
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2018

Dynamic 3D Network Data Visualization Dynamic 3D Network Data Visualization

Brok Stafford
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

 Part of the Digital Communications and Networking Commons, Graphics and Human Computer

Interfaces Commons, and the OS and Networks Commons

Citation Citation
Stafford, B. (2018). Dynamic 3D Network Data Visualization. Computer Science and Computer
Engineering Undergraduate Honors Theses Retrieved from https://scholarworks.uark.edu/csceuht/54

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at
ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information,
please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csce
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fcsceuht%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.uark.edu%2Fcsceuht%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.uark.edu%2Fcsceuht%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.uark.edu%2Fcsceuht%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/54?utm_source=scholarworks.uark.edu%2Fcsceuht%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Dynamic 3D Network Data Visualization

 Brok Stafford
Department of Computer Science and

Computer Engineering

University of Arkansas
brokanxyz@gmail.com

ABSTRACT

Monitoring network traffic has always been an arduous and tedious

task because of the complexity and sheer volume of network data

that is being consistently generated. In addition, network growth

and new technologies are rapidly increasing these levels of

complexity and volume. An effective technique in understanding

and managing a large dataset, such as network traffic, is data

visualization. There are several tools that attempt to turn network

traffic into visual stimuli. Many of these do so in 2D space and

those that are 3D lack the ability to display network patterns

effectively. Existing 3D network visualization tools lack user

interaction, dynamic generation, and intuitiveness. This project

proposes a user-friendly 3D network visualization application that

creates both dynamic and interactive visuals. This application was

built using the Bablyon.js graphics framework and uses

anonymized data collected from a campus network.

1 INTRODUCTION

The majority of network visualization research has been done

in 2D space and the most common approach is graph-based as

shown in Figure 1. The 2D application OvlVis takes this approach

and attempts to dynamically visualize Peer-to-Peer (P2P) networks

[1]. The visuals generated by this application consist of nodes for

network devices, connections between those devices, and traffic on

those connections. Ever since the early days of networking,

topologies have always been designed in this graph-based format,

simply nodes and connections. However, the OvlVis tool creates

these visualizations in real-time, showing new connections,

disconnects, traffic and system alerts. The insight provided by an

application such as OvlVis is invaluable to those who monitor

networks. This straightforward and traditional approach has been

proven to effectively allow both technical and non-technical

individuals to better grasp networked systems.

Concerning 3D visualization tools, current research typically

involves only static visualizations. A common approach to

visualize network data in 3D is 2Dto2D visualization. A recent

project done by Y. Okada uses this approach to visualize network

intrusions [2]. He describes 2Dto2D visualizations as being

composed of lines that are drawn from one 2D plane to another 2D

plane in 3D space. This project uses the following four attributes

for the visualizations: source IP, source port, destination IP, and

destination port. Both the source and destination attributes are

mapped to their own planes. When analyzing network data with this

technique, patterns depicting port scans, DoS attacks, DDoS attacks

and security hole attacks are easily identifiable. Of the few 3D

network visualizations projects, another one uses the exact same

approach as Okada’s [3]. Although both of these projects take

different approaches in gathering and preparing their data, each

project’s visualizations are almost identical.

Figure 1: A typical 2D to 2D network data visualization.

Several years ago, the CyberSeer group from the University of

Southern California performed research on a unique visualization

tool [4]. Their approach was to take a large set of network data and

convert it into time-based frequency data using spectral analysis.

They then proposed to display this data in an immersive auto-

stereoscopic 3D video and audio environment. This proposed

environment displays video in 360 degrees around the operator.

Therefore, spatial audio cues would notify the operator of events

occurring outside of their vision.

There is a significant lack of 3D network visualization tools

and research. Approaches used in 2D applications can be migrated

to 3D space. Having an extra dimension to work with allows

visualizations to become more detailed and complex. Due to the

popularity of complex 3D video games, the average user should be

comfortable navigating a detailed 3D visualization. As long as

visualizations are not overly complicated, 3D space only increases

the possibilities for displaying network data.

