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Abstract 

Lipoteichoic acid (LTA) is component of the cell wall of Gram-positive bacteria that stimulates 

inflammation during bacterial infection. However, few studies have investigated the in vivo 

immune response to LTA, and none of the in vivo studies done have been performed in birds. For 

this project, the pulp (a skin-derivative) of growing feathers (GFs) of chickens were used as a 

test site to investigate the in vivo effects of intradermally injected LTA. In Study 1, the pulp of 

12 GFs of 11-week-old Light-brown Leghorn (LBL) males were injected with 10 μL of differing 

concentrations of LTA (0.1, 1.0, 10, 100 or 250 μg LTA/mL; 3 chickens/dose). For each chicken, 

2 GF were plucked before injection and at 6, 24, 48, and 72 h post-injection, flash frozen, and 

stored at -80°C. Frozen pulp sections were stained using immunohistochemistry for visual 

inspection of leukocyte infiltration in response to LTA. Based on this study, the 10 μg/mL LTA 

solution was found to be the optimal concentration to stimulate inflammation. In Study 2, GFs of 

12, 15-week-old LBL males were then injected with either 10 μL of 10 μg/mL LTA (0.1 μg 

LTA/GF, 12 GF/bird, n = 8), or 10 μL of PBS (vehicle; n = 4). GFs were collected before 

injection (0 h) and at 6, 24, 48, and 72 h post-injection. At each time-point, pulp cell suspensions 

were prepared and immunofluorescently stained with a panel of chicken-leukocyte-specific 

monoclonal antibodies, and cell population analysis was carried out by flow cytometry. Analyses 

revealed elevated levels (% pulp cells) in total leukocytes, monocytes/macrophages, and class II 

MHC expressing cells in GFs injected with LTA when compared to the control. Infiltration of 

lymphocytes and heterophils was not different between treatment groups. This study suggests 

that the inflammatory response to LTA in chickens is characterized primarily by recruitment of 

monocytes/macrophages to the site of inflammation. 
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Introduction 

Background and Need 

The problem of antibiotic resistance is ever increasing in the modern world. In 

agriculture, as in medicine, there is a growing need to reduce the usage of antibiotics so that they 

may continue to be effective in the future (Laloučková & Skřivanová, 2019). This requires the 

development of new methods of preventing and fighting bacterial infection in livestock. 

However, in order to find new, better ways of fighting pathogens, a greater understanding of the 

immune system is required. 

The immune system in vertebrates is often considered to be divided into two main 

components that protect against invading pathogens: the innate and acquired immune system. 

The innate immune system is the first line of defense, designed to confine and combat infectious 

agents. The innate immune system is genetically determined and consists of general responses 

that are effective against groups of pathogens. This contrasts with the acquired immune system, 

which is slower to produce an effective response but targets specific pathogens. The acquired 

immune system is mediated primarily by lymphocytes, while the innate immune system consists 

of diverse elements such as certain leukocytes, complement proteins, and mucous secretions 

(Abbas et al., 2015). However, there is not a hard line between innate and acquired immunity, as 

many cells play a role in both types of immunity. 

 Lipoteichoic acid (LTA) is a surface-associated component of the Gram-positive bacterial 

cell wall. Gram-positive bacteria release LTA during bacteriolysis caused by various factors such 

as neutrophils, complement proteins, or antibiotics. LTA elicits an immune reaction that causes 

inflammation. In animal studies, high doses of LTA have been shown to cause septic shock and 

multiorgan failure (Ginsburg, 2002). LTA plays a role in immune response to all Gram-positive 



6 

 

bacterial infections, so understanding how the immune system responds to LTA is critical to 

immunology and medicine as a whole. 

Problem Statement 

LTA and its role in immune response has been researched by previous studies. However, 

there are few studies looking at local inflammatory responses to LTA in a complex tissue, and no 

in vivo studies have been conducted in chickens. In chickens, intradermal injection of LTA into 

the pulp of growing feathers (GFs) allows for the observation of in vivo immune response over 

time in the same individual (Erf & Ramachandran, 2016). This approach is minimally invasive 

because injected GF can easily be collected for ex vivo analyses while dermal investigation of 

immune responses in other animals would require invasive biopsy or sacrificing the animal. A 

better understanding of the progression of the innate immune response to LTA is important to 

understanding the natural defenses of chickens. More research needs to be conducted in order to 

find new, more effective ways of preventing infection, which requires a better understanding of 

immune function. 

