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A. INTRODUCTION  

Concrete is the most widely used manmade material worldwide for reasons that range from cost 

effectiveness to easiness to mold [1]. Nonetheless, research is still needed in order to improve 

properties such as strength, durability, chemical resistance, and to reduce its environmental impact. 

Many alternative cements including calcium sulfoaluminate (CSA) cement have been developed. 

A major advantage of some alternative cements is a reduction in the amount of carbon dioxide 

released during cement manufacture. CSA cement production releases about half the amount of 

carbon dioxide (49% less) that ordinary portland cement releases [2]. Other advantages of CSA 

cement include rapid setting time, higher strength than portland cement over time, rapid strength 

gain, and improved durability [3]. This paper focuses on one of the special types of the CSA family, 

CSA-Belite, and its rapid setting property. This type of cement has additional properties such as 

near-zero shrinkage, immunity to sulfate attack, and lower porosity, among others [12]. According 

to Dr. E. Bescher from the Department of Materials Science and Engineering at University of 

California Los Angeles, the unit price ratio for BCSA to portland cement is close to 1.4 [12]. Other 

sources claim that CSA cement is about four times more expensive than portland cement type-I 

[3]. However, despite being more expensive, BCSA can have a longer life than portland cement, 

resulting in a 53.5% reduction in cost. This cost saving is based on an airport paving project at 

Seattle Tacoma Airport [12]. BCSA cement has the ability to harden at an accelerated rate, which 

is beneficial for construction time frames if managed correctly. Consequently, the rapid setting 

time (20 minutes) of BCSA cement is a challenge that has limited its application in the real world. 

One of the most common solutions has been the implementation of citric acid as a retarder [2]. 

This research investigated the effects of citric acid on the setting time of BCSA cement with the 

purpose of finding solutions to constructability problems. Furthermore, this research will also 

present and study the collateral effects on the compressive strength and the temperature behavior 

with the help of not only empirical data but also with a theoretical perspective.       

B. THEORY  

CSA-Belite Chemistry  

The chemical composition of BCSA cement differs considerably from portland cement and this 

can be observed in its physical behavior such as setting time, color, heat generation, etc. Portland 

cement is composed of three main chemical compounds: silica (SiO2), calcium oxide or lime (CaO) 
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and alumina (Al2O3) [10]. In general, these compounds are present in the form of other 

configurations as shown in Table 1. This table also shows the main products of the cement-water 

reaction. Other products such as calcium silicate hydrate (C-S-H) appear in the structure at later 

ages [18]. The following table presents the chemical formulae of the components of CSA, BCSA 

and type-I portland cement [3],[4],[12]. Type- I portland cement has been included in the table 

since it is the most widely used type of cement [10].  

Reactants Compound Cement 

Chemist 

Notation 

Percentage by mass (%) 

Type I CSA CSA-B 

Ye’elimite (CaO)4(Al2O3)3SO4 C4A3S --- 50-60 30 

Alite (CaO)3SiO2 C3S 59 --- --- 

Belite (CaO)2SiO2 C2S 15 0-20 45 

Ferrite (CaO)4(Al2O3)Fe2O3 C4AF 8 5-15 2 

Aluminate (CaO)3Al2O3 C3A 12 --- --- 

Anhydrite (CaO)SO4 CS 2.9 15-25 15 

Main Products   

Ettringite (CaO)6Al2O3(SO4)3(H2O)32 C6AS3H32 

Monosulfate (CaO)4Al2O3SO4(H2O)12 C4ASH12 

Calcium Aluminate Al(OH)3 Al(OH)3 

Table 1. Chemical composition of Portland, CSA and Belite-CSA cements [3],[4],[12].  

Each one of these compounds contribute in a different way to the hardened properties of concrete. 

C3S and C2S are responsible for the hydration rate and gain in strength of portland cement in the 

early and late stages respectively. These compounds cause concrete strength gain primarily 

through the formation of C-S-H. For CSA, C4A3S is the responsible for the rate of hydration, 

expansion, and rapid grain strength of concrete due to the amount of alumina (Al2O3) it contains 

[10]. Table 1 shows that BCSA has a much greater amount of alumina than portland cement, which 

results in faster strength gain and refractory properties. Another important compound is C3A, 

which contributes in the increasing of heat of hydration, but reduces its resistance to sulfate attack 

and volumetric shrinkage [10].  In BCSA, rapid formation of ettringite is responsible for the rapid 

strength gain and short setting time [3].  
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The chemical reaction of the cement paste/concrete can be represented by five equations according 

to Burris and Kurtis [4]. These equations are helpful to demystify the overall process because 

having multiple reactions means different reactants are consumed at different rates. Since there are 

multiple reactions, multiple reaction rates can be studied, but this research focuses on studying the 

influence of citric acid on the overall reaction rate. The assumptions made for the overall process 

can also be also applied to each one of the five chemical equations as demonstrated in the following 

subsection.  

