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Abstract 

 Algae are increasingly being recognized as useful organisms for many applications in today’s 

world. Their ability to remove nitrogen, phosphorus, and trace metals from water while adding oxygen 

to water makes them an attractive tertiary treatment technology in municipal wastewater treatment 

facilities. At the same time, algae produce lipids and carbohydrates that are useful for biofuel 

production, and they are not a human food crop unlike many biofuel feedstocks. In this study the effect 

of increased chloride concentrations in wastewater was assessed on the ability of two species of algae, 

Chlorella vulgaris and Scenedesmus dimorphus, to function as a biofuel feedstock. In the first phase of 

the experiment, algae was cultivated in synthetic wastewater with varying chloride concentration; in the 

second phase secondary effluent samples from the Westside Wastewater Treatment Plant in 

Fayetteville, AR, were used to cultivate algae, and the chloride concentration was measured. The 

capacity of C. vulgaris to produce biomass and lipids was not heavily affected by increased chloride 

concentrations in the synthetic wastewater, but that of S. dimorphus was diminished at increased 

chloride concentrations. The secondary effluent had a chloride concentration ranging from six to nine 

times that of the synthetic wastewater recipe. S. dimorphus produced more biomass and chlorophyll 

than C. vulgaris in these trials, but neither species was effective in in producing lipids. Overall, the 

results from both phases of the experiment require replication for validation, and there are many 

opportunities to further this work.  
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1. Introduction 

1.1 Importance of Algae 

 Algae are photoautotrophic organisms that thrive in a wide variety of environments around the 

world. These organisms are increasingly being cultivated due to their potential as a feedstock for biofuel 

production. In the face of climate change in an energy-intensive global community, algae offer many 

benefits. Production and consumption of algae-based biofuels is a carbon recycling process in which 

carbon dioxide is taken up by algae during production and released during consumption of fuels. This 

presents a significant opportunity for mitigating carbon dioxide emissions from fossil fuel usage in the 

transportation industry, as combustion of fossil fuels increases the amount of carbon dioxide in the 

atmosphere. Algae are not a human source of food and can grow in non-arable, high stress 

environments, so they do not present a challenge to food sources like other plant-based biofuels (Kraan, 

2010). Thus, algae-based biofuels present a potential solution to several problems without generating 

additional challenges with respect to the water-food-energy nexus.   

1.2 Algae in Wastewater Treatment 

 In addition to their promise as a biofuel feedstock, algae can also be used to treat wastewater. 

Wastewater is typically treated in several stages, each of which removes contaminants of different sizes 

and types. Solids are removed in preliminary and primary treatment, and dissolved organic matter is 

removed in secondary treatment. Depending on the regulations for a particular facility, effluent from 

secondary treatment can contain moderate levels of nutrients such as nitrogen and phosphorus that 

could lead to eutrophication if discharged into some environments (Auer et al., 2010). Algae are not a 

typical component of modern wastewater treatment systems, but their use as a biological component of 

the wastewater treatment process has been well established. Algae can play a vital role in the process 

because of their success in removing nutrients from water and adding dissolved oxygen to water 
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(Oswald, 2003). Incorporating algae after secondary treatment could potentially lower the level of 

nutrients discharged to the environment. 

The contaminants that algae remove from wastewater serve as a nutrient source for algal 

biomass production. Two important groups of compounds for biofuel synthesis contained in algal 

biomass are lipids and carbohydrates. Lipids can be converted into biodiesel, and carbohydrates can be 

used for ethanol production.  Research in algae cultivation has already shown that limiting the 

availability of nitrogen significantly increases lipid production within algae, and nutrient starvation has 

already become a common component in the procedures of studies (Zhou et al., 2014). The use of algae 

in the wastewater treatment process may simultaneously improve water quality and generate a biofuel 

feedstock. 

It is important to note here that the benefits that algae provide in the wastewater treatment 

process are accompanied by some disadvantages. One of these is harvesting the algae. Algae are 

harvested from wastewater first through flocculation which can be expensive if chemically-induced 

flocculation methods are used. Further harvesting can proceed through gravity or centrifugal 

sedimentation, but the small size of microalgae often results in a settling rate that is too low for gravity 

sedimentation methods to be effective. Centrifugal sedimentation is an energy-intensive process, and 

this would increase the cost of implementing algae in wastewater treatment facilities (Pittman et al., 

2011). To satisfy algae’s energy requirements, implementation of algae in the wastewater treatment 

process might require clarifiers with larger surface area and more exposure to the sun. Increased 

process footprint increases the capital cost of the process.   

