vowel dataset, we found the best 

results using Gaussian non-linearity when the neural network contained 316 nodes in 

each layer and was trained with stochastic gradient descent at 154 training epochs. Our 

best model achieved a misclassification rate of 22.0779%. 

 

 

Related Works: 

 

 Single-layer regression models were studied as long ago as the late 1700’s by 

Gauss and Legendre [1]. Unfortunately, these models lacked the power to approximate 

complex functions. In the 1980’s, with the popularization of backpropagation, multi-



	 7	

layered neural networks began to gain wide acceptance [2]. In the late 1980’s, Cybenko 

proved that a neural network with two layers of weights and just one layer of a non-linear 

activation function formed a model that could approximate any function with arbitrary 

precision [3]. The non-linearity is critical for the power of neural networks because 

without it, the other layers of weights reduce to being equivalent to just a single layer. 

 In 2006, Hinton presented a method for efficiently training deep neural networks, 

or neural networks with many layers [4]. This started a resurgence of interest in neural 

networks that has grown to become the buzzword that is now “deep learning” [5]. These 

days, neural networks are starting to outperform even humans at complex learning tasks, 

such as image recognition [6]. 

 One of the most common datasets for testing deep neural networks is the MNIST 

(Mixed National Institute of Standards and Technology) dataset. This dataset trains a 

neural network to perform optical character recognition (OCR). This is a significant task 

for machine learning because vision has long been considered a task that was difficult for 

machines [7]. It has 70,000 handwritten digits, consisting of 60,000 training images and 

10,000 test images. The 60,000 training patterns are typically used to train the model, and 

the remaining 10,000 patterns are used to evaluate the trained model. A model that can 

accurately classify patterns in the MNIST dataset could be used to sort postal mail, for 

example. However, in machine learning, it is often used simply as a test problem for 

evaluating a model’s ability to learn. 

 For the experiments in this paper, we used the Waffles machine learning toolkit 

[8]. This toolkit provides many machine learning algorithms. For our study, however, we 

restricted our experiments to artificial neural networks. Significantly, this toolkit provides 

eleven non-linear activation functions, which we tested in our experiments. 
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Procedure- Technical Approach: 

 

 We first installed the latest version of Waffles, available on GitHub [9]. We also 

obtained a copy of the MNIST dataset in ARFF format [10]. We compiled the code and 

ran it successfully using these .arff files. Below is the display from the Terminal window: 

 

In preliminary testing with the neural network from the Waffles toolkit, without 

any parameter tuning, we obtained the results shown below: 

 

 

In this plot, the horizontal axis represents epochs, or training passes. The vertical 

axis represents model error. Out of 10000 labels outputted, less than 350 digits were 

incorrectly recognized, resulting in an approximately 0.034 (3.4%) error, or 97.6% 

accuracy rate. At epochs 4 and 7, the error rate increased, meaning it got temporarily 

worse, but overall, the error rate decreased. The model improved in accuracy as it gained 

experience. 
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In machine learning, we typically consider accuracy to be more important than 

training time, because training only needs to be done once. Training can be conducted as 

many times as needed. 

 

Several factors affect the shape of the curve above. The factors that we focused on are 

activation functions (coded in non-linearity blocks), topology (coded in layer size), time 

(measured in epochs), and datasets (MNIST, particularly, and vowel as a stretch goal).  

 

This paper sweeps through the following metaparameters: 

• Datasets  MNIST and Vowel 

• Topology  5  layer widths of 10, 31, 100, 316, and 1000. 

• Activation Function   11 non-linear blocks 

• Optimizer             1 optimizers 

• Time              200 training epochs 

 

We wrote an automated test suite that ran for 68 days to gather our results.  The results 

led to the conclusion that Leaky Rectifier activation function with a topology of 316 and 

SGD Optimizer are the most optimal parameters in the MNIST dataset. In the Vowel 

dataset, the best optimizer is SGD Optimizer with a layer width of 316 using Gaussian 

nonlinear block. This paper describes the process of arriving at the two conclusions 

stated. 

 

 The datasets used are MNIST and Vowel.  

 The 11 non-linear blocks are listed below: 

  Tanh 
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  Sine 

  Bent Identity 

  Gaussian  

Identity 

  Leaky Rectifier 

  Logistic 

  Rectifier 

  SoftExp 

  SoftPlus 

  SoftRoot 

 

 The optimizer used for training and testing are SGD Optimizer. 

  

 Each training and testing period for the neural network takes 200 epochs.  

Evidence 

 

We wrote code to produce output data that gives the optimal nonlinear block with 

the best activation and best optimizer. We did experiments with layers of size 10, 31, 

100, 316, and 1000.  