Reaction Kinetics – Maturity Method  

The reaction between cement and water can be described as heterogeneous since there is a phase 

change. The rate of reaction for this type of reaction is affected by parameters such as temperature, 

pressure, composition, mass transfer, and heat transfer [6]. Hydration rate is the reaction rate that 

yields the binding properties of hardened concrete after mixing its components [10]. This cement-

water reaction goes infinitely as long as enough water is provided [10]. Chemically, this rate can 

be defined as the rate of moles formed of a specific product (ettringite for the case of BCSA 

cement) over the volume of fluid, and time [6]. Measuring the reaction rate based on this definition 

is not possible unless more specialized techniques such as mass spectrometry and quantitative 

phase microscopy are used. Nonetheless, it is possible to find a correlation between the citric 

dosage used and the rate of reaction through the maturity method and Arrhenius equation. The 

temperature-time plots can be used to compare the results of the rate of the reaction to setting time. 

The period it takes for the cement paste to go from fluid to completely solid is an arbitrary metric 

generally defined as setting time.  Since the reaction rate and setting time are inversely 

proportional, both should yield linear trends [7]. The kinetics of any chemical reaction can be 

described with the Arrhenius equation and the rate of chemical reaction equation [6],[7].    

                                                                  𝑘𝑡 = 𝐴𝑒−
𝐸

𝑅𝑇                 Arrhenius Equation, Equation 1 

                                                              𝑣 =  𝑘𝑡[𝐴]𝑛[𝐵]𝑚            Rate of Reaction, Equation 2 

In Arrhenius equation, kt represents the rate constant, A is a frequency constant, R is the universal 

gas constant (8.314 J/K-mol), T is the measured temperature, and E is the activation energy.  In 

the second equation [A] and [B] represent the concentration of reactants and n and m are the 

reaction orders. These concentrations can be considered as constant for this research since the 
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water-cement ratio remained the same through the experiment. The Arrhenius equation can be 

used to establish the relationship between the setting time and rate constant if the ASTM C1074-

17 standard is used. However, an alternative method which relates setting time to age development 

will be used. This method is described by Hover et al, and it defines equivalent age as the time it 

takes for the specimen to reach a certain level of strength development based on the temperature-

time behavior. The maturity function by Freisleben-Hasen and Pederson is derived from the 

Arrhenius equation [7].  

                                                        𝑡𝑒 = ∑ 𝑒
−

𝐸𝑎
𝑅

(
1

𝑇𝑎
−

1

𝑇𝑟𝑒𝑓
)∆𝑡𝑡

0            Maturity function, Equation 3 

In the maturity equation, Ta is the average temperature over time, Tref is the reference temperature, 

and te is the equivalent age at reference temperature. For this case, the development age of each 

specimen can be obtained with its corresponding final setting time and temperature. The slope of 

ln(kt) vs 1/T is a factor of the activation energy. The variable kt is replaced by the inverse of setting 

time since it is unknown and it is proportional to setting time.   

Comparison of Vicat and Penetration Resistance Test 

The Vicat and Penetration resistance test are methodologies utilized to measure the initial and final 

setting time of mortar or cement paste. Initial set time can be defined as the period it takes to stiffen 

(or lose its plasticity). Final time is defined as the time it takes the mortar or cement paste to harden, 

or reach structural strengths [10]. The Vicat apparatus measures these times as a function of the 

displacement of a needle into the mortar. The penetrometer measures these times as a function of 

the stress created after pushing a series of needles over a sample. Given that the 1 mm-needle 

pushes a weight of 300 g into the paste, the resulting stress is 536 psi (3.7 MPa), which is close to 

the stress indicating initial set in the penetration resistance test, 500 psi (3.4 MPa). This means that 

both tests should have an acceptable level of agreement in their initial set times [9]. 
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Figure 1. Vicat Apparatus (left), and Penetrometer (right). 

