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Abstract 

 The development of Multi-Chip Power Modules (MCPMs) has been a key factor in 

recent advancements in power electronics technologies. MCPMs achieve higher power density 

by combining multiple power semiconductor devices into one package. The work detailed in this 

thesis is part of an ongoing project to develop a computer-aided design software tool known as 

PowerSynth for MCPM layout synthesis and optimization. This thesis focuses on the definition 

and design of a Manufacturer Design Kit (MDK) for PowerSynth, which enables the designer to 

design an MCPM for a manufacturer’s fabrication process. 

 The MDK is comprised of a layer stack and technology library, design rule checking 

(DRC), and layout versus schematic checking. File formats have been defined for layer stack and 

design rule input, and import functions have been written and integrated with the existing user 

interface and data structures to allow PowerSynth to accept these file formats as a form of input. 

Finally, an exhaustive DRC function has been implemented to allow the designer to verify that a 

synthesized layout meets all design rules before committing the design to manufacturing. This 

function was validated by running DRC on an example layout solution using two different sets of 

design rules.  
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I. Introduction 

 Power semiconductor devices play a vital role in many of today’s technological 

developments, including electric vehicles, aerospace technologies, and alternative energy. These 

devices control the flow of electric power between electronic systems and other components 

such as batteries, electric motors, and energy sources. Power electronics designers aim to 

combine these devices into high-performance systems that are inexpensive, small in size, fast, 

efficient, and reliable [1].  

 Recent advances in power electronics technologies have focused on increasing the 

switching frequency, allowing the power semiconductor devices to modulate the flow of power 

at a faster rate. The size of passive components such as capacitors, inductors, and transformers 

can be reduced at higher frequencies, which reduces cost and module size while increasing 

efficiency. However, there are several major design challenges associated with increasing the 

switching frequency. The effects of electrical parasitics increase switching losses, which can 

negate efficiency gains. Parasitics and electromagnetic interference (EMI) can also create 

problems with signal integrity and timing, as well as dangerous over-voltage conditions. 

Additionally, smaller module designs with higher power density place many heat-producing 

devices close together, which causes issues with heat dissipation. These problems can hinder 

module performance, reduce operating lifetime, or even cause catastrophic failure of the system 

as shown in Figure 1 [1].  
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Figure 1: Catastrophic failure of an MCPM [1] 

 
 To mitigate these issues and push the boundaries of performance and reliability, power 

electronics designers have developed multi-chip power modules (MCPMs). MCPMs combine 

multiple power semiconductor devices into a single package. This approach reduces the effects 

of electrical parasitics and increases power density by packing devices close together with short 

interconnects between them [2]. MCPM design methodologies focus on minimizing parasitics 

and EMI effects while effectively dissipating heat for a high-power density module.  

 The current MCPM design process is largely a manual task that requires an experienced 

designer to go through multiple design iterations. For each iteration, the designer must model the 

electrical, thermal, and mechanical performance of the design and check that it meets both design 
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specifications and manufacturing process design rules. This process is costly and time-

consuming, and it typically doesn’t result in the most optimal layout possible [3].  

  The work detailed in this thesis is part of an ongoing effort to develop an electronic 

design automation (EDA) software tool for power module layout synthesis. This tool, known as 

PowerSynth, aims to aid the MCPM designer through automated layout synthesis and 

optimization. This project is led by Dr. Alan Mantooth and sponsored by the National Science 

Foundation’s Center for Power Optimization of Electro-Thermal Systems (POETS).  

 PowerSynth utilizes multi-objective optimization algorithms to generate MCPM layouts 

that are optimized for both electrical and thermal performance. It relies on fast electrical and 

thermal models that can quickly approximate the electrical and thermal characteristics of a power 

module with small sacrifices in accuracy. These models are detailed in [4]. The designer inputs 

the intended circuit topology, components, materials, and other necessary information into 

PowerSynth. After running PowerSynth, the designer is presented with an array of layout 

solutions reflecting the trade-offs between optimal electrical and thermal performance. The 

designer can then choose the layout solution best suited to the intended application and export 

the design for further analysis or manufacturing.  