2

2 APPROACH

2.1 Overview

There is an obvious lack of research and tools that create 3D

visualizations of network traffic. The 3D visualizations that do exist

tend to be static, non-interactive, and not user friendly. The goal of

this project is to create an application that fills that void. With this

application users can dynamically generate visualizations based

upon input parameters, they can interact with that visualization, and

the application is intuitive. By incorporating visualization concepts

that have shaped the success of 2D tools, this 3D application is

more capable than other ones.

The visualizations created by the application are built using

the Babylon.js framework. Bablyon.js is an open source project that

allows for the creation of 3D graphics applications on the web by

using the WebGL library [5]. Due to its compatibility with popular

web browsers and no need for plugins or browser extensions,

clients can easily use Babylon.js applications. The Babylon.js code

is wrapped inside of a Node.js application. The Node.js application

serves web pages to users and uses Socket.io to allow clients to talk

to the server.

The bulk of the data processing is done on the Node.js server

and then sent back to the client. The client will specify a single

binary file to be sent to the server, then, based on the user’s input,

the server will use NFdump to generate all of the objects to be

visualized [6]. The client will process the graphics itself. NFdump

is an application used to analyze NetFlow and sFlow datagrams [6].

This project uses it to first preprocess incoming sFlow datagrams,

then to anonymize those datagrams, and finally to generate

visualization objects for clients.

2.2 Data Collection and Anonymization

The network data used for this project follows a lengthy

preprocessing pipeline before it can be visualized and is shown in

Figure 2. The traffic being collected originates from the University

of Arkansas’s on-campus network. One of the many distributions

for the campus’s network has been selected and the many switches

that make it up are being continuously sampled. This traffic is

sampled using the sFlow technology and has the initial form of

sFlow datagrams. These datagrams are collected every five minutes

and stored on a secure computer. The secure computer was initially

configured so that incoming data will automatically be

transformed, anonymized, and then sent off to a pickup computer.

After this initial configuration, the machine was locked down, with

access only available to the University of Arkansas’s network team.

The secure computer uses SFcapd, a NFdump tool, to capture

sFlow datagrams. Upon capture, NFdump is then used to convert

the files from sFlow to NFdump’s own binary file format. Then the

traffic is anonymized using another NFdump tool called NFanon.

NFanon uses the CryptoPAn module to anonymize all IP addresses

using the Rijndael Cipher. These anonymized files are then sent to

the pickup computer using the Linux utility rsync. The visualization

application is also running on the pickup computer and is ready to

use the finalized data.

Figure 2: The network data collection and preprocessing

pipeline.

The collected data is first in the form of sFlow datagrams.

SFlow is a network traffic sampling technology that is

standardized, scalable, and is low in computational cost [7]. sFlow

datagrams contain data regarding protocols, layer 2, layer 3, and

BGP [7]. Packets are gathered every 1000 number of packets. The

sFlow datagrams are converted to NFdump binary files. These files

contain the same data as they initially did; however, NFdump can

now be used to aggregate and generate statistics on this data. For

example, NFdump can display the top 100 destination IPs that have

the most flows, or aggregate traffic based on source and destination

ports. These statistics can be output in many different formats

including CSV, biline, a user defined format, or many others.

2.3 Visualization Objects

Visualizations generated by this project are composed of four

object types: IP nodes, tiers, port nodes, and connections. The first

is an IP node as shown in Figure 3. These are spheres that represent

a single IP address. Their size is based upon the amount of flows

that are associated with that IP; the more flows, the larger the

sphere. These nodes are all grey in color, except for the middle and

most popular IP node, which is gold. IP nodes are placed on tiers.

Tiers are flat outlines of circles drawn with white dashed lines. As

new tiers are added to a visualization the greater their radius

becomes. IP nodes are evenly distributed upon these tiers.