                                              Source: Adapted from [23] 

 

For the analysis of the temperature behavior, it is necessary to establish a relationship between the 

initial and final setting time and the temperature at these points. For this analysis, the setting time 

obtained with the penetration resistance test will be used because the temperature was measured 

in the sample where the penetration resistance test was performed. In addition, there are some 

reasons to believe that the measurements provided by the penetration test are more reliable. First, 

the Vicat test does not provide a strong relationship between stiffening and setting time. In a study 

performed by Lee and Hover [8], the Vicat test did not provide any measurement of stiffening 

before the initial set time of the same paste compared to the penetration resistance test. This study 

also concluded that the penetration resistance test is the most accepted method, which provides an 

accurate correlation between setting time and the stiffening of the paste [8]. Both tests are based 

on the same physical principle of deformation over a surface area. A study of the Vicat apparatus 

led by Sleiman et al. showed that different needle masses yielded different results. They concluded 
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that the assumption (quasi-static penetration) on which the Vicat test relies are not suitable during 

the thixotropic period, which is approximately the first hour [16]. A quasi-static process is a 

process that occurs slowly. Another important aspect to consider is that for the penetration 

resistance test, the mass of the batch was greater, and consequently more heat is produced, which 

speeds up the reaction. This is more realistic to what happens in the field, and one of the reasons 

why the setting time was shorter for the penetration resistance test almost all the time. Despite the 

Vicat test’s deficiencies, it is an acceptable technique since the needle shape and frustum depth 

produce normalized results that can be used to compare setting times between cements prepared 

in the same fashion [16]. Consequently, this research will also consider the results from the Vicat 

test since it is widely utilized by cement manufacturers to measure setting times [17].    

Effect of Citric Acid on Dynamic Viscosity 

The influence of citric acid on the cement paste extends to other properties, not just setting time. 

It improved its fluidity, which can be represented through dynamic viscosity. Viscosity can be 

defined as the flow resistance of a fluid. The viscosity of a citric acid aqueous solution can be 

calculated with one form of the Arrhenius equation [19].  

                                                               𝜇 =  𝜇0𝑒−
𝐸𝑎
𝑅𝑇                   Viscosity function, Equation 4 

µ represents the dynamic viscosity of the solution, µ0 is the dynamic viscosity of water, R the gas 

constant, T the absolute temperature, and Ea is the activation energy. For this research, the viscosity 

of water and temperature will be treated as constant since the variation of these parameters is small. 

The only variable is activation energy, which increases as more citric acid is used in the mix. 

Negative catalysts or retarders increase the activation energy, which reduces the reaction rate [20]. 

Therefore, increasing the activation energy, reduces the viscosity of the mixture according to 

equation 3. If the viscosity of the mixture is reduced, the flow resistance is reduced as well, which 

results in an improved and more fluid mix. The viscosity of the mixture was influenced by the 

dosage of citric acid and not by the water-cement ratio since it was kept constant. Equation 4 shows 

that the only factor of water that affects the viscosity of the mixture is the viscosity of the water.  
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C. EXPERIMENTAL PROCEDURE 

There are three parameters of BCSA cement being studied in this research: setting time, 

compressive strength, and temperature behavior. Therefore, the procedures to measure each one 

of these will be described separately. These procedures follow the methods in accordance to the 

ASTM standards with some minor modification due to the nature of BCSA cement.  

Cement Paste  

The cement paste was made in accordance to ASTM C305-14 [13]. First, the water (mixed with 

the citric acid retarder) was placed in the mixing bowl before adding the cement so that the citric 

acid was well dispersed in the water. The water to cement ratio (w/c) in this experiment was 0.48. 

Other specialized studies related to the effect of retarders on CSA cements used w/c values of 0.4 

or 0.5 [4],[5]. CSA cements generally requires a higher w/c than portland cement in order to fully 

hydrate [3]. The dosage of citric acid measured by number of fluid ounces per 100 lb. cement was 

varied: 0, 4.5, 9, 13.5, 18 and 36 (added later in the research). In order to obtain these dosages, 5 

lb. powdered citric acid was added to 1 gallon of water to make a solution similar to a typical 

concrete admixture. Based on these ratios, the amounts of citric acid were: 0.0%, 0.18%, 0.35%, 

0.53%, 0.70% and 1.4% by weight of cement.  After adding the cement, the components were left 

to absorb for 30 seconds. Then, the laboratory bench mixer was started at low speed for a time 

between 30 seconds and 1 minute. After this time, the mixer was paused for about 15 seconds to 

scrape the bottom of the mixing bowl to make sure all the components were being mixed 

appropriately. Then, the medium speed was set for a time between one to two minutes. This is a 

slight deviation from the ASTM C305-14, which is based on a mix of 650 g of cement with a water 

to cement ratio determined by ASTM C187-16. These deviations are justified with the fact that the 

amount of cement utilized was more (6166.65 g) and the w/c ratio was established to be 0.48 since 

it is more common for this type of cement [4]. The amount of cement paste made by batch was 

approximately 308 in3 (5047.2 cm3). The mixing water was kept at a temperature within a range 

of 73.5 ± 3.5 ℉ (23.0±2.0 ºC). Tests were performed at 21.1º, 23.3º and 25º Celsius specifically 

to see the variability of the results based upon water temperature.  