The results from the first experiment were split into 57 trial runs, each with  

its own metadata header detailing the below: 

a. dataset 

b. nonlinearity block 

c. training patterns  
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d. test patterns 

e. topology with the layer size 

f. total weights used to tune the network  

g. optimizer used. 

 

Screenshot:

 

 

After printing the output data in console, it needed to be plotted effectively. We 

chose Excel to graph the charts containing the output data.  

 

We realized that plotting the results with the percent error would be useless 

without quantifiable metrics to analyze them with. Therefore, we chose to focus on 

finding the best nonlinearity block, which optimizer it used, with which topology, and at 
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what epoch number (measuring time). Before identifying the best nonlinearity block, we 

decided to identify the best optimizer and topology.  

 

 

MNIST Dataset 

Best Optimizer 

 

I. Layer Width: 10 

 

 We first decided to analyze the results using a layer width of 10 and the 3 

different optimizers. We took the results from the 57 trial runs, and wrote a program to 

print out the percent error using each optimizer.  

 Our experiments were performed using the stochastic gradient descent optimizer. 

As shown in the following graphs, it achieved an error rate of less than 1% in the 

majority of cases. 
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II. Layer Width: 31 

 

 The percent error rates for SGD Optimizer using a layer width of 31 are graphed 

above, showing a consistent low error rate. 
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III. Layer Width: 100 

 

We narrowed down that SGD Optimizer had a 1.29% percent error at layer width 

of 316. After finding the lowest percent error rates among all of the layer widths (10, 31, 

100, 316, and 1000), we found that SGD Optimizer was the best optimizer in these 

experiments when training with a layer width of 316. 

Vowel Dataset: Best Optimizer	

	

SGD	Optimizer	seemed	to	be	the	best	optimizer	for	the	vowel	dataset.		

Calculating	the	lowest	percent	error	for	each	layer	width	(10,	31,	100,	316,	

and	1000),	SGD	Optimizer	gave	the	lowest	percent	error,	22.08%	error	at	epoch	

154.		

MNIST: Best Topology (layer width) 

 

Based on the above graphs calculated to find the best optimizer, the best topology 

was a layer width of 316, which gives 1.29% error. 
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Vowel: Best Topology (layer width) 

	 	

	 Based	on	the	above	graphs	calculated	to	find	the	best	optimizer,	the	best	

topology	was	a	layer	width	of	316,	which	gives	22.0779%	error.	The	below	graph	

illustrates	this	result.	

	

	

	

	 After	extensive	data	analysis,	the	lowest	error	was	found	for	each	of	the	6	

layer	widths-	ranging	from	10	to	3162.	The	optimal	layer	width	for	the	vowel	

dataset	was	316,	giving	the	lowest	overall	percent	error	of	22.08%.	The	second	best	

layer	width	was	100,	with	a	percent	error	of	24.46%.	A	layer	width	of	3162	was	the	

worst	out	of	the	6,	giving	a	high	percent	error	of	81.81%.		
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MNIST: Best Nonlinear Block 

 

 Before analyzing the results of our experiments, we would like to present the 

pictures of each of the activation functions and what they look like on a graph [12]. 

Tanh  

 

Sinusoid 

 

Bent Identity 

 

 

 

Gaussian 

 

 

Identity 
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Leaky Rectifier (Rectified Linear) 

 

 

Logistic 

 

 

Rectifier 

 

  

 

SoftExp  

 

 

SoftPlus 
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SoftRoot 

 

 

We analyzed the results of the experiments, specifically, the non-linear block. The 

below graph shows training and testing using a layer width of 10. Initially, it appeared 

that SoftRoot is the best nonlinear block, with a 10.88% error… 
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To test the initial hypothesis, we went further and plotted percent errors with 

deeper layers of 31, 100, 316, and 1000. error.	

 

 Plotting the average percent error with 11 non-linearities and a layer width of 31, 

SoftPlus proved to be the best nonlinearity, giving  a percent error of 3.77%. 

Interestingly, tanh proved to be the worst non-linearity block, with a percent error of 

7.28%. One noteworthy point is that though it appears that the differences in percent error 

are great, the range between the best percent error and worst percent error is 3.51%, 

which is relatively small. 
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 Using a layer width of 100, the best activation function proved to be sine, with a 

percent error of 31.66%. The worst activation function was Gaussian with a percent error 

of 84.97%. The other activation functions ranged evenly, approximately 55.00%,  

between the two. 
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Plotting the results with a layer width of 316, I found that Leaky Rectifier 

appeared to be the best nonlinear block, with a percent error of 1.29%. It clearly beat the 
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other activation functions tested. Though it is hard to tell, Rectifier was the worst 

activation function using a layer width of 316, with a percent error of 90.20%.  

