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Summary 

A leukocyte differential count can be used to diagnosis a myriad blood disorders, such as 

infections, allergies, and efficacy of disease treatments. In recent years, attention has been 

focused on developing point-of-care (POC) systems to provide this test in global health settings. 

Acridine orange (AO) is an amphipathic, vital dye that intercalates leukocyte nucleic acids and 

acidic vesicles. It has been utilized by POC systems to identify the three main leukocyte 

subtypes: granulocytes, monocytes, and lymphocytes. Subtypes of leukocytes can be 

characterized using a fluorescence microscope, where the AO has a 450 nm excitation 

wavelength and has two peak emission wavelengths between 525 nm (green) and 650 nm (red), 

depending on the cellular content and concentration of AO in the cells. The full spectra of AO 

stained leukocytes has not been fully explored for POC applications. Optical instruments, such 

as a spectrometer that utilizes a diffraction grating, can give specific spectral data by separating 

polychromatic light into distinct wavelengths. The spectral data from this setup can be used to 

create object-specific emission profiles. 

Yellow-green and crimson microspheres were used to model the emission peaks and profiles of 

AO stained leukocytes. Whole blood was collected via finger stick and stained with AO to gather 

preliminary leukocyte emission profiles. A MATLAB algorithm was designed to analyze the 

spectral data within the images acquired using the image-based spectrometer. The algorithm 

utilized watershed segmentation and centroid location functions to isolate independent spectra 

from an image. The output spectra represent the average line intensity profiles for each pixel 

across a slice of an object. First steps were also taken in processing video frames of manually 

translated microspheres. The high-speed frame rate allowed objects to appear in multiple 

consecutive images. A function was applied to each image cycle to identify repeating centroid 

locations.  

The yellow-green (515 nm) and crimson (645 nm) microspheres exhibited a distinct separation 

in colorimetric emission with a peak-to-peak difference of 36 pixels, which is related to the 130 

nm peak emission difference. Two AO stained leukocytes exhibited distinct spectral profiles and 

peaks across different wavelengths.  This could be due to variations in the staining method 

(incubation period and concentration) effecting the emissions or variations in cellular content 

indicating different leukocyte subtypes. The algorithm was also effective when isolating unique 

centroids between video frames.  

We have demonstrated the ability to extract spectral information from data acquired from the 

image-based spectrometer of microspheres, as a control, and AO stained leukocytes. We 

determined that the spectral information from yellow-green and crimson microspheres could be 

used to represent the wavelength range of AO stained leukocytes, thus providing a calibration 

tool. Also, preliminary spectral information was successfully extracted from yellow-green 

microspheres translated under the linear slit using stationary images and video frames, thus 

demonstrating the feasibility of collecting data from a large number of objects.    
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Introduction 

Acridine orange (AO) is a fluorescent dye that was discovered by a group of botanists and later 

used in the fields of pathology and histology.1 Early histological applications of AO were focused 

on the identification of malignant cells in tissue types such as cervical, endothelial, stomach, 

breast, and lung based on the unique fluorescent characteristics of the dye.2 Also, research 

using AO was an attractive substitution to gram staining when identifying microbial, since AO 

was more sensitive and equally specific when compared to the traditional gram staining 

technique.3 Originally, fluorescence-based AO staining techniques were performed on fixed 

monolayer of cells.4 The individual cells can be characterized using a fluorescence microscope, 

where the AO has a 450 nm excitation wavelength and has two peak emission wavelengths 

between 525 nm (green) and 650 nm (red), depending on the cellular content and concentration 

of AO in the cells.4,5  The staining of DNA in the nucleus of the malignant and microbial cells 

produced green fluorescence, while the RNA in the cytoplasm emitted a red-brown color.2,6,7  An 

increased RNA concentration in the cells, characteristic of malignant cells, caused the cells to 

fluorescence, thus distinguishing them from healthy cells rich in DNA emitting green 

fluorescence.2 However, these colorimetric distinctions were only applicable to early screenings 

of cell samples and could not be used as a true diagnostic tool, because the more established 

methods for diagnosis eliminated the doubt of colorimetric interpretation.2 

The early biological applications of AO relied on the staining of fixed cells. Live cell staining with 