Setting Time 

The initial and final setting time were determined by means of two methods. The setting times 

were determined in accordance to ASTM C403/C403M-16 [15] and ASTM C191-18 [14]. Both 
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methods were performed inside an environmental chamber where the ambient temperature was 

kept between 73.5 ± 5.5 ℉ (23.0 ± 3.0º C). Due to high temperatures during the summer, the 

ambient temperature in the environmental chamber was higher than the temperature of the range 

sometimes. Also, the humidity was kept above 50% as the ASTM standards dictates. It was kept 

between 65% and 75%, specifically. The procedure for each methodology will be explained as 

follows. 

I. Vicat Needle (ASTM C191-18) 

Once the cement paste was made, part of it was placed in a non-absorbent conical ring with 

an internal volume of approximately 14 in3 (229.4 cm3). The conical ring was placed over 

the glass plate, and the cement paste was poured through the smaller diameter of the ring 

until the paste surface and the ring border were leveled. The surface was leveled and 

smoothed carefully with the help of a rod to avoid adding stress. For the specimen without 

retarder, the ring was tapped on the sides to make sure voids are filled with the paste. This 

was not necessary when the retarder was used because the mix was more fluid. The mix was 

more fluid despite keeping the water-cement reaction constant for reasons explained in the 

literature review. Immediately after molding, the specimen was placed in the environmental 

chamber for testing. This test was performed with a manual Vicat apparatus, which is 

described as Method A in the ASTM standards. The indicator was placed at zero before 

releasing the rod and the one-millimeter needle into the paste. The first penetration of the 

needle into the paste was done at the center of the specimen, and the subsequent 

measurements were done approximately five millimeters away from the previous 

penetration. The pattern of these measurements was circular and moving out of the center. 

Measurements were performed at least 10 mm away from the border. 

Depending on the nature of the specimen, the time between the preparation of the specimen 

and first measurement varied. Likewise, the measurements were done at different time 

intervals depending on the amount of citric acid used. For example, if no retarder was used, 

faster measurements were required to achieve an accurate view of the setting behavior. On 

the other hand, if more citric acid was used the measurements were spread out to capture the 

range of behavior between mixing and setting. Data points were collected until zero 

displacements of the needle or no marks were observed on the cement paste within a period 

of 90 seconds. The time at which this happened is the final setting time according to ASTM 
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C191-18. The initial time was determined by linear interpolation of the time at which 25 mm 

of displacement is believed to occur. The data of this test were plotted in a set of piecewise 

linear functions where the function of interest was the one crossing the 25 mm displacement. 

II. Penetration Resistance (C403/C403M-16) 

In contrast to the Vicat test which has a criterion based on the displacement of the needle, 

the Penetration Resistance test has a criterion based on the stress created when some force is 

applied. First, approximately 170 in3 (2785.8 cm3) of cement paste was poured into a cylinder 

leaving a gap of one inch from the cylinder’s top edge. The cylinder had a diameter and 

height of 6 in. and was made of a non-absorbent plastic material. The surface of the sample 

was smoothed with a rod. The same rod was utilized to tap the sides of the container to 

improve consolidation. Then, the specimen was placed in the environmental chamber for 

testing. This test consists of pushing six needles of decreasing diameters vertically one inch 

into the specimen, resulting in six different stresses. The measurements were performed at 

least 1/2 in. apart, and 1 in. away from the border. Due to limitations of the specimen surface 

and the need to perform additional penetrations these separation distances were less 

sometimes. However, if that was the case and the data point was misrepresentative, it was 

discarded for calculations purposes.  