1.3 Chloride in Wastewater 

 Chloride salts make up a portion of the major inorganic constituents that are found in water 

used for many applications in today’s world. Freshwater typically contains much lower concentrations of 

these salts than ocean water, but chloride is still found in freshwater due to contributions from surface 
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water and groundwater (Auer, et al., 2010). Chloride is eventually discharged into the environment after 

being used by people in food, beverages, and other products (Mullaney, et al., 2009).  There are no 

threats to human health when chloride is taken in along with appropriate amounts of fresh water, so 

chloride removal has not been a concern of wastewater treatment in the past.  However, chloride could 

pose a challenge to other living organisms in water, such as algae. The effect of salinity has been studied 

on marine algae, but only for several freshwater algae species such as B. braunii (Rao et al., 2007) and 

Botryococcus spp. (Yeesang and Cheirsilp, 2011). However, both of these works examine algae strictly in 

growth media, not wastewater.  

1.4 Objectives  

 The main objective of this study was to assess how chloride salts in wastewater impact 

freshwater algae’s performance as a biofuel feedstock. This study focused on lipids and biomass 

production of algae as they grew in both synthetic wastewater and secondary wastewater effluent from 

the Westside Wastewater Treatment plant (Westside), located in Fayetteville, AR. Chloride 

concentration was manipulated in the synthetic wastewater experiments, and chloride concentration 

was measured in the secondary effluent experiments. The synthetic wastewater experiments were an 

attempt to establish a relationship between algae’s performance and chloride concentration present, 

whereas the secondary effluent experiments served to gauge the algae’s performance in an 

environment that more closely represents a real world scenario.  

2. Methods and Materials 

 The species of algae selected for this study were Chlorella vulgaris and Scenedesmus dimorphus; 

these species were selected based on previous studies that demonstrated their potential to produce 

compounds useful for biofuel production. C. vulgaris has been shown to produce lipids up to 50% of its 

dry weight (Huang & Su, 2013), and S. dimorphus has been shown to produce lipids up to 30% of its dry 

weight (Gour et al., 2016). Pure cultures of these species were purchased from the University of Texas 
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UTEX Algae Collection (UTEX 2714 Chlorella vulgaris and UTEX 1237 Scenedesmus dimorphus) and were 

maintained throughout the trials.  Figure 1 shows images of both the species used in this study.  

 

Figure 1. C. vulgaris (left) and S. dimorphus (right) at 100x magnification. Note 10 µm scale bar in both 

photos.  

 Each of these trials consisted of a two-week period; in the first week, each species of algae was 

inoculated in a 500 mL flask of liquid proteose media (see Table 1). Prior to inoculation, the pH of the 

proteose media was adjusted to 8 to optimize algal growth (Lavens & Sorgeloos, 1996). Additionally, the 

media were autoclaved to prevent any potential contamination from bacteria or other microorganisms.  

 

 

 

 

 

 

 

 

 



6 
 

Table 1. Recipe for proteose media. 

    

     

Compound  

M.W 
Final 

Concentrations 

Final 
Weights 
Required 

  g/mol g/L g 

NaNO3 Sodium Nitrate 84.99 0.025 0.025 

CaCl2.2H2O Calcium Chloride dihydrate 146.98 0.0025 0.0025 

MgSO4.7H2O Magnesium Sulfate heptahydrate 
246.366 0.0075 0.0075 

K2HPO4 Potassium Phosphate dibasic 174.2 0.0075 0.0075 

KH2PO4 Potassium Phosphate monobasic 136.086 0.0175 0.0175 

NaCl Sodium Chloride 58.44 0.0025 0.0025 

 Peptone  1 1 
 

After a week of growth in the proteose media, the algae were separated from the media using a 

centrifuge, and they were then inoculated into flasks of wastewater for the experiments (see Table 2). 