AO is more complex due to the ready uptake of the dye into the cells. The AO molecule is 

collected in the cell cytoplasm and is moved to the nucleus and acidic vesicles. The AO molecule 

initially intercalates into the DNA’s major and minor grooves due to the amphipathic nature of 

the molecule.8 If the cell possesses acidic vesicles, AO can be collected by the acidic vesicles, 

such as the lysosome, which has an internal pH of ~5 (4). The peak emission wavelength of AO 

in the cell is dependent on the uptake by the nucleic acids and acidic vesicles within the cell.4,5  

AO has been used to stain and characterize leukocytes based on their varying nuclear and acidic 

vesicle concentrations across the five cellular subtypes: monocytes, lymphocytes, neutrophils, 

basophils, and eosinophils.7,8 The neutrophils, basophils, and eosinophils are all classes of 

granulocytes. When AO is introduced to granulocytes, the molecule is collected and protonated 

in the acidic vesicles, preventing the molecule from passing back into the cytoplasm.4,9 This 
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mechanism causes a high 

concentration of AO to be accumulated 

in these vesicles, thus causing the 

granulocytes to fluoresce red, Figure 

1-a.4,8,10 The lymphocytes have a low 

lysosome count and a largely dominant 

nucleus where the AO intercalates in 

the DNA, thus causing them to 

fluoresce green, Figure 1-c.8,10 The monocytes exhibit an intermediate concentration of both 

DNA and acidic vesicles, so they fluoresce between the yellow and orange wavelengths, Figure 

1-b.8,10 This distinct colorimetric contrast between subtypes can be used to classify and count 

leukocyte populations based on colorimetric features alone.  

A leukocyte differential is a clinical laboratory test that measures the concentrations of the 

subtypes of leukocytes.  Fluctuations in the subtype concentrations can be used to diagnose a 

myriad of disorders, such as infections, allergies, and efficacy of disease treatments.7 Currently, 

the “golden-standard” for leukocyte differential tests is an automated hematology analyzer, 

which classifies leukocytes based on electrical impedance and light scattering differences 

between the subtypes.7,11 Although this method is time sensitive and reliable, it requires 

expensive equipment (≤$20,000) and reagents.7 Earlier and lower cost methods of developing 

leukocyte counts can be performed manually by a trained technician, which is labor, skill, and 

time intensive.12 These expensive or highly technical methods of leukocyte counting limit the 

accessibility and reliability of these tests in low income or remote areas.7,12  

Point of care (POC) devices have been developed to aid in the skill and/or financial deficit when 

measuring leukocyte counts, thus increasing the availability of tests at a global health scale.7,8 

Three POC systems, in particular, have utilized AO staining as the contrast agent for a leukocyte 

differentials test.7,8,13 These devices rely on the red-to-green emission intensity ratio, unique to 

the three main subtypes of leukocytes.7,13 It is advantageous that these colorimetric differences 

can be distinguished with little pre-existing skill.2 Another advantage of AO is its limited cell 

preparation (6-10 minutes) and imaging times (~3 minutes).2,6 However, the AO fluorophore is 

unstable in daylight, has a limited imaging time due to photo bleaching and a significant 

Figure 1: The (a) granulocyte, (b) monocyte, and (c) 

lymphocyte exhibit distinct color features based on the 

concentrations of dye uptake in the acidic vesicles and 

nucleus. Scale bar 10 um. Image: Powless, A, et al. (8)  
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colorimetric shift.4,5,6,8 The colorimetric shift occurs with variations in the staining method 

(incubation period and AO concentration), due to the accumulation of the dye by the cytoplasm 

and acidic vesicles.8,9 Although AO has great potential to classify leukocytes for POC 

applications, the volatile nature of the dye can affect the reliability and accuracy of the test based 

on a ratio of AO emission intensity alone.  