Purpose of the Study 

The purpose of this study is to observe in vivo how the inflammatory response initiated 

by intradermal LTA injection progresses over time. Simultaneous intradermal injection of 

multiple GFs of a chicken with LTA and subsequent periodic sampling of the GF for laboratory 

analysis will provide a profile of the local tissue response to LTA. No previous study has been 

conducted that observes local immune response to LTA in an individual over time. In this study, 

a time course experiment will be conducted in which differences in individuals’ immune systems 

are not a factor. Looking into the progression of the LTA induced inflammatory response in an 
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individual will yield information critical to understanding Gram-positive bacterial infections in 

chickens as well as in humans. 

Objectives 

▪ Measure the type and relative number of leukocytes that infiltrate the growing feather in 

response to LTA 

▪ Determine how leukocyte presence changes over time as the inflammatory response to 

LTA progresses 

 

Literature Review 

Introduction 

The innate and acquired immune system are two halves that comprise a vertebrate’s 

system of defense against pathogens. The first barrier against invading pathogens is the epithelial 

cell layer that covers the external body (skin) and lines the digestive, respiratory, and 

genitourinary tract (mucosal epithelium) (Günther & Seyfert, 2018). However, if the epithelium 

is compromised through injury, pathogens are able to enter and colonize the body. As a first 

response to injury and infection, wounds will produce an inflammatory response which allows 

important elements of the immune system such as leukocytes and plasma proteins to access the 

site of infection (Medzhitov, 2008). 

Innate Immunity 

Inflammation is the primary response of the innate immune system to microbial infection 

or tissue damage and also plays a role in viral infection (Abbas et al., 2018). During 

inflammation, increased vascular permeability allows leukocytes, also known as white blood 

cells which are the cells of the immune system, and plasma proteins to access the site of infection 



8 

 

(Medzhitov, 2008). These changes are mediated by cytokines released by resident cells in the 

affected tissue such as macrophages, mast cells, and endothelial cells (Abbas et al., 2018). 

Initially, neutrophils, or the analogous heterophils in birds, are the most abundant leukocytes 

recruited from the blood, but the number of monocytes increases more slowly over time until 

they are more prominent. Infections are initially recognized by a group of molecules called 

pattern recognition receptors (PRRs) on sentinel cells in tissues (i.e., macrophages, dendritic 

cells, and mast cells) (Günther & Seyfert, 2018). PRRs recognize a limited number of molecules 

that are shared by large groups of pathogens, known as pathogen-associated molecular patterns 

(PAMPs) (Medhitov, 2008). Also important are a related class of molecules known as damage-

associated molecular patterns (DAMPs). These are endogenous molecules which are not 

normally released in healthy cells and their presence signals the immune system that the cell is 

abnormal and needs to be removed (Abbas et al., 2018). PAMPs and DAMPs bind to PRRs 

which signal cells to respond in several ways, often activating defenses against infection and 

tissue-repair mechanisms (Günther & Seyfert, 2018). 

Types of Leukocytes 

Leukocytes are the primary cellular components of the immune system. Acquired, or 

adaptive, immunity is carried out by T and B lymphocytes, while innate immunity relies on a 

variety of leukocytes, such as granulocytes, monocytes/macrophages, dendritic cells, and innate 

lymphocytes, such as natural killer cells and innate lymphoid cells (Abbas et al., 2018). 

Lymphocytes of adaptive immunity consist primarily of B cells and T cells (Abbas et al., 

2018). B cells and T cells are unique in that they display antigen receptors on their plasma 

membranes (Treanor, 2012; Rojo et al., 2008). These receptors detect specific antigens such as 

proteins and polysaccharides that come from pathogens. The specificity of the antigen receptors 
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on B cells and T cells is randomly determined during development so that each cell will have a 

different receptor specificity (Nemazee, 2006). When one of these cells is activated by binding 

with an antigen, it proliferates, creating more lymphocytes with receptors of the same unique 

antigen specificity (Abbas et al., 2018). Lymphocytes that have never encountered an antigen are 

called ‘naïve’, whereas those that have been activated are called ‘effector cells’.  