The synthetic wastewater was prepared for inoculation in a similar manner to the proteose media. 

Flasks of the synthetic wastewater were adjusted to a pH of 8 using concentrated sodium hydroxide and 

hydrochloric acid and then autoclaved. However, in these trials, the chloride concentration was varied 

by adding sodium chloride to the synthetic wastewater. Over the course of the project, trials were 

conducted at two times (12.8 mg/L), three times (19.2 mg/L), five times (32 mg/L), and ten times (64 

mg/L) the chloride concentration of the synthetic wastewater recipe. These concentrations are 

presented in Table 3 and are based on common characteristics of wastewater outlined by Pescod (1992) 

in a wastewater treatment and usage document by the Food and Agriculture Organization of the United 

Nations.  
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Table 2. Synthetic wastewater recipe 

Formula Name mg Compound Calculated 

CH3COONa Sodium Acetate 
  CH3COONH3 Ammonium Acetate 240.88 240.88 

KH2PO4 monopotassium phosphate 43.94 43.94 

NaHCO3 Sodium Bicarbonate 125 125 

CaCl2 Calcium chloride 10 10 

FeCl3 6H2O 
 

0.804 0.804 

MnSO4 Manganese sulfate 0.038 0.038 

ZnSO4 Zinc sulfate 0.035 0.035 

MgSO4 Magnesium sulfate 25 25 

Yeast extract   50 50 

    FeCl2 Iron chloride 0.375 0.375 

        
 

Table 3. Chloride Concentrations in synthetic wastewater trials 

Trial Cl- Concentration (mg/L) 

1x 6.4 

2x 12.8 

3x 19.2 

5x 32 

10x 64 

 

In the trials conducted with secondary effluent samples from Westside, pH was also adjusted to 

8, and only half of the samples were autoclaved prior to inoculation with algae. The practice of 

autoclaving only half of the flasks in these trials is an attempt to bring this study closer to realistic 

conditions because secondary effluent in treatment plants will likely contain some amount of other 
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organisms. Throughout the trials, all the flasks of algae were continuously stirred by using a magnetic 

stir bar and a stir plate; the stir plate was kept under LED lights with a timer cycling the lights on and off 

every 12 hours. All trials included control flasks of wastewater at the same chloride concentration that 

were not inoculated with either algal species. 

During the week of growth in wastewater, samples were collected daily to measure the algae’s 

productivity and the chloride concentration of the wastewater. Measurements of the algae’s 

productivity were collected by removing a 100 μL sample from each flask of synthetic wastewater for 

analysis using a Biotek Synergy H1 Microplate Reader. The microplate reader first measured optical 

density and chlorophyll. Optical density was detected via absorbance of light at 680 nm, and chlorophyll 

was detected via fluorescence with excitation at 440 nm and emission at 685 nm. Optical density was 

used as an indicator for the intensity of the algae’s growth, and chlorophyll was an indicator of the 

carbohydrate production in the algae. After collecting these measurements, 100 μL of Nile red solution 

was added to each of the wells in the microplate to measure lipids (Chen et al., 2009). Lipid content was 

detected via fluorescence with excitation at 530 nm and emission at 570 nm. All microplate-based 

measurements are dimensionless as a result of these absorbance and fluorescence methods. 

Ion chromatography (IC) was used to measure the chloride concentration present in the 

wastewater throughout the trials.  1.5 mL samples were collected daily, filtered with a 0.1-micron filter, 

and diluted with deionized water prior to IC measurement. These samples were analyzed using a 

Metrohm 850 Professional ion chromatograph, and the data was processed in Metrohm’s MagIC 

software. Additionally at the end of each trial, pH of the wastewater was measured with a pH meter, 

and total solids produced by the algae were measured using Standard Method 2540B (Eaton, 2005). 

Microsoft Excel and Matlab were used for processing and visualizing all data from the experiments.  All 

procedures were approved by the University of Arkansas’s Institutional Biosafety Committee prior to 

execution of the experiments (IBC protocol #17029 approved on 2/15/17). 
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3. Results and Discussion 

3.1 Synthetic Wastewater Trials 

 In these trials, increased levels of chloride appeared to improve the overall productivity of C. 

vulgaris. As seen in figure 2, C. vulgaris reached its peak biomass production during the 10x trial, while 

its lowest biomass production occurred during the 1x trial. S. dimorphus had optimal biomass 

production at the lowest chloride concentration, although it behaved similarly at the highest chloride 

concentration. Its performance at the middle of the range was fairly consistent across the trials. With 

the exception of the 1x trial, C. vulgaris produced more biomass than S. dimorphus. 