 The work described in this thesis focuses on the definition and design of a Manufacturer 

Design Kit (MDK) for PowerSynth. Like Process Design Kits (PDKs) used in integrated circuit 

(IC) design, an MDK contains everything an MCPM designer needs to design a power module 

with a manufacturer’s manufacturing process. It aims to represent the boundaries of the MCPM 

manufacturing process to the designer in order to ensure manufacturability, improve reliability, 

and maximize efficiency of MCPM designs.  
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 This thesis consists of five chapters, including this introduction. Chapter 2 provides 

background information on power module structure, power module design, and PDKs. Chapter 3 

outlines the definition, purpose, and components of an MDK. Chapter 4 details the software 

design and implementation of an MDK for PowerSynth. Chapter 5 presents results from 

validating some of the MDK functions. Finally, this thesis concludes with a summary of the 

work and discussion of future research possibilities in Chapter 6 

 

II. Background 

A. MCPM Structure 

 An MCPM consists of a series of layers and components as shown in Figure 2. The 

baseplate at the bottom of the structure primarily acts as a heat spreader to help dissipate heat 

from the power devices. Above the baseplate is a substrate, which consists of a bottom metal 

layer, a top layer of interconnect, and a dielectric layer between them. The interconnect traces are 

etched according to the desired circuit topology in order to connect the power devices. A solder-

like material referred to as substrate attach bonds the bottom of the substrate to the top of the 

baseplate. Power devices, which are typically unpackaged die, are bonded to the top of the 

substrate by another solder-like material referred to as die attach. Power bond wires may connect 

power die to other traces, and package leads are attached to traces for external connections such 

as power, ground, and output.  
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Figure 2: Simplified Structure of an MCPM [1] 

  

 The MCPM structure shown in Figure 2 is a simple example of the structure currently 

handled by PowerSynth. New MCPM structures are emerging that seek to further improve power 

density, electrical performance, and thermal management by using a more diverse range of 

designs. These approaches include bond wire-less modules and three-dimensional designs that 

may stack multiple components, substrates, baseplates, heatsinks, or other layers on either side of 

the design. Designers are also developing MCPMs that incorporate discrete components, 

integrate gate driver circuits into the module package, and utilize non-rectangular traces and 

routing. PowerSynth currently does not incorporate these design types, but they are areas of 

future research and development. 

 

B. The MCPM Design Process 

 The basic process of designing MCPMs follows a similar pattern to other circuit design 

techniques, including those used in integrated circuit (IC) design. The designer begins with a set 
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of specifications, which may include electrical, thermal, and mechanical characteristics as well 

as manufacturing process design rules and additional constraints. The designer draws a 

schematic of the intended electrical circuit, which defines its electrical connectivity including 

components and external connections. The schematic is typically stored as a text file called a 

netlist. Simulation programs such as SPICE can be used to analyze the schematic and predict the 

electrical behavior of the circuit. After completing the schematic, the designer develops the 

physical layout of the circuit, including placement of the components, routing of the traces 

between them, and design of the inner layers of the board or substrate. Once physical layout is 

finalized, the designer may conduct additional electrical, thermal, and mechanical analyses and 

fine-tune the design before committing it to manufacturing. Modern design methodologies rely 

on EDA software tools to assist the designer and manage design files. 

 

C. PDKs for IC Design 

 PDKs provide important links between EDA software and IC design manufacturing 

technologies and processes [5]. A PDK consists of files and libraries that help to streamline the 

design process and enable the designer to consider the manufacturing process and its 

implications throughout the IC design procedure.  

 From a broader perspective, a PDK assists in the design of ICs by representing the entire 

manufacturing process to the designer. In a personal interview with the author, Paul Koch 

provided a visual depiction of the components of a PDK and their relationships with various 

stages of the IC design process. This graphic is shown in Figure 3 with the PDK components 

highlighted in yellow. The IC design process can be thought of as two different “views” – the 

behavioral view and the physical view. The behavioral view refers to the electrical behavior and 



   7 

schematic of the circuit, while the physical view perspective focuses on the physical design and 

layout. A PDK assists the designer in navigating the IC design process and keeping the design 

consistent across both views.   

 

Figure 3: Graphical Representation of PDK Components and the IC Design Process. 

 

 A PDK assists the designer first by providing a library of design objects. These objects 

include behavioral design objects, such as SPICE models, and physical design objects that may 

contain information about an object’s physical dimensions and properties. The designer utilizes 

behavioral models in simulators like SPICE to predict the performance of the IC. Once the 

designer begins configuring the physical design objects in a layout, a PDK allows the designer to 
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check that the layout meets physical manufacturing tolerances and specifications. A PDK can 

also extract additional behavioral elements that are derived from the physical layout and feed 

these elements back into the behavioral side of the design process. Parasitic extraction is an 

important aspect of this, as it allows the designer to analyze electrical parasitics introduced by 

the layout and perform additional behavioral simulations considering their effects on 

performance. PDKs also include checks between the physical and behavioral design aspects to 

ensure that the physical layout matches the intended circuit schematic. This feature is referred to 

as layout vs schematic (LVS) checking. Finally, a PDK may contain data about the 

manufacturing tooling used to fabricate the circuit. This allows the designer to more easily 

transfer the physical design into the necessary format for fabrication.   

