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Abstract 

The objective of this study was to investigate potential effects aging had on muscle fiber 

area and satellite cell count in myocytes. This research could help elucidate the 

detrimental effect age has on regenerative capabilities whether in terms of satellite cell 

function or satellite cell number. Satellite cells are primarily responsible for generating 

new muscle tissue after being activated through mechanotransduction of injury. This 

study utilized immunofluorescence to examine the presence of the PAX7 gene 

expression, a unique marker of satellite cells, within a 12 month and 18 month old 

population of mice. The PAX7 marker was co-stained with DAPI to identify nuclei and 

mark positive satellite cells. Fiber area was calculated with ImageJ image processing, 

and the satellite cells were counted by hand. The difference in fiber area of the two 

populations was negligible, but the satellite cell count was shown to be higher in 

younger populations.  

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Volumetric muscle loss is a debilitating condition that is the result of the loss of 

musculoskeletal tissue within the body. Due to this loss of muscle tissue, the affected 

patients typically have severely reduced functionality in terms of both flexion and 

extension [3]. The individuals most commonly affected are those involved in traumatic 

injury such as war veterans, victims of motor vehicle accidents, or even patients 

undergoing major surgeries [7].  

Under minor circumstances, the body does relatively well to repair injury, 

however, when substantial damage has been sustained to the musculoskeletal tissue, 

the body’s normal healing mechanics are not sufficient to maintain functionality. To 

ameliorate this clinical issue, physicians and biomedical researchers are investigating 

tissue engineering as a possible solution [1]. To form new methods to synthesize new 

muscle, the natural muscle repair process must be fully understood. The key to 

understanding native muscle repair lies within satellite cells and their role within the 

body.  

Satellite cells are a critical component in muscle regeneration, but in order to 

understand their importance, myogenesis must be examined in a broader context. 

Myogenesis is the formation of new muscle tissue, and there are two types of 

myogenesis, embryonic and adult. Embryonic muscle formation begins from the paraxial 

mesoderm with stem cells forming into somites which transition into dermamyotomes, 

and finally into myotomes [4]. The body then expresses multiple transcription factors 



which stimulate the myotomes into myoblasts which ultimately derive the skeletal 

muscle. The muscle is generated by the fusion of mononucleated myoblasts into 

multinucleated myotubes [10].  

In adults, without the pluripotentcy of stem cells, satellite cells step in to form 

new tissue. Satellite cells are quiescent myoblasts. They are located on the periphery of 

the basal lamina and the sarcolemma and become activated after experiencing 

mechanical stimuli such as high load or injury. After activation, they migrate to their 

associated muscle fiber to differentiate into myoblasts and begin the process of muscle 

generation anew [8].  

From this analysis of myogenesis, it quickly becomes apparent that myosatellite 

cells must be able to regenerate themselves or they would deplete rather quickly. As 

mentioned earlier, the body can do this with minor injuries, but fails to do so with large 

traumas. Figure 1 shows how satellite cells repair themselves in minor injury and Figure 

2 shows how fibrosis and extraneous extracellular matrix impedes muscle functionality.   

 

 

 

 

Figure 1: Depiction of healthy muscle regeneration process. The satellite cells are able to 

proliferate and construct new myofibers [9] 



 

 

 

 

 

Figure 2: Depiction of traumatic injury repair. The fibrosis of the tissue does not 

allow for regeneration of satellite cells [9] 

Taking a step back and looking from a clinical standpoint, patients who are 

younger typically recover better from injury than patients who are older [2]. In addition, 

it has been shown that aged populations typically have less muscle mass as well [6]. 

Assuming that the satellite cells are responsible for the majority of muscle regeneration, 

this peculiarity suggests that either satellite cell functionality or number is affected by 

age.  

In order to closely examine satellite cells, immunofluorescence can be utilized. 

The PAX7 gene is uniquely expressed in satellite cells, and DAPI is a stain the allows for 

the staining of the nucleus [5]. Co-staining PAX7 with DAPI and identifying co-

localizations allows for positive markers of satellite cells. The objective of this study was 

to determine if there was a significant difference in satellite cells and muscle fiber area 

in aged and young mice.  