Below is the screenshot of the results: 

4  
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Further analyzing the results with layer width of 316, I found that Leaky Rectifier proves 

to be the best activation function, giving 54.22% average percent error. Bent Identity 

came in as a close second, with an average percent error of 54.83%. 

 

 

  

I found that using a layer width of 1000, tanh is the best nonlinear block, with a 

1.48% error. However, this considered results with only tanh block, because the 

experiment takes a considerable amount of time to run through 200 epochs of each 

nonlinearity block. Given that the experiment ran for about a month, it had time to train 

and test samples using SGD Optimizer and Adam Optimizer. The program did not yet 

print results for RMS Prop Optimizer. 
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31 SoftPlus 3.77% 

316 Leaky Rectifier 1.29% 

1000 Tanh 1.48% 

 

 

Clearly, in the MNIST dataset, using the neural network of layer width 316, Leaky 

Rectifier block, and SGD Optimizer gives the lowest percent error at 1.29%.  

Vowel Dataset: Best Nonlinear Block 

	

		

Layer	Width:	10	
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		 Plotting	the	11	nonlinear	blocks	with	a	layer	width	of	10,	we	found	that	

Leaky	Rectifier	provided	the	best	percent	error,	with	35.71%	error.	

	

We	decided	to	plot	the	nonlinear	blocks’	percent	error,	similary	to	MNIST	dataset,	in	

each	of	the	layer	widths.	Below	are	the	results.	

	

Layer	Width-	31	

	

	

		

	

Plotting	the	11	nonlinearities	with	a	layer	width	of	31,	we	found	that	Logistic	was	the	

best	activation	function,	with	a	percent	error	of	32.3954%	error.	
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After	plotting	the	11	nonlinear	blocks	using	a	layer	width	of	100,	SoftPlus	was	found	to	be	

the	best	nonlinear	block,	with	a	percent	error	of	35.57%.	
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Plotting	the	average	percent	error	using	a	layer	width	of	316,	the	best	activation	

function	proved	to	be	SoftPlus,	with	a	percent	error	of	47.8355%	error.	

	

	

	

Using	a	layer	width	of	1000,	we	plotted	the	average	percent	error	of	the	11	

nonlinear	blocks,	and	found	that	SoftPlus	was	the	best	activation	function,	with	a	

percent	error	of	35.57%.	

Finally,	we	decided	to	plot,	using	a	layer	width	of	3162,	the	average	percent	

error	using	11	nonlinear	blocks.	However,	as	the	experiments	hadn’t	completed,	we	

decided	not	to	use	the	results	from	these	tests,	as	they	only	tested	tanh	nonlinear	

block.	
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	 	 SoftPlus	was	the	best	average	nonlinear	block	for	the	vowel	dataset,	with	an	

average	percent	error	of	46.58%.	Leaky	Rectifier	came	in	second,	with	an	average	percent	

error	of	49.86%.	On	the	other	hand,	Rectifier	seemed	to	be	the	worst	nonlinear	block	for	

the	vowel	dataset,	giving	an	average	percent	error	of	71.13%.	The	second	worst	nonlinear	

block	was	Logistic,	with	an	average	percent	error	of	70.62%.		

	 Graphing	the	minimum	error	of	each	of	the	nonlinear	blocks,	we	found	the	below	

graph:	
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	 Considering	the	above	average	percent	errors	in	each	layer	width,	we	must	consider	

the	best	optimizer	and	topology	that	gives	the	lowest	percent	error.	Gaussian	nonlinear	

block	was	the	best	nonlinear	block	for	the	vowel	dataset,	with	a	22.0779%	error.	

	

	

 

Conclusion 
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 We analyzed 3 optimizers, 12 non-linearities, 4 topologies, and 2 datasets. With 

the MNIST dataset, each experiment ran for 200 epochs over 60,000 training patterns and 

10,000 test patterns. There were a total of 330 permutations, and these experiments took 

68 days to run. With this in-depth analysis of the optimal optimizer, topology, and non-

linearities, we found Leaky Rectifier, with Stochastic Gradient Descent Optimizer, using 

a layer width of 316, at 75 epochs, gives 1.29% error, proving to be the best nonlinear 

block for the MNIST dataset. For the Vowel dataset, we found that Gaussian nonlinear 

block, tested using Stochastic Gradient Descent optimizer and a layer width of 316, was 

found to be the best nonlinear block, giving a percent error of 22.0779%.  
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