The full spectra of AO stained leukocytes has not been fully explored for POC applications. 

Optical instruments, such as a spectrometer that utilizes a diffraction grating, can give specific 

spectral data by separating polychromatic light into distinct wavelengths. A diffraction grating 

uses the concept of a multiple slit system to separate combined light into the individual color 

components.14 The combination of the groove width and the change in refractive indices 

between the air and the glass of the grating causes the separation of light spectra when 

polychromatic light passes through the grating.14  The grooves on the surface of the grating 

system determine the direction of the diffracted light.  In particular, the direction is related to the 

wavelength of the transmitted light (𝜆), groove pitch (𝑑), incidence angle (𝛼) normal to the beam 

and diffraction angle (𝛽), which can be related using the grating equation15:  

𝑚𝜆 = 𝑑(𝑠𝑖𝑛𝛼 + 𝑠𝑖𝑛𝛽). 

Figure 2 depicts the scattering angles induced by the 

grating in response to a particular incident light. The 

variable 𝑚 in the grating equation represents the 

diffraction order. The diffraction order describes the 

difference in spacing of the light depending on the 

wavelengths of light passing through the grooves.15 The 

zero order (m = 0) represents the non-diffracted light 

because all wavelengths present are superimposed onto 

one another instead of separated.15 The greater orders 

(m ≠ 0) represent diffraction depending on the magnitude 

of the respective wavelengths.15 The resolution between 

wavelengths of light beams is referred to as the 

resolution of dispersion. Since the primary goal of using 

a diffraction grating, is to separate light into its individual 

Figure 2: A schematic of the grating 

equation as it responds to the incident 

angle and the diffraction angles caused 

by the grooves. Image: Palmer, C, et al. 

(14)  
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color components, the resolution between color bands is dependent on the angular dispersion.14 

The angular dispersion is the angle range that the spectrum spreads per unit angle, so a greater 

angular dispersion results in a more distinct separation of the color bands.14 The color bands 

produced by diffraction gratings are intensity-based; therefore, the intensity profile across the 

image produces the emission waveform (spectra) of the fluorophore being tested. Emission 

curves with distinct peaks that correspond to the different subtypes of AO stained leukocytes 

can be created based on the intensity-based profiles produced by these diffraction gratings.  

The extracted spectra of whole objects consist of large data sets, and the spectra collected from 

many objects produce an unmanageable collection of information.  Technical computing 

software, such as MATLAB, can be used to analyze high volumes of information with minimal 

input from the user. We present a spectral extraction algorithm capable of extracting spectral 

information of fluorescent microspheres and AO stained cells obtained from images acquired via 

our image-based spectrometer.  Furthermore, the spectral data was collected from a small 

section of the object, which requires multiple spectral data to be combined.  Therefore, our 

algorithm includes a tracking method to distinguish different objects as the sample is translated 

under the system. The fluorescent microspheres were used to represent the range of emission 

wavelengths related to AO stained leukocytes. The results of this spectral information could be 

used to improve the reliability of AO as a method to classify leukocytes in a three-part differential 

test for POC applications. 

Materials and Methods 

I. Optical Configuration & Diffraction Grating Alignment 

The image-based spectrometer, Figure 3, comprises of a 450 nm laser (LS, FTEC2, Blue Sky 

Research, Milpitas, CA) that is focused onto a single mode fiber. The laser beam is expanded 

to 10 mm through a series of two lenses (BE). The expanded beam passes through a cylindrical 

lens (CL) to create a light sheet, which is reflected to the 20X/0.50 NA objective (Nikon, USA) 

by a dichroic mirror (DM) with a cutoff of 475 nm. The sample emitted light is transmitted back 

through the objective (OBJ) and through a long pass filter (500 nm, Thorlabs, Newton, NJ).  