Surrounding the IP nodes are port nodes. Port nodes represent the

active ports for the given IP they surround. They are colored using

a hash function that takes in its port number as input. Ideally, each

port number will be given a uniquely identifiable color. The last

object type is a connection. Connections are 3D lines that link port

nodes together. Connections represent connections made between

two separate IPs and allow users to see the flow of traffic. The Solar

System model inspired the design of these objects and their

placement. The golden IP node at the center is the sun, the other IP

nodes are planets orbiting the sun, and port nodes are moons

orbiting planets.

 3

Figure 3: An example of an IP node with its surrounding port

nodes.

2.4 Dynamic Visualization Generation

When this application is initially launched, there is not a

visualization present. The visualization generation interface is the

only element that is on screen as shown in Figure 4. This interface

has two separate boxes for user input: essentials and dynamic

options. The essentials box includes all of the necessary input

required to generate a new visualization. Once the input has been

configured, clicking the executeNFdump button will create the

specified visualization. The input in the dynamic options box is

used when a visualization is present. These inputs update the

current visualization in real-time.

The essentials box is comprised of nine different inputs that

determine the generated visualization. Starting from the top, the

fileName field refers to the NFdump binary file that will be

visualized. The nodesPerTier field defines the maximum amount of

IP nodes that should be placed around a single tier object. The

numNodes fields specifies the number of IPs from the NFdump

binary that will be visualized. The minNodeSize and maxNodeSize

fields define the range of size for IP nodes, which is based upon the

amount of flows associated with a given IP. The ports and

connections checkboxes determine if port nodes or connections will

be drawn. The stat field refers to the statistic used by NFdump to

generate the IP nodes. Instead of generating nodes based on IPs,

users can specify a different field, such as source port, destination

IP, or interface. There is a total of 35 statistics, however

connections and ports will only be displayed when an IP statistic is

chosen. The orderBy field specifies how the returned statistics

should be sorted. The default is by flows, but there are 10 other

options that NFdump has defined. Lastly, when executeNFdump is

pressed, the client will send the Node.js server the inputs, the server

will process the NFdump file and send the client a collection of

object data, and finally the client will use that data to create the

visualization.

The dynamic options box contains three inputs that will all

update the currently displayed visualization. When any of these

sliders are changed, functions on the client are called to clear the

visualization and to then redraw it with the updated variable. The

connVisible field determines how many connections are visible.

The connHeight field will alter the height of all connections by a

factor of its value. Lastly, the connRadius field defines the radius

of the connection objects

Figure 4: Visualization generation GUI.

2.5 Visualization Interaction

There are several techniques users can perform to interact with

the visualizations. The camera can be adjusted with either the W,

A, S, and D keys or by clicking with the left mouse button and

dragging. Users can also left click on any object in a visualization,

except tier objects, and view a window of in-depth data for that

object as shown in Figure 5. When an IP node is clicked, its window

will display its IP, flows, packets, and bytes. The flows, packets,

and bytes include those incoming and outgoing. The percentage

next to those three values indicates the ratio between the data for

that node and the entire NFdump file of traffic being visualized.

The windows for port nodes shows its port number, flows in, flows

out, packets in, packets out, bytes in, and bytes out. Lastly, the

windows for connections are comprised of source IP, destination

IP, source port, destination port, flows, packets, and bytes.

Figure 5: IP and port data windows.

4

3 RESULTS AND DISCUSSION

The goal of this project was to create a 3D network traffic

visualization application that is dynamic, interactive, and intuitive.

The final application incorporates all of these into its design, but

with varying degrees of success. Since past 3D projects have done

poorly in mapping out the field of 3D network visualizations, the

design for this project is experimental. There is always room for

improvement, however the design for visualizations in this

application is a step in the correct direction.