 

III. Definition of an MDK 

 An MDK models the MCPM manufacturing process for EDA software tools. In many 

ways an MDK follows the same concepts as a PDK, but applies them to MCPM design rather 

than IC design. The contents of an MDK are contained in files, data structures, libraries, and 

software functions. The end goals of an MDK are to assist with the design of more efficient and 

reliable high performance MCPMs and to ensure that these designs are manufacturable. The 

components of an MDK are organized into three categories: Layer Stack and Technology 

Library, Design Rules, and LVS. 

 A layer stack contains data about the various layers in an MCPM design. It stores the 

order of the layers as well as the name, type, and dimensions of each layer. The layer stack may 

also contain layer properties or other relevant data. A few simple examples of layer types are 

baseplates, metal, dielectric, and interconnect layers. Other layer types may be necessary to 
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model more complex MCPM designs, as will be discussed later in this thesis. The technology 

library contains data about the materials and devices used in power module designs. This data 

can be shared between different projects and applications. 

 Design rules are a set of constraints that ensure that a module design can be successfully 

fabricated. These rules are primarily based on fabrication process tolerances and thus obtained 

from manufacturers. Specific design constraints typically vary between different foundries and 

processes. Design rule checking (DRC) is an important function in EDA software as it allows the 

designer to analyze a layout to find and correct any design rule violations.  

 Finally, LVS assists with maintaining consistency between the behavioral and physical 

sides of module design. Parasitic extraction enables a designer to examine the electrical 

parasitics of the physical MCPM layout. An MDK should facilitate the extraction and export of 

parasitics information so the designer can conduct electrical analyses considering parasitic 

effects and revise the layout as necessary to improve expected module performance. Like its 

PDK counterpart, the LVS component of an MDK also compares the module layout with the 

schematic to ensure that the physical design matches the intended circuit schematic.  

  

IV. Software Design and Implementation 

A. Layer Stack and Technology Library 

 PowerSynth allows the designer to input layer stack data in the Module Stack section of 

the main window GUI, which is shown in Figure 4. The designer can select a technology library 

file for the material properties and type in values for dimensions and other layer properties. 

PowerSynth checks that the module stack input data is valid and then feeds this data into layout 

synthesis. 
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Figure 4: Previous Main Window GUI with Module Stack Input Fields 

 

 Currently, PowerSynth is designed for a layout structure described in section 2.1 of this 

thesis. This structure limits designs to one baseplate and one substrate and does not support 

three-dimensional module designs that stack multiple layers on either side of the design, gate 

driver circuits, or non-rectangular traces and routing.  

 While the present implementation is limited to this structure, a layer stack file format has 

been defined that is generalized enough to allow future developers to use it for later versions of 

PowerSynth that may support a more diverse range of layout structures. The layer stack file 
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stores layer information such as layer names, positions, dimensions, and properties where 

applicable. This file is defined in comma-separated values (CSV) format primarily because this 

format can be easily parsed. CSV files are also supported by Microsoft Excel, which can serve as 

a GUI for the designer to enter layer stack data into the file. An Excel template has been defined 

to assist the designer in creating or modifying a layer stack file. This template, shown in Figure 

5, is designed for easy parsing and simplicity so the designer can easily enter rules data and 

future developers can easily modify or add new layers. The CSV format for this template is 

shown in Figure 6. 

 

 

Figure 5: Excel Template for Layer Stack File Input 
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Figure 6: CSV Format of Layer Stack File 

 

 An import button, shown in Figure 7, has been added to the Module Stack section of the 

main window GUI to allow the designer to import layer stack data from a layer stack file. The 

import function called by the button allows the user to select a layer stack CSV file and then 

parses the CSV file to extract layer data. This data is automatically analyzed to determine if it is 

valid and compatible with the current module structure supported by PowerSynth. If the 

imported layer stack data is valid and compatible, it is used to populate the GUI fields in the 

Module Stack section of the main window. PowerSynth can then use this data for layout 

synthesis. 
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Figure 7: Main Window GUI with Layer Stack Import Option 

 