Then, the light passes through a 100 mm lens, which focuses the beam through a vertical 

adjustable width slit (AS, Newport, CA, USA) to minimize out of focus light. The thin linear light 

expands onto a 30 mm lens, which focuses the light onto the visible transmission diffraction 
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grating (DG, Throlabs, Newton, NJ). 

The 25 mm x 25 mm grating has 300 

groves/mm with a groove angle of 

17.5°. The diffracted light expands to a 

50 mm lens, where the light is focused 

onto a monochromatic Flea 3 camera  

(CCD, Point Grey, FLIR, Wilsonville, 

OR, USA). The camera was aligned 

with the m = 1, 0, and -1 diffraction 

orders. The multiple diffraction orders 

allow for maximum pixel intensity with 

adequate separation of light and 

visualization of the non-diffracted light 

(m = 0) as a reference. 

II. Slide Preparation and Image Acquisition 

The system and image acquisition procedures were calibrated using FluoSpheres polystyrene 

microspheres with a 15 µm diameter (Invitrogen, Eugene, OR). The yellow-green microspheres 

(505 nm/515 nm) were used to interpret shorter emission wavelengths and model the emission 

characteristics of the lymphocytes, which have green emission close to 525 nm. The crimson 

microspheres (625 nm/645 nm) were used to interpret longer wavelengths and model the 

emission of the granulocytes, which fluoresce in the red-orange region with a wavelength of 650 

nm. Two slides for each color of microsphere were prepared using 10 µL of microspheres diluted 

in a 1:100 solution on a white 25 x 75 x 1 mm Superfrost plus micro slides (VWR, Radnor, PA) 

and covered with 22 x 22 mm No. 2 cover glass. Images of the microspheres were acquired with 

the image-based spectrometer optical setup using the 20x objective. For the yellow-green 

microspheres, the camera parameters were set to a gain of 0 dB and an exposure time of 75 

ms. For the crimson microspheres, the camera parameters were set to a gain of 20 dB and an 

exposure time of 150 ms. Both microsphere slides were imaged with a laser power of 8.85 mW 

at the sample. Single, stationary images were acquired for both colored slides. Videos of a 

Figure 3: LS: Laser Source, BE: Beam Expander (5x), CL: 

Cylindrical Lens, DM: Dichroic Mirror, OBJ: Objective (20x, 

0.50 NA) , TRM: Total Reflection Mirror, TL: Tube Lenses, 

AS: Adjustable Slit, DG: diffraction Grating, CCD: Flea 3 

Camera.   
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manually translated yellow-green microsphere slide were acquired over a period of 10,000 ms 

using the same camera settings and laser power.  

Images of whole blood stained with the AO fluorescent dye were acquired similarly to the 

microspheres. A 20 µg mL-1 AO solution was prepared using acridine orange hemi(zinc chloride) 

salt (Sigma-Aldrich, St. Louis, MO) in deionized water. Whole blood was collected via finger stick 

(IRB # 13-06-759) and stained with the AO solution at a 1:1 ratio. The slide was prepared with 

Superfrost plus micro slides, 10 µL of the AO-stained blood, and 22 x 22 mm No. 2 cover glass. 

Using the 20x objective, the camera parameters were set to a gain of 25 dB and an exposure 

time of 350 ms. The laser power at the sample was 8.85 mW. Images were acquired after a 10 

minute period. 

III. Spectral Extraction Algorithm 

A MATLAB algorithm, flow chart in Figure 4, was designed to analyze the spectral data within 

the images acquired using the image-based spectrometer. The algorithm first rotated each 

image 270 degrees counter-clockwise using the imrotate(image, degrees) function to orient the 

spectral information in the way visible light wavelengths expand from violet to red light. A high 

binary threshold of 70 was applied to the rotated image to distinguish between scattered light 

and light native to the original objects. The objects were assigned a pixel value of 1, and the 

background and other pixel contributions were assigned a pixel value of 0. These pixel values 

limited by the binary threshold were only used during the watershed segmentation, described 