 



Methods 

 In order to investigate the effect age has on satellite cells, tibialis anterior (TA) 

muscle tissue and gastrocnemius tissue were harvested from mice aged at 12 months 

and at 18 months. A total of 10 samples were collected, 5 young samples and 5 old 

samples.  

 

Tissue Preparation 

 This tissue was prepped using a novel cryopreservation technique to attempt to 

improve the quality of immunofluorescence images. The tissue was originally fixed by 

incubating in a 4% paraformaldehyde/10% formalin solution for 24 hours at 4 degrees 

Celsius. After the tissue was incubated, it was rinsed in 1x Phosphate Buffer Solution 

(PBS) for 30 minutes. The samples were then patted dry, with care taken not to press 

too hard on the samples. After this rinse, a 10% sucrose solution was made by mixing 3g 

of sucrose into 30 mL of PBS solution.  This solution was thoroughly vortexed for 3 

minutes to ensure solvation of the sucrose. The samples were allowed to incubate for 

24 hours in this solution. After 24 hours, a 20% solution was made with 6g of sucrose 

into 30mL of PBS, and the samples were allowed to incubate in the 20% solution for an 

additional 24 hours. Finally, a 30% solution was made with 9g of sucrose into 30mL of 

PBS, and the samples were allowed to incubate for another 24 hours.  

 



Cryopreservation 

 After the samples had been cryoprotected with a sucrose gradient, they were 

frozen in a minus 80 degree Celsius freezer. The samples were cut in half along the 

horizontal cross section to create top and bottom halves and also fit the samples into 

cryomolds. This maintained natural fiber alignment while freezing the tissue. The 

samples were then covered in Optimal Cutting Temperature (OCT) solution taking care 

to not allow air bubbles into the viscous solution. Any accidental air bubbles were 

removed via pressure by putting the samples into a vacuum chamber. The samples were 

then partially frozen by placing the bottom of the mold into a liquid nitrogen bath. Only 

the plastic mold was allowed to touch the liquid nitrogen, the tissue sample and OCT 

were kept out of contact with the liquid nitrogen. The OCT was allowed to partially 

freeze, but the last portion of solution was placed into a -80 degree Celsius freezer to 

complete freezing.  

 

Sectioning 

 To examine the tissue under the fluorescence microscope, a cryostat was used to 

section the samples at 8 microns each. The samples were removed from the -80 degree 

Celsius freezer and placed into the cryostat and allowed to equilibrate at -20 degrees 

Celsius for 30 minutes. OCT was utilized to freeze and adhere the samples onto the 

sectioning plates that were then mounted on the slicer. The slices were slowly cut taking 

care to only place samples that had not been rolled on to the slides. VWR SUPERFROST 



PLUS Microscope Slide Adhesion slides were used to obtain best binding to the slides 

from the frozen tissue. Ten slides with three sections were made for each sample.  

 

Immunostaining  

 In order to visualize the co-localization of PAX7 and the nuclei, a PAX7 stain and 

DAPI stain were utilized. PAX7 utilized a primary antibody to adhere to the PAX7 protein 

and a secondary fluorophore to detect the protein in the samples. The protocol for 

staining involved rinsing the slides with PBS solution by soaking them for 5 minutes in 

PBS and then rinsing the slide with PBS solution. This process was repeated 3 times for 

each sample to ensure excess OCT was not present. Then slides were incubated in 0.1% 

Triton-x solution for 20 minutes. The triton solution served to permeabilize the cells so 

the antibodies could reach their target proteins. After triton, the samples were rinsed 

again in PBS for 5 minutes each repeated 3 times. The samples were then allowed to 

incubate in a block serum to prevent nonspecific binding of the proteins for 24 hours in 

the 4 degree Celsius refrigerator. After incubation, the block was discarded and then the 

primary antibody was placed onto the slides and allowed to incubate for a minimum of 

four hours. After incubation, the primary antibody was recollected and then the samples 

were rinsed 3 times with PBS. After this, the secondary antibody was added and allowed 

to incubate for 1 hour at room temperature. During this step, the samples were kept in 

a dark place to prevent photobleaching. After the secondary was added, the slides were 

rinsed again and the DAPI stain was applied to the slides for 7 minutes. After 7 minutes, 



the samples were rinsed again using the PBS solution. After the stains were applied, the 

slides were considered photosensitive and shielded from all sources of light.  