At least six measurements were performed, conforming to ASTM C403. According to the 

standard, the initial setting time occurs when the cement paste has reached 500 psi (3.4 MPa) 

in strength, and the final setting time occurs when the penetration strength is 4000 psi (27.6 

MPa). The data is presented in two different ways. First, a simple plot of time versus stress 

will yield a curved line. Nevertheless, straight lines help to have a better interpretation of the 

nature of the experiment. Therefore, the standards give guidance on how to present the data 

points in a log-log plot. Despite the two ways to present the data, the results for setting times 

should be close in value. It is important to highlight that the required ambient temperature 

varies slightly compared to the one required for the Vicat test. Nonetheless, for consistency 

the ambient temperature was kept at 73.5 ± 5.5 ℉ (23.0 ± 3.0º C) as previously mentioned.  

Compressive Strength and Temperature Behavior  

The rest of the cement paste was used to mold 12 2 in. cubes, which were tested ten minutes after 

both setting time tests were done then at three hours, one day and seven days. Due to the extremely 

fast setting (< 20 minutes) of the specimen when no retarder was used, the setting time samples 
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and the cubes were cast from different batches. This only applied for the specimens with zero citric 

acid and water temperatures of 23.3ºC and 25ºC. The cubes were tested in a compression machine 

according to ASTM C109 [22].  

The temperature change within the cement paste was measured by inserting a type-K thermocouple 

into the center of the penetration resistance specimen contained in the 6 in. cylinder. This 

thermocouple was coated with epoxy to avoid issues if contacted with water. The temperature was 

recorded with an HBM QuantumX data acquisition system at a frequency of 10 Hertz.    

D. RESULTS AND ANALYSIS  

Setting Time 

The results from the Vicat test and Penetration resistance test yielded linear trends. This means 

that as more citric acid dosage is used, the increase in setting time behaves linearly. The data points 

at the dosage of 36 oz/100 lb of cement were not considered in this trend because the ambient 

temperature at which these measurements were performed was lower compared to the first five 

dosages. The R-square values of these plots are close to one, which strongly suggest linear 

relationship between setting time and dosage of citric acid.  

 

Figure 2. Setting Time dependence on dosage of citric acid (Vicat Test).  
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Figure 3. Setting Time dependence on dosage of citric acid (Penetrometer Test). 
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However, they both showed that the relationship between setting time and dosage of citric acid is 
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of cement was tested four months after (December). The results of the 36 oz/100 lb of cement 

(1.4%) are shown in the graphs, but they are not considered in these calculations because of the 

different ambient temperatures and humidity at which these specimens were tested. Even though 

these specimens were tested at temperatures that fall within the allowed range of the ASTM, they 

were not included to keep consistent data. Furthermore, setting times of 100 minutes were 

measured with 18 fl. oz. of the citric acid solution. These times are more consistent with the setting 

time of portland cement, but for most applications higher setting times than this are not needed. 

Maturity Method Correlation to Setting Time 

Calculations using the maturity approach were performed and results are represented in the 

following Figure 4. 

Figure 4. Equivalent age vs dosage of citric acid. 
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Dosage Initial Set 

ti (min) 

Final Set 

tf (min) 

t  

(min) 

t  

(min) 

ln(1/t) Ta  

(K) 

1/Ts 

(1/K) 

Ea 

(J/mol) 

te (-) 

0 

 

10.3 12.0 ti 10.31 -2.333  0.00304 -28255.5 1.12 

tf – ti 1.69 -0.526 317.61 0.00298 

4.5 24.1 27.2 ti 24.07 -3.180  0.00296 -31989.3 1.03 

tf – ti 3.09 -1.128 316.87 0.00289 

9 41.8 48.4 ti 41.80 -3.732  0.00302 -16423.9 2.20 

tf – ti 6.59 -1.885 314.38 0.00291 

13.5 61.8 71.6 ti 61.83 -4.124  0.00302 -14373.6 2.49 

tf – ti 9.81 -2.283 314.57 0.00290 

18 76.8 90.8 ti 76.75 -4.340  0.00300 -13824.9 2.38 

tf – ti 14.10 -2.645 316.56 0.00288 

36 182.9 214.1 ti 182.92 -5.209  0.00318 -9260.66 5.53 

tf – ti 31.19 -3.439 307.81 0.00299 

Table 2. Data and results from the maturity method to obtain equivalent age, te. 

There are some deviations with respect to Hover’s work. In this research, the equivalent time is 

obtained as a function of curing temperature and citric acid dosage. The temperature values used 

correspond to the temperature values at its respective setting. Moreover, a coefficient factor is 

required to obtain the actual activation energy and equivalent time, but the obtained values can be 

used to compare behaviors for setting time and equivalent age as a function of citric acid dosage. 