 

Figure 2. Total solids production by both algal species in the synthetic wastewater trials. 1x trials refer to 

a chloride concentration of 6.4 mg/L, 2x trials refer to a concentration of 12.8 mg/L, etc. (See Table 3 for 

a full listing of concentrations). 

 The data for chlorophyll production in C. vulgaris reflect similar results to the total solids 

measurements; at increased chloride concentrations, this species of algae produced more chlorophyll. 

The top panel of figure 3 shows the change in chlorophyll over the course of all of these trials. 
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Chlorophyll production was at its lowest for this phase of the experiment during the 1x trial. Chloride 

concentration had only a small effect on chlorophyll production, as evidenced by the measurements 

from the 2x, 3x, 5x, and 10x trials. The trend of chlorophyll levels reaching a maximum toward the 

beginning of the growth period supports findings by Zhou et al. (2014) for polysaccharide production in 

pure Chlorella cultures used to treat wastewater.  
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Figure 3. C. vulgaris chlorophyll and lipid production over the course of synthetic wastewater trials. 1x 

trials refer to a chloride concentration of 6.4 mg/L, 2x trials refer to a concentration of 12.8 mg/L, etc. 

(See Table 3 for a full listing of concentrations). 

 While biomass and chlorophyll production increased in C. vulgaris at higher chloride 

concentrations, the bottom panel of figure 3 indicates that lipid production showed the opposite trend. 

Lipid production was greatest during the 1x trial, and the other four trials showed lower lipid 

production. The general trend of increased lipid production toward the end of trials again agrees with 
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the results of Zhou et al. (2014). The algae use up a greater portion of nutrients in the water over the 

course of the trial, and this nutrient starvation induces greater lipid production. 

 Overall, it appears that increased chloride concentration does not negatively impact C. vulgaris, 

instead providing some small benefit for the species. Total biomass and chlorophyll production 

improved under conditions with elevated chloride. While lipid production was negatively impacted at 

higher chloride concentrations, this impact was not large, and lipid production at the highest chloride 

concentrations (5x and 10x) was actually higher than that at the 2x and 3x concentrations. Lipid 

measurements are also an indirect indicator of how well the algae remove nutrients from wastewater, 

which is algae’s main function in the wastewater treatment process. These results suggest that C. 

vulgaris’s ability to treat wastewater is not greatly compromised by increased chloride concentrations.  

 Figure 4 shows chlorophyll and lipid production by S. dimorphus during the synthetic 

wastewater trials. Chlorophyll production reached a maximum during the 2x and 3x trials and a 

minimum during the 1x trial. This indicates that S. dimorphus was most successful in producing 

carbohydrates when exposed to chloride concentrations between 12.8 and 19.2 mg/L and was 

moderately impacted at higher concentrations.  In stark contrast to chlorophyll production, lipid 

production in S. dimorphus was heavily impacted when chloride concentration was increased. As 

indicated by the bottom panel of figure 4, this species was only able to produce lipids at the lowest of 

chloride concentrations.  
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Figure 4. S. dimorphus chlorophyll and lipid production over the course of synthetic wastewater trials. 1x 

trials refer to a chloride concentration of 6.4 mg/L, 2x trials refer to a concentration of 12.8 mg/L, etc. 

(See Table 3 for a full listing of concentrations). 

 The data indicate that S. dimorphus was heavily affected as a biofuel feedstock by chloride salt 

stress. While chlorophyll production was lowest during the 1x trial, total biomass and lipid production 

were at a maximum during this trial. Lack of biomass production in the 2x, 3x, and 5x trials in 
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conjunction with moderate chlorophyll production and poor lipid production make S. dimorphus a poor 

feedstock for energy at increased chloride concentrations. Poor lipid production at all chloride 

concentrations greater than 6.4 mg/L also suggests that S. dimorphus’s capacity to remove nutrients 

from wastewater was severely diminished as chloride concentration increases. Additionally, in the 2x, 

3x, 5x, and 10x trials with C. vulgaris and S. dimorphus, pH at the end of the trials had increased 

substantially, occasionally being greater than 10.5. This change in pH could have affected the growth of 

the algae and impacted results from the study.  