 A technology library structure was developed in PowerSynth prior to the work described 

in this thesis. This is implemented primarily through a Technology Library Editor (TLE), which 

provides an interface for the designer to easily access and make changes to the technology 

library. The GUI for the TLE is wizard format as shown in Figure 8. More information on the 

design of the TLE can be found in [1]. 
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Figure 8: Technology Library Editor/Wizard GUI 

 

B. Design Rules 

 Prior to the work described in this thesis, PowerSynth allowed the designer to enter 

process design rules through a GUI window as shown in Figure 9. These values are saved to a 

process design rules data structure for the current project. Design rule checking was implemented 
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by using the design rules as constraints on layout optimization. The optimization algorithm 

evaluates each possible layout generated and assigns it a value. Layouts that violate design rules 

were given an extremely large “undesirable” value so that the optimizer would eliminate these 

layouts from the potential solution set.  

 

 

Figure 9: Previous Process Design Rules Editor GUI 

 

 The MDK includes a new design rules file format to store process design rules data. Like 

the layer stack file, the design rules file is defined in a CSV format and Microsoft Excel can be 

used as a GUI for the designer to enter layer stack data in to the file. An Excel template has been 

defined to assist the designer in creating or modifying a rules file. This template, shown in Figure 

10, is designed for easy parsing and simplicity so the designer can easily enter rules data and 

future PowerSynth developers can easily add new rules if needed in the future. The CSV format 

for this template is shown in Figure 11. 
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Figure 10: Excel Template for Design Rules File Input 

 
 

 

Figure 11: CSV Format of Design Rules File 
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 An import button, shown in Figure 12, was added to the Process Design Rules Editor 

GUI to allow the designer to import rules from a process design rules file. The import function 

called by the button allows the user to select a design rules CSV file and then parses the CSV file 

and populates the GUI fields for rule values from the rules data extracted from the CSV file.  

 

 

Figure 12: Process Design Rules Editor GUI with Import Option 
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 The design rule optimizer constraint functionality discussed at the beginning of this 

section is maintained in the MDK implementation. In addition to the optimizer constraints, an 

exhaustive DRC function has been implemented to ensure that layout solutions pass all design 

rules. This function is run outside the optimization loop and serves as a final pass/fail DRC test 

for a layout solution. The exhaustive DRC function runs from the Solution Viewer UI as shown 

in Figure 13, outside the optimization loop, and notifies the designer if the layout passes DRC or 

if it has DRC violations.  

 

 

Figure 13: Solution Viewer UI with Run DRC Option 
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C. Layout Versus Schematic 

 Some LVS aspects of an MDK for PowerSynth were implemented prior to the work 

described in this thesis, but they are discussed here since they are part of the MDK. This section 

focuses on the two primary components of LVS for an MDK – parasitic extraction and 

connection checks. 

 As described previously in this thesis, parasitic extraction allows the designer to back-

annotate schematics with electrical parasitics and perform simulations to compare expected 

performance with initial simulations. This allows the designer to further analyze and revise the 

design with consideration given to parasitics before committing to manufacture. The role of 

PowerSynth in parasitic extraction focuses on estimating the parasitics of a layout solution and 

providing the designer with the means to easily extract and export this data to industry-standard 

simulation tools like SPICE.  

 PowerSynth’s electrical models can quickly calculate the parasitics for each layout 

solution. PowerSynth then allows the designer to export a netlist of the circuit with parasitic 

components added, including parasitic resistances, inductances, and capacitances. As discussed 

previously, a netlist is a text file describing the components and connectivity of the circuit. It is a 

standard format used by SPICE and other simulation tools. Thus, the designer can use 

PowerSynth to extract the parasitics of a layout solution and export them to SPICE for further 

analysis. 

 In addition to exporting an electrical netlist with parasitics, the designer can also use 

PowerSynth to export a thermal equivalent netlist. This type of netlist models the generation, 

flow, and dissipation of heat using electrical circuit components as an analog for thermal model 
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components [6]. For example, voltage is analogous to temperature and current is analogous to 

heat flow. A current source can be used to model a device emitting heat, which then flows 

through a network of thermal resistances and capacitances until it reaches ambient temperature 

outside the module, which can be represented by a voltage source. This allows the designer to 

simulate heat dissipation through a module using electric circuit simulators like SPICE and 

perform further thermal analysis of the layout. 

 Functions for exporting a SPICE electrical parasitics netlist or a SPICE thermal netlist are 

connected to buttons in the Solution Window GUI as shown in Figure 14. 