These values of equivalent age help to confirm that the setting time is linearly dependent on the 

citric acid dosage. Figure 4 shows that the time it takes for a specific specimen to develop final 

setting time conditions increases linearly as citric acid is added. There is some level of uncertainty 

due to the limited amount of data points available, but it generally confirms the trend observed in 

the Vicat and penetration tests, even including the 36 fl. oz. citric acid dosage, which was 

performed at a different ambient temperature.  

Compressive Strength 

The results for compressive strength are analyzed in accordance to two parameters. First, the 

dosage dependence because it is the aim of this research and second, the water temperature 

dependence. Figure 5 shows that adding citric acid does not compromise the compressive strength 

of BCSA cement mortar at after setting and one-day stages except for the 36-oz. dosage. Adding 
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citric acid to the mix increases the compressive strength slightly at the seven-days stage as it can 

be observed for the 36-oz. dosage. Furthermore, Figure 6 shows that there is not a significant 

impact of the temperature ranges of the mixing water used in this study on the compressive 

strength. Nonetheless, hotter water increases the rate of reaction and reduces the setting time.  

 

Figure 5. Compressive strength results with its corresponding citric acid dosage. 

 

Figure 6. Compressive strength dependence on water temperature. 
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Specimens prepared with portland cement type I can exhibit a minimum of 1800 psi (12.4 MPa) 

and 2800 psi (19.3 MPa) strength at 3 and 7 days respectively [10]. The specimens made of BCSA 

cement presented an average strength of 3557.5 psi (24.5 MPa) and 4967.0 psi (34.2 MPa) for 3 

and 7 days. Moreover, concrete made of BCSA cement is expected to have a higher strength since 

the strength of concrete depends on the strength of the aggregates and the cement paste.  

Fractures were noticed in the compressive strength cubes when no citric acid was used. These 

fractures can be attributed to the high temperature gradient. This is explained with more details in 

the temperature behavior section. The cubes tested for 1-day and 7-day compressive strength 

presented cracks even though they were cured by two different methods. First, they were placed 

in a water tank 60-90 minutes after the final setting time for curing, and they presented cracks at 

the moment they were tested. These specimens could not be tested for compressive strength. 

Therefore, the mortar specimens were cured in air alternatively, and even though they still 

presented smaller fractures, they were able to hold load, so they were tested. The other specimens 

containing citric acid did not present fractures. This may be a limitation of testing a pure cement 

paste, since the heat generation is very high when no aggregate is used and no citric acid is present. 

Temperature Behavior  

This section focuses on how the increase in citric acid dosage affects the temperature behavior of 

the cement paste during and after setting. The temperature behavior will be studied by identifying 

parameters such as point of maximum temperature, point of maximum change of temperature and 

the area under the curve of the temperature-time plot (related to the heat transfer) for each one of 

the different dosages. To measure heat more accurately, other parameters such as mass transfer 

and heat capacity need to be considered. Additionally, this section will study the special case of 

no citric acid since cracks were observed after curing. The following plots represent the 

measurements of the temperature versus time during the cement reaction up to a few hours after 

setting time. Figure 6 shows the temperature-time plots for the varying dosages of citric acid set 

retarder.  
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Figure 7. Temperature-Time relationship by citric acid dosage. 

Figure 6 shows that the peak temperature decreases and is shifted in the time axis as more citric 

acid is added. The points in time at which the maximum temperature occurred were calculated by 

averaging the last and first point at which a maximum temperature was detected since multiple 

maximum values were measured due to the frequency of the apparatus (10 Hz).  Furthermore, the 

points in time at which the maximum slope occurred for each of the temperature-time plots were 

calculated using a MATLAB function. These points are represented with black dots in Figure 7. 

The results for maximum slope yielded a linear trend with the equation y = 4.6127x and an R-

square value of 0.9671. The maximum change (slope) in temperature is represented by y and x is 

the dosage of citric acid.   
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Figure 8. Initial setting time and maximum slope time as a function of citric acid dosage. 

 

Figure 9. Average temperature, maximum temperature and time of maximum temperature results. 
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because the reaction has been decelerated. All the temperature parameters studied in this section 

have yielded linear trends.  