next.  The threshold-limited pixel values were smoothed using the open and close functions to 

create a more circular appearance of each object. A Fourier disk function with a radius of 5 pixels 

was applied to the image as a whole to serve as a filter during the watershed segmentation—

watershed(filter). This disk filter acted as boundary condition for the segmentation of each of the 

objects in the image. The watershed segmentation was performed to separate particles that 

were merged during the binary image thresholding. The watershed separation technique is 

based on the peaks and valleys of the intensity in the image. The borders of the segmented 

particles calculated using the watershed and disk functions were used to determine the location 

of each centroid in the image using the regionprops(image, ’Centroid’) function. The output of 

the centroid location function was the x-y pixel coordinates of the center of each object in the 

image. 
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The original images underwent a new, lower threshold with a value of one to eliminate noise 

produced by the image sensor. The intensity changes across the entire x-axis of the image 

represented the emission profile of the object. The fluorescence emission profile was collected 

using the y-axis location of each centroid detected during the watershed segmentation. The y-

axis location of the centroid was the central row of the object. This value was used to evaluate 

the emission profiles of each object. The object diameter for each centroid was determined using 

the regionprops(image,’MinorAxisLength’) function. The diameter value was used to calculate 

how many rows needed to be analyzed to process the entire object. The maximum intensity 

value of each line across the image was determined using the max(row number) function. The 

single line profile’s pixel values were divided by the corresponding maxima to scale each row 

from 0 to 1 separately in order to normalize images with different fluorescence intensities. The 

scaled values for each row across an object were stored in a temporary array, where a mean for 

each column was calculated to get an average profile across total length of the object. This 

average intensity profile was plotted using the x-pixel locations, corresponding to emission 

wavelength, vs. scaled pixel values, corresponding to the fluorescence intensity. Each curve 

was sub-plotted on the same figure to compare the curves for each object in the same image. 

After, a high-order line-of-best-fit curve was developed for each line profile to quantify the 

emission profile and changes between each object. The mean of the polynomial order coefficient 

values for each line profile was saved in a separate array. The total number of objects processed 

in the images was determined based on the total length of the best-fit curve array using the 

length(array) function. Using this information, the spectra of individual objects were distinguished 

based on the mean value of each best-fit curve and stored for future studies that will apply 

classification methods to differentiate objects into different colorimetric groups. 

The video file collected of the manually translated beads was broken down into individual frames. 

These frames were processed using the same methods as the stationary images with the 

addition of the unique(centroid location array) function. This additional function allowed for the 

detection of previously processed objects that appeared in preceding images. All centroid x-y 

locations were stored in a total centroid array to assure each unique value would not be 

repeatedly processed. If the object appeared twice in two separate images, the object was only 
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processed in the first image. This did not inhibit the processing of new objects in the following 

images.  

 

Results 

I. Image Acquisition and Diffraction Order Effect on the Emission Profile 

The early iteration of the image-based spectrometer system isolated the m = 1, 0, and -1 

diffraction orders when focused onto the CCD by the 50 mm tube lens. The three diffraction 

orders were imaged within one field of view, as demonstrated in Figure 5 (left). These object 

emission intensities were dependent on the diffraction orders, where the m = 0 order had the 

highest pixel intensity due to the absence of diffraction. The m = -1 and 1 orders exhibited a 

significant drop in pixel intensity, especially in the m = 1 order. An intensity-based emission 

profile across the image characterized these changes as three distinct peaks along the line, 

demonstrated by the yellow line in Figure 5 (right) and related to the emission profile on the left. 

The change in intensity was related to the principles of the diffraction grating, where the 

diffraction of the light by the grating system diminishes pixel intensity for the respective diffractive 

order as the light was separated.  This trend continued as the orders grew in magnitude with the 

Figure 4: A flow chart describing the flow of commands applied to a single image to isolate the spectral 

information for each object in an image. 
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highest visible orders (m = 1 and -1) being the most successful in separating the wavelengths 

while providing high fluorescence intensity.   The m = -1 order had the highest intensity when 

compared to the m = 1 emission profile, so it was most attractive for further processing. 