3.2 Secondary Effluent Trials 

 The IC measurements of chloride in the secondary effluent samples ranged from 39 to 56 mg/L. 

In the context of this study, these measurements put the trials in between the chloride concentrations 

of the 5x and 10x synthetic wastewater trials.  C. vulgaris produced total biomass of 694 mg/L when the 

effluent was not autoclaved prior to inoculation and 710 mg/L when the effluent was autoclaved prior 

to inoculation. This is similar to the results of the 2x and 3x synthetic wastewater trials. S. dimorphus 

produced total biomass of 847 mg/L when the effluent was not autoclaved prior to inoculation and 804 

mg/L when the effluent was autoclaved prior to inoculation. This is particularly interesting because it 

indicates that S. dimorphus might be more successful in secondary effluent from a real world treatment 

plant than it was in synthetic wastewater.  

 S. dimorphus also produced chlorophyll well when compared to its trials in synthetic wastewater 

and to C. vulgaris in the secondary effluent trials.  This is evident in the top panel of figure 5 for both the 

autoclaved and non-autoclaved S. dimorphus trials. In the bottom panel of figure 5, it is evident that 

neither species of algae was effective in producing lipids during the secondary effluent trials. This 

indicates that neither species of algae would be effective in removing nutrients from wastewater in a 

treatment plant at these chloride concentrations. Another point of interest in these trials is the manner 

in which chlorophyll and lipid production changed over the course of the trials. Both species showed 
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increased chlorophyll production and decreased lipid production at the end of the trials, which is 

contrary to the findings of the synthetic wastewater trials and other studies like Zhou et al. (2014). It 

could be possible that the algae experienced a greater lag time in their growth cycle while in the 

secondary effluent or that the difference in nutrient content between the synthetic wastewater and the 

secondary effluent caused this behavior.  
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Figure 5. Chlorophyll and lipid production in both species of algae during the secondary effluent trials. 

4.0 Conclusion and Future Opportunities 

 In the synthetic wastewater trials C. vulgaris was more resistant to chloride stress than S. 

dimorphus, producing greater total biomass and lipids during the majority of the trials. While C. vulgaris 

was less successful at removing nutrients when exposed to higher chloride concentrations, it was still 

able to produce lipids, and thus was still removing nutrients from the wastewater. In contrast, S. 

dimorphus showed no ability to remove nutrients when exposed to chloride concentrations greater than 

that in the original synthetic wastewater recipe. S. dimorphus was still able to produce chlorophyll at 

higher chloride concentrations, but its lack of biomass and lipid production indicate that chloride stress 

diminishes its potential as a biofuel feedstock and a component of the wastewater treatment process. In 

the secondary wastewater trials, S. dimorphus produced more biomass and chlorophyll than C. vulgaris. 

It appears that neither species was able to remove nutrients well in these trials. Autoclaving the 

secondary effluent samples prior to inoculation did not have an effect on the performance of either 

species.  
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 Moving forward, there are still many opportunities related to this study that need to be 

explored. A weakness of this study is its lack of replication; the results presented here would have 

greater certainty if the trials were carried out in duplicates or triplicates. A greater understanding of the 

algae’s ability to remove nutrients from wastewater would also benefit this experiment; this could be 

achieved by measuring total nitrogen and total phosphorus over the course of the trials. Additionally, it 

is still unclear why the growth of both species showed such great differences between the synthetic 

wastewater and secondary effluent trials. This question could be answered by a more thorough 

chemical characterization of the secondary effluent samples. Control of pH through the course of trials 

also has the potential to refine the results of this experiment. It could be that the increase in pH during 

the trials was a greater driver of algal activity than ambient chloride concentration. Other characteristics 

of wastewater could also be manipulated to get a more detailed picture of the conditions in which algae 

could be a viable wastewater treatment technology and biofuel feedstock.  
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