These temperature plots can be utilized to explain the reasoning behind the slight increase of the 

compressive strength due to increase in citric acid dosage. First, this correlation can be explained 

by means of the maturity method. This concept explains that early strength is higher when 

temperatures are high during the curing process, and late strength is higher when temperatures are 

low during the curing process. The slow hydration rate and low temperature allows the cement 

paste to maximize the reduction of porosity due to a uniform formation of ettringite and other 

reaction products [1]. Besides, the slow hydration, fluidity of the cement paste could have also 

been a factor in the development of strength. The mixing proportions and properties of the 

materials used for the cement paste influence the consistency of the mortar [10]. In this case, as 

more citric acid was added to the mix, the consistency of the mix was improved. Consequently, 

the material was easier to mold, fill space and reduce the porosity. The compressive strength 

increases as the percentage of air voids in concrete is reduced [10].  

The results of the compressive strengths somewhat match the maturity theory. The dosage at which 

the early rapid gain strength is reduced lies between 0.7% and 1.4% of citric acid because the 1.4% 

citric acid specimens showed lower strength at the after setting and three hours’ stages, and higher 

strength at the seven-days stage compared to the 0.7% specimens. Despite the fact that this theory 

cannot explain the small variations of compressive strength for specimens with dosages below 

0.7%, the idea of this theory helps to understand that at some dosage of citric acid the early rapid 

gain strength property is reduced since the temperature and dosage are inversely related. This 

deficiency can be attributed to the fact that the maturity approach does not consider other factors 

such as early age curing temperatures and humidity [1]. The maturity approach also establishes 

that time and temperature of hydration have a correlation with strength. This is expressed as a 

maturity function which is the area under the curve of the temperature-time plot. The results of the 

area under the curve are presented in the following table: 

Dosage (%) 0.0 0.18 0.35 0.53 0.7 1.4 

Area under the 

temperature-time plot 

(℃-min) (103) 

1.5717 2.2064 2.5308 3.0628 4.0403 5.2457 

Table 3. Area under the curve of temperature-time plots.  
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The table shows that the area under the curve increases as the dosage of citric acid increases. The 

correlation is that as the area increases, the compressive strength should increase [1]. However, 

the results of this research show that this fact only applied to the strength at 1 day or more since 

the 1.4% dosage specimens had lower compressive strengths after setting and at 6 hours despite 

having greater area under the temperature-time plot. Further studies are required to understand the 

mechanism behind the formation of ettringite at early stages when high dosages of citric acid are 

used.  

One of the physical results on the cement paste was the appearance of cracks developed during 

curing. The cubes of cement paste were placed in a water tank approximately one hour after it 

reached the peak temperature. Fractures only appeared on the cubes that did not have citric acid. 

Smaller cracks were also observed in samples which were cured in air. This cracking might be 

attributed to the evaporation of water at high temperatures. The mortar cubes developed strength 

while the reaction occurs and had considerable strength after final set as seen in the compressive 

strength section. Nonetheless, the mortar specimens did not have enough strength to overcome the 

stresses induced due to the rapid change in temperature. Furthermore, since the cement paste 

reached 100 ℃ rapidly, water evaporated producing steam voids and probably tensile forces. The 

lack of strength to overcome the induced stresses can be related to this water phase change. Figure 

7 shows that when 4.5 oz/100 lb. of cement (0.18%) is used, the temperature reaches 100 ℃ as 

well, but the cracks were not observed in these samples. In this case, since citric acid is added, this 

solute increases the boiling point of water and yields more time for it to react with cement [11].  

        

 Figure 10. Fracture of specimen after water curing.               Figure 11. Cracks of specimen after air curing.  

 Source: Adapted from [24]                                                       Source: Adapted from [25] 
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E. CONCLUSIONS AND RECOMMENDATIONS 

The following conclusions can be made based on the work described in this paper: 

a. The relationship between setting time and citric acid dosage is linear. This has been 

confirmed experimentally based on Vicat testing, penetrometer tests, and temperature-

time relationships from this research.  

b. The results obtained from data available in this research and the modified methodology 

of the maturity method yielded a linear trend. Therefore, the fact that the equivalent 

age and citric acid dosage is linear supports the fact the setting time is behaves linearly 

with respect to citric dosage since the maturity method correlates setting time, reaction 

rate and equivalent age.  

c. The strength of the BCSA specimens after setting and at one day is improved by 

increasing the dosage of citric acid until it reaches a breakpoint between 0.7% and 1.4% 

of dosage. At some dosage between 0.7% and 1.4% the after setting and 3 hours 

strength reduces significantly.  

d. At later stages, the strength is slightly improved. A more uniform formation of ettringite 

due to a slower reaction and a lower porosity due to improved fluidity can be 

determined to be the main factors influencing this improvement in compressive 

strength. 

e. The range of water temperatures used in this research did not have a significant effect 

on compressive strength.  

f. Increasing the dosage of citric acid reduces the peak temperature and the temperature-

time slope, but increases the area under the curve of the temperature-time plot.  

g. The appropriate use of retarders, citric acid in this case, allows us to understand the 

behavior of BCSA cement paste under different dosage. Concrete should have the same 

behavior since the aggregates are not part of the reaction. However, additional research 

with BCSA concrete is required to understand its behavior and determine the possible 

positive outcomes of its use.  