 

II. Image Post-processing to Isolate Individual Emission Profiles 

The images of the stationary microsphere slides were cropped to isolate the m = -1 diffraction 

order. The cropped images were reduced from 2080 x 1552 pixel images to 2080 x 198 pixel 

images. The cropped yellow-green and crimson microsphere images were loaded into the 

MATLAB algorithm and underwent the watershed segmentation to distinguish objects and 

develop corresponding emission profiles, Figure 6. The “original image” was the cropped image 

of the isolated m = -1 diffraction order. This image underwent the watershed segmentation to 

distinguish emission profiles that were close together. The segmentation was based on the 

intensity changes across an image, while looking for peaks and valleys corresponding to object 

boundaries using the Distance Transform. The center of each object was effectively determined 

using the boundaries of the watershed segmentation. The emission profiles of each object 

isolated in an image were created as a result of the object segmentation and intensity 

processing.  
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Figure 6: The image 

processing was done using a 

custom MATLAB algorithm. 

The original image underwent 

a watershed segmentation 

using a Euclidean distance 

transform to create the object 

boundaries. The object 

boundaries were used to locate 

the centroid location for each 

object in the image. The 

emission profiles were created 

based on the intensity changes 

across the image and its center 

location. 
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III. Spectral Data Extracted from Individual Objects 

The emission profiles of the microspheres 

were processed first to understand the 

emission wavelength positions across the 

image. The scaled pixel intensities for both 

microspheres were plotted against the pixel 

distance (0-198 pixels) in the image, Figure 7. 

The approximate pixel distance across the line 

(x-axis) would relate to the wavelengths 

associated with the emission profile provided 

by the microsphere manufacturer. A pixel 

distance of 75 would relate to the peak 

emission of the yellow-green microsphere at 515 nm, and a pixel distance of 125 would relate 

to the peak emission of the crimson microspheres at 645 nm. The yellow-green (515 nm) and 

crimson (645 nm) microspheres exhibited distinct separation in colorimetric emission with a 

peak-to-peak difference of 36 pixels, which is related to the 130 nm peak emission difference.  

Leukocytes stained with AO were also cropped 

using the same function as the microspheres. 

The noise in the AO-stained images was 

significantly higher than the microsphere 

images. The average pixel intensity of the 

leukocytes was also much lower, thus requiring 

higher gain and exposure time settings. Two 

AO stained leukocytes exhibited distinct 

emission profiles and peaks across different 

wavelengths, Figure 8.  This could be due to 

variations in the staining method (incubation 

period or AO concentration) affecting the emissions or in cellular content relating to different 

leukocyte subtypes.  Each processed cell demonstrated a profile within the pixel range 

characterized by the yellow-green and crimson microspheres, thus further supporting the use of 

Figure 7: The spectral profile of the yellow-green 

and crimson microspheres. The pixel intensity is 

scaled from 0-1 due to the camera setting 

differences between the images.   

Figure 8: The emission profile of two leukocytes 

stained with AO. The distance in pixels 

represents a change in wavelength emission.   
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these microspheres to calibration the system. The noise contributed to poor quality of the 

emission curves of the leukocytes, where the scaled curve minimum was approximately 0.5 with 

a maximum for each cell less than the maximum of one.  

IV. Isolation of Unique Objects from Video Frames of a Translated Slide 

The frames that were isolated from the video of the 

translated yellow-green microsphere slide were  

processed using the same MATLAB algorithm. 

While the video was acquired, a new frame was 

collected every 10 ms.  The manual translation 

speed is slower than  the frame acquisition rate, so 

the same objects appeared in multiple frames. The 

unique centroid detection was effective at 

preventing the processing of the same object 

twice. The video frames were not cropped to 

isolate the m = -1 diffraction order before the 

image processing began, like the stationary 

image. Instead, the centroid detection used the m 

= 0 order to detect the number of objects in an 

image, Figure 9. After the centroids were detected 

and repeat values were removed, the m = -1 order 

was isolated to create the emission profiles for each unique object in the image.  