 

Imaging 

 Photographs of the slides were taken at both 358nm and 488nm excitation 

wavelengths to image DAPI and PAX7 respectively. The DAPI images were blue in color 

and the PAX7 images were green in color. ImageJ image processing was used to 

determine average fiber area of samples, and co-localization areas were counted by 

hand in samples. ImageJ processing involved taking the 20x image and opening it 

ImageJ, analyzing the image and setting the scale to 4.17 microns per pixel and applying 

it globally. This number was changed to 2.08 microns per pixel when examining 10x 

images. The brightness and contrast of the image were manipulated to create clear 

fibers from the background. The image was converted to an 8-bit image. The threshold 

was set and the slide bar was adjusted until the fibers were mostly filled with a red 

color. Image processing tools were utilized as needed for the pictures. The picture was 

then set by setting the measurement area and limiting the results to the chosen 

threshold. The particles were analyzed using the analyze particles function and the 

discrimination size was set to a range of 100-infinity pixels. The masks were then 

overlaid on top of each other with the holes not included and the edges of the image 

excluded. This highlighted the fibers of interest and allowed the data to be exported to 

an excel file that contained the area in microns. This data set was averaged for each 



picture to get an average value for each image. This process was repeated 3 times for 

each mouse and then the averages were compared for statistical significance. 

 

Results: 

The results of the stains were varied across the samples. Some stains worked 

successfully as shown in Figure 3, while others failed to work correctly as shown in 

Figure 4.  

 

 

Figure 3: Depicts 12 MO 20x sample with easily identifiable PAX7 positive cells. The 

arrow is indicating a PAX7 Positive cell. 

  

Figure 4: Depicts a 12 MO 20x sample with prevalent photobleaching. The nuclei 

become very difficult to see due to background noise. 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Depicts box and whisker plot of Fiber area. N=15.  P = 0.265. 

Average for 12 MO = 2108.518 microns squared. Average for 18 MO = 

1642.969 microns squared.  

 

Figure 6: Depicts box and whisker plot of satellite cell count. N=16. P = 

0.013. Average 12 MO =14.8125. Average 18MO = 4.875. 

 



Conclusions 

 Figure 6 indicated that there was a statistical difference between the two 

samples with a P-value of 0.013 and supports the hypothesis that there is an increased 

number in satellite cells in a younger population of mice (12mo) in comparison to an 

older population (18mo). Figure 5 supports that there was no statistical difference 

between the two populations in terms of muscle area fiber due to the P-value of 0.265. 

 The inconsistency of the staining results indicated a source of error in the results 

of the satellite cell experiment. Photobleaching washed out the signal of positive cells so 

many cells in the sample could have been miscounted therefore leading to an inaccurate 

reading. The slides initially had a clear readable signal, but under prolonged exposure to 

the microscope (~5 minutes) the background noise had become so prevalent, readable 

pictures could no longer be taken. One possible solution would be to use greater 

amounts of block to minimize the background noise in the sample and prevent 

nonspecific binding of the stains. The error could have also stemmed from the 

permeabilization stage that could have led to the failure of the block. Another key 

addition that could have been added to the protocol to improve the histological 

readability of samples would be mounting the slides in a cytoseal solution to preserve 

the stains better. If this experiment were to be repeated, it would help to have fresh 

reagents as the ones used in this experiment were dated and could have lost efficacy 

over time. 



 Overall, there are a lot of challenges in determining satellite cell count through 

the use of PAX7 staining. For future research, histological readability and reliability of 

stains are two huge factors that could be improved upon to obtain better results in 

regards to this study.  
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