Effector B cells produce antibodies, which are large proteins that have the same 

specificity as the B cell’s antigen receptor but are secreted to bind to extracellular antigens. 

Antibodies have numerous functions; these include marking a pathogen for destruction by 

leukocytes and blocking cellular binding sites on a pathogen in order to neutralize it (Abbas et 

al., 2018). B-cell receptors are able to bind a wide range of antigens, but many effector functions 

of B cells require activation by T cells via antigen presentation. This is the process by which a B 

cell is able to present antigen to helper T cells with receptors for that antigen, activating both the 

T cell and the B cell to perform effector functions. However, while B-cell receptors are able to 

bind lipids, carbohydrates, nucleic acids, proteins, and other molecules, helper-T-cell receptors 

are only able to bind peptide antigens in association with presentation molecules called MHC 

molecules on antigen-presenting cells, such as dendritic cells, B cells, and macrophages. With T-

cell help, the B-cell activation is greatly enhanced and leads to production of better-quality 

antibodies by switching the antibody isotype and increasing the antibodies’ affinity for the 

antigen.  Moreover, with T-cell help, activated B cells can differentiate into long-lasting cells 

that quickly respond to known antigens the next time it is encountered (memory cells). 

 There are two primary types of T-cell receptor (TCR): the αβ TCR present on CD4+ and 

CD8+ T cells and the γδ TCR, which may be expressed on CD8+ or CD8- T cells (Abbas et al., 

2018). CD4+ cells, named for the CD4 protein expressed on their cell membranes, are also 
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known as helper T cells; these cells release cytokines, cell-signaling proteins of the immune 

system, which play a role in activating other leukocytes and stimulating inflammation. CD4+ 

cells may differentiate into a number of known effector-cell subtypes designated Th1, Th2, and 

Th17 cells. However, this differentiation requires antigen presentation, which can be performed 

by any cell expressing the class II major histocompatibility complex (MHCII), including 

macrophages, dendritic cells, and B cells. CD8+ cells, or cytotoxic T cells, have antigen 

receptors that allow them to detect and kill cells infected by intracellular pathogens such as 

viruses or antigens generated inside cells (e.g., tumor antigens). γδ T cells are T lymphocytes that 

have a unique receptor composed of a γ chain and a δ chain; this receptor is not limited to 

recognition of antigen peptide in association with MHC molecules on antigen-presenting cells; 

rather, it can bind to and be activated by various types of molecules. While γδ T cells are 

relatively rare in humans and mice, they make up a high proportion of T cells in chickens, cattle, 

and other production animals. Moreover, their specificity is limited to frequently encountered 

antigens, and, although they are cells of adaptive immunity, they are more innate-like in their 

function and most abundant in barrier tissues (mucosa and skin). 

Myeloid lineage leukocytes are cells of innate immunity and include granulocytes and 

monocytes. Granulocytes are so named because they have many lysosomes containing 

microbicidal substances that appear as small granules under a microscope when stained (Abbas 

et al., 2018). In avian species, heterophils are the most abundant granulocyte; they are analogous 

to neutrophils in mammalian species. Both neutrophils and heterophils play an important role in 

phagocytizing pathogens in the earliest stages of infection. Heterophils only function for 1 to 2 

days before dying. The other types of granulocytes are mast cells, basophils, and eosinophils. 

Mast cells reside in tissues and release histamine which promotes inflammation. They play an 
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important role in allergic reactions. Basophils are functionally and structurally similar to mast 

cells but circulate in the blood. Eosinophils release enzymes that combat parasites, particularly 

parasitic worms known as helminths. Mononuclear phagocytes are the other main type of 

myeloid leukocyte. These cells are known as monocytes when circling in the blood stream. 