 

 

Figure 14: Layout Solution with Export Options 
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 PowerSynth is designed to address connection checks through layout synthesis. By 

automatically generating the physical layout from a circuit netlist or simple topology, the 

software can be designed to ensure that layouts are “correct by construction,” matching the 

intended circuit network. 

 

V. Results 

 The results from testing layout synthesis in PowerSynth, including optimization 

constrained by DRC, can be found in [1]. As discussed previously, the DRC implemented in the 

optimization loop aims to eliminate generated layouts that violate design rules by giving them an 

extremely large “undesirable” value that is evaluated by the optimization algorithm. In contrast, 

the exhaustive DRC function is a strict pass/fail test that directly notifies the designer if a layout 

solution contains any design rule violations. This section focuses on validation of the exhaustive 

DRC function. 

 In order to test the exhaustive DRC function, PowerSynth was used to synthesize a set of 

layout solutions based on the R&D 100 award-winning MCPM design mentioned in [3]. The 

optimizer was constrained by the default set of design rules shown in Figure 15. A random 

solution shown in Figure 16 was selected from the solution browser. 
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Figure 15: Default Design Rules for Exhaustive DRC Validation 
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Figure 16: Example Layout Solution for Exhaustive DRC Validation 

 

 After saving the layout solution shown in Figure 16 to the main window, the exhaustive 

DRC function was run using the same default design rules that were used for optimization. The 

message box shown in Figure 17 appeared, showing that the layout passed all DRC as expected. 
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Figure 17: Exhaustive DRC Pass Notification 

 

 Next, the design rules were changed to an extreme set of values using the design rules 

editor dialog, as shown in Figure 18. The exhaustive DRC function was then run on the example 

layout using the extreme values.  As expected, the message box shown in Figure 19 appeared, 

showing that the layout failed to pass DRC. As indicated in this notification, the designer can 

then check the console or log for details of the identified DRC violations. An example console or 

log message for this case is shown in Figure 20. 

 

 

Figure 18: Extreme Design Rules Used for Exhaustive DRC Validation 
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Figure 19: Exhaustive DRC Fail Notification 

 

 
Figure 20: Exhaustive DRC Fail Console/Log Message 

 

VI. Conclusions and Future Research 

 The work described in this thesis resulted in the definition of an MDK and its software 

design and implementation in PowerSynth. An MDK has been defined as a series of files, data 

structures, and software interfaces that allow an MCPM designer to design a module for a 

manufacturing process. An MDK consists of a layer stack and technology library for layer 

dimensions and properties, DRC, and LVS checking.  
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 The MDK design for PowerSynth discussed in this thesis allows the designer to create 

design rules or the layout stack in a CSV file and import this data into PowerSynth for MCPM 

layout synthesis. The designer can input material properties through a technology library editor 

interface, which allows these properties to be saved in a technology library for use across 

different projects. Design rules are used as a constraint in layout synthesis and optimization so 

PowerSynth can automatically generate layouts that conform to these rules. The designer can 

also perform an exhaustive DRC test after layout synthesis to ensure that a layout solution does 

not violate any design rules before committing it to manufacturing. The exhaustive DRC 

function has been validated by running DRC on a synthesized layout using two different sets of 

design rules. These functions and others are integrated into the user interface and connected to 

the necessary data structures for PowerSynth to perform layout synthesis.  

 Future research building on this project could work toward generalizing the MDK for a 

wider array of MCPM design structures, including bond wire-less and three-dimensional 

structures. The data structures in PowerSynth that handle layer data could also be restructured 

using polymorphism to further modularize the source code. For example, a generic layer class 

could be defined, and classes representing different types of layers like metal or dielectric could 

extend the generic layer class. Input checking for the layer stack import, design rule import, and 

design rule editor could be improved to make these features more robust. Export functions could 

be added to allow the user to save layer stack data or design rules from PowerSynth to a CSV 

file. Finally, the exhaustive DRC feature could be improved to provide the designer with more 

detailed and user-friendly feedback about DRC violations. This could be accomplished by 

displaying a visual representation of the layout solution with indicators showing where DRC 

violations were found, which would better enable the designer to fix DRC errors before 
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finalizing the design for manufacturing. Finally, a feature could be implemented to directly 

compare a synthesized layout to the source netlist. While the current layout synthesis process 

does not change the netlist other than extracting layout parasitics, future work may include the 

additional of passive or active components during layout synthesis. A direct comparison between 

the generated layout and source netlist would then be more valuable to the designer. 
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