Discussion 

The custom MATLAB algorithm successfully isolated the emission spectra of stationary 

microspheres and AO stained leukocytes produced by the image-based spectrometer system. 

The algorithm was also able to distinguish moving objects that had been previously analyzed. 

The stationary images were cropped to isolate the diffraction order with the highest pixel 

intensity. The emission profiles extracted across the cropped microsphere and leukocyte images 

were within the same 0-198 pixel range. This suggests that the isolated m = -1 diffraction order’s 

pixel width corresponded to the visible color wavelengths within the microsphere and AO 

emission ranges of 500-700 nm.  Additionally, the emission profile peaks of each AO stained 

Figure 9: The video frames of the translated 

slide  analyzed to distinguish unique and 

repeating objects in consecutive frames. 
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leukocyte, Figure 9, co-aligned with the peaks of the microsphere emission profiles, Figure 8, 

thus confirming the microspheres as a system and algorithm calibration tool. The m = -1 

diffraction order was effectively isolated by cropping the image; however, the cropping eliminates 

the value of a full field of view of 2080 x 1552 pixels. Future iterations of the system will need 

increased magnification to acquire data from only one diffraction order.  The single diffraction 

order will possess a more complete spectrum across 1552 pixels, which will allow for more 

detailed curve data for later spectrum classification processes. 

The two leukocyte emission profiles, Figure 8, did exhibit colorimetric differences characterized 

by slight variations in their peaks. For Cell 1, the peak lies on the left indicating that the cell had 

more dominant green fluorescence, while Cell 2 had a peak shifted to the right indicating that 

the cell had slightly more red fluorescence.  Initially, this could suggest that Cell 1 is a lymphocyte 

and Cell 2 is a granulocyte; however, many factors could have contributed to this difference, 

such as incubation period, AO staining concentration, and cellular content.  Specifically, in this 

study, the cells were known to be imaged at different incubation periods. Therefore, highly 

controlled staining methods and large number of cells need to be measured in order to 

distinguish different leukocyte subtypes and classify a distinct spectral pattern as a specific cell 

type. 

The video data for the translated yellow-green microsphere slide was processed with an early 

understanding of the way the CCD processes the moving objects. The frames were acquired at 

a much faster rate than the manual translation stage was moved. Image acquisition parameters 

could be improved to limit the number of frames that are identical, because the same objects 

appeared in up to 40 consecutive images with no new objects for five images. The emission 

profiles for the yellow-green microspheres were similar to the stationary yellow-green 

microsphere curves. Therefore, the translation of the microspheres did not affect the quality or 

peak pixel distance for the emission profile of the microspheres. Additional methods could be 

employed to assure that objects in the video frames are not missed or counted more than once. 

MATLAB has object tracking functions, which could be utilized in addition to the centroid location 

detection. These methods would be most pertinent when the spectrum are used to generate a 

total object count.  
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Conclusions  

We have demonstrated the ability to extract spectral information from data acquired from the 

image-based spectrometer of microspheres, as a control, and AO stained leukocytes. We 

determined that the spectral information from yellow-green and crimson microspheres could be 

used to represent the wavelength range of AO stained leukocytes, thus providing a calibration 

tool. Also, preliminary spectral information was extracted from linearly translated yellow-green 

microspheres. The majority of images acquired for this project were still frame images of a 

stationary slide. However, this stationary image acquisition procedure limited the number of 

object emission profiles collected in a single image. The spectral information from the video 

frames are in the early stages of isolating unique spectra across numerous images; however, it 

demonstrates the feasibility of collecting data for a larger number of objects. The image 

acquisition and image processing techniques presented here will be used to extract and organize 

spectral data for further analysis. We will identify each subtype of cells using standard 

classification methods and to determine any time-dependent emission changes. 
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