More research is required to fully understand its behavior and promote its usage in larger projects. 

This research paper offers some basic relationships between the dosage of citric acid and the 

cement behavior to be used to guide mixture proportioning and other research. Future work in this 

area could improve on the methodology presented here by making the following changes: 
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a. Variability in parameters such as setting time and compressive strength can be attributed 

to ambient temperature and humidity. Research with more control of these is required.     

b. Curing in cold water is not recommended for very low dosage of citric acid. Even curing 

in air will required some special methodology to avoid fractures on the specimens.  

c. Research with a wider water temperature range should be done to account for seasonal 

conditions in the field.  

d. The use of other techniques such as calorimetry and X-ray diffraction can help to monitor 

the hydration rate and obtain other chemical information more precisely.  

e. Applying the maturity method described by the ASTM C1074-17 is another alternative to 

confirm the facts about setting time presented in this paper. 
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G. APPENDIX 

 

Figure 12. Penetrometer test plot at 21.1℃ water temperature. 

 

Figure 13. Log-Log Penetrometer test plot at 21.1℃ water temperature. 

 

Figure 14. Penetrometer test plot at 23.3℃ water temperature. 
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Figure 15. Log-Log Penetrometer test plot at 23.3℃ water temperature. 

 

Figure 16. Penetrometer test plot at 25℃ water temperature. 

 

Figure 17. Log-Log Penetrometer test plot at 25℃ water temperature.  
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Figure 18. Vicat test plot for 36 oz dosage at 21.1℃ water temperature. 

 

Figure 19. Vicat test plot for 36 oz dosage at 23.3℃ water temperature. 

 

Figure 20. Vicat test plot for 36 oz dosage at 25℃ water temperature. 
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Figure 21. Vicat test plot for 18 oz dosage at 21.1℃ water temperature. 

 

Figure 22.. Vicat test plot for 18 oz dosage at 23.3℃ water temperature. 

 

Figure 23. Vicat test plot for 18 oz dosage at 25℃ water temperature. 
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Figure 24. Vicat test plot for 13.5 oz dosage at 21.1℃ water temperature. 

 

Figure 25. Vicat test plot for 13.5 oz dosage at 23.3℃ water temperature. 

 

Figure 26. Vicat test plot for 13.5 oz dosage at 25℃ water temperature. 

0

5

10

15

20

25

30

35

40

45

20 30 40 50 60 70 80 90

D
is

p
la

ce
m

en
t 

(m
m

)

Time (min)

0

5

10

15

20

25

30

35

40

45

20 30 40 50 60 70 80 90

D
is

p
la

ce
m

en
t 

(m
m

)

Time (min)

0

5

10

15

20

25

30

35

40

45

20 30 40 50 60 70 80

D
is

p
la

ce
m

en
t 

(m
m

)

Time (min)



The Influence of Citric Acid on Setting Time and Temperature Behavior of Calcium Sulfoaluminate-Belite Cement 

 

29 

 

 

Figure 27. Vicat test plot for 9 oz dosage at 21.1℃ water temperature. 

 

Figure 28. Vicat test plot for 9 oz dosage at 23.3℃ water temperature. 

 

Figure 29. Vicat test plot for 9 oz dosage at 25℃ water temperature. 
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Figure 30. Vicat test plot for 4.5 oz dosage at 21.1℃ water temperature. 

 

Figure 31. Vicat test plot for 4.5 oz dosage at 23.3℃ water temperature. 

 

Figure 32. Vicat test plot for 4.5 oz dosage at 25℃ water temperature. 
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Figure 33. Vicat test plot for 0 oz dosage at 21.1℃ water temperature. 

 

Figure 34. Vicat test plot for 0 oz dosage at 23.3℃ water temperature. 

 

Figure 35. Vicat test plot for 0 oz dosage at 25℃ water temperature. 
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Figure 36. MATLAB code used to determine location of maximum slope. 
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Figure 37. MATLAB code used to determine the area under the curve of the temperature-time plots. 
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