These visualizations can be dynamically generated through

the generation GUI. The input options within this interface are

diverse and include a wide range of selectable values. Although

there may be possible options lacking, the ones available allow for

fine control of the generation. Users are able to interact with the

visualizations through manipulating the camera’s positon and

angle, and by viewing in-depth windows of data for specific

objects. Defining the level of intuitiveness of this application is

difficult. The visualizations look clean and simple, even if the

viewer does not understand what is being represented. A typical

generated visualization is depicted in Figure 6. On the other hand,

the same cannot be said for 2D to 2D visualizations. If the user has

ever played a video game on the computer, operating the camera

and navigating through this application will feel familiar. The

overall readability and usability has been improved upon from the

2D to 2D visualizations. Therefore, this application is more

intuitive to operate.

At its current state, this application can be used to successfully

perform analysis on a given network. Analysts can plug their

network traffic into this application and immediately find the hot

spots in their network. They also have the ability to dig deeper into

the data to find out why traffic is flowing in a particular way.

However, users might have a difficult time if they are attempting to

analyze multiple capture files.

Figure 6: Overview of an entire visualization.

4 CONCLUSIONS AND FUTURE WORK

This project resulted in the creation of a sFlow collection and

anonymization pipeline, and a 3D network visualization

application. The data pipeline is completely automated and is

continuously collecting traffic from the University of Arkansas

network at five minute intervals. That data is anonymized with the

NFdump library and sent over to a pickup machine where the

visualization application processes it. Clients of that application

can specify a visualization to be generated, the Node.js server will

process the anonymized traffic, return it to the client, and the client

will finally generate their desired visualization. Clients then have

the ability to manipulate the visualization using dynamic options.

They can also interact with the visualization by moving the camera

and clicking on specific objects in order to receive detailed data on

an object.

While the resulting application improved upon similar

previous projects, there is still a need for improvements. The

present application will only visualize traffic for a given static time

frame. Having the ability to visualize traffic dynamically from a

start time to an end time would help the analysis process. This type

of visualization would have basic playback functionality, such as

pause, rewind, fast-forward, etc. Adding animations to represent

the flow of traffic and disconnecting and reconnecting IPs would

increase the readability of a playback visualization. This type of

playback visualization could support both historical and real time

data. Interfacing this application with an Intrusion Detection

System (IDS) would also increase the utility of this application.

Analysts could pinpoint problematic timeframes on their network

with an IDS and then visualize those periods.

ACKNOWLEDGMENTS

This work is supported by the Honors College and the IT Services

Network Enterprise Systems group at the University of Arkansas.

REFERENCES

[1] K. Jünemann and J. Dinger, “OvlVis: visualization of peer-

to-peer networks in simulation and testbed environments”,

2008 11th communications and networking simulation

symposium, New York, 2008, pp. 164-171.

[2] Y. Okada, "Network Data Visualization Using Parallel

Coordinates Version of Time-tunnel with 2Dto2D

Visualization for Intrusion Detection," 2013 27th

International Conference on Advanced Information

Networking and Applications Workshops, Barcelona, 2013,

pp. 1088-1093.

[3] M. Coudriau, A. Lahmadi and J. François, "Topological

analysis and visualisation of network monitoring data:

Darknet case study," 2016 IEEE International Workshop on

Information Forensics and Security (WIFS), Abu Dhabi,

2016, pp. 1-6.

[4] C. Papadopoulos, C. Kyriakakis, A. Sawchuk, and X. He,

“CyberSeer: 3D audio-visual immersion for network

security and management”, 2004 ACM workshop on

Visualization and data mining for computer security, New

York, 2004, pp. 90-98.

[5] David Catuhe, David Rousset and other contributors (2013).

Babylon.js v3.0, Apache 2.0 License.

https://www.babylonjs.com

[6] Hagg, P. (2004). NFdump v1.6.17, BSD License.

https://github.com/phaag/nfdump

[7] sFlow. 2003. Traffic Monitoring using sFlow. Retrieved

from https://sflow.org/sFlowOverview.pdf.

	Dynamic 3D Network Data Visualization
	Citation

	Spin-wave dynamics in a hexagonal 2-D magnonic crystal