However, outside of the blood stream they become tissue residents known as macrophages where 

their role is to phagocytize pathogens. Lastly, dendritic cells are also phagocytes, excellent 

antigen-presenting cells and function as sentinel cells in tissue. These myeloid lineage leukocytes 

are members of the innate immune system and play an important role in inflammation.  

Lipoteichoic Acid Structure and Function 

 Lipoteichoic acid (LTA) is a cell wall component found in Gram-positive bacteria 

composed of a variable polymer chain attached to a glycolipid anchor (Reichmann & Gründling, 

2011). The glycolipid anchor generally consists of one to three sugars linked to a diacylglycerol 

which embeds the molecule in the plasma membrane (Percy & Gründling, 2014). Percy and 

Gründling (2014) describe five types of LTAs that have been identified in various bacterial 

species. Type I LTA is the most well studied; its polymer chain consists of repeating units of 

glycerol phosphate. This type of LTA is found in many bacteria of the phylum Firmicutes, 

including Bacillus subtilis, Staphylococcus aureus, and Listeria monocytogenes. The 

physiological function of LTA in bacteria is not entirely understood (Reichmann & Gründling, 

2011). However, various studies have found that strains of Bacillus lacking LTA are filamentous 

in shape; LTA-negative bacterial mutants also seem to be highly sensitive to osmolality 

(Reichmann & Gründling, 2011; Percy & Gründling, 2014). These findings suggest that LTA 

plays an important role in bacterial growth and division as well as osmoregulation.  
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Innate Immune Response to Lipoteichoic Acid 

 The exact role of LTA in innate immune responses is not fully understood. As LTA is not 

a peptide antigen, it is unable to be presented to CD4+ cells to trigger their differentiation into 

effector T helper cells. This means that LTA is unable to activate T-cell-dependent responses, 

and that leukocyte infiltration in response to LTA is primarily a result of innate immune 

signaling pathways. Many older studies questioned whether LTA played a significant role in 

immune response due to questions of contamination of LTA samples (Ginsburg, 2002). Seo et al. 

(2008) used Gram-positive culture supernates (GPCSs) of four bacterial species on RAW 264.7 

cells (a commonly used line of murine macrophages) and selectively inactivated LTA using 

human platelet activating factor-acetylhydrolase (PAF-AH). GPCSs caused RAW 264.7 cells to 

release tumor necrosis factor (TNF) alpha, while addition of PAF-AH caused a reduction in TNF 

alpha from 50% to more than 90%, concluding that LTA is a significant immune stimulating 

factor in the innate immune response to Gram-positive bacteria (Seo et al., 2008). 

 Multiple studies have confirmed that the cellular immune response to LTA is toll-like 

receptor (TLR) 2 dependent (Schröder et al., 2003; Dessing et al. 2008). LTA has been identified 

as a major TLR2 ligand (Oliveira-Nascimento et al., 2012). Schröder et al. (2003) also found that 

the presence of both LPS binding protein (LBP) and CD14 greatly increase release of tumor 

necrosis factor (TNF) alpha, an inflammatory cytokine. A later study Schröder et al. (2004) 

confirmed that extracellular LBP can bind LTA and deliver it to the membrane bound CD14. 

CD14 transfers LTA to TLR2. CD36, a membrane-bound scavenger receptor, is also able to 

capture and transfer LTA to TLR2 (Oliveira-Nascimento et al., 2012). Ranoa et al. (2013) later 

confirmed that LBP and CD14 are both able to deliver LTA to TLR2 independent of each other.  
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TLRs are membrane-associated receptors, found on the plasma and endosomal 

membranes, where they bind extracellular and vesicular ligands, triggering a variety of 

inflammatory and antiviral responses (Abbas et al., 2018). TLR2 is expressed on the exterior of 

plasma membrane and forms a heterodimer with either TLR1 or TLR6. As summarized by 

Oliveira-Nascimento et al. (2012), LTA binding to either of the TLR2 heterodimers results in the 

activation of the same intracellular pathways. The intracellular domain of TLR2 activates 

MyD88 (myeloid differentiation primary-response gene 88) which eventually leads to activation 

of the transcription factors NF-κB (nuclear factor κB) and AP-1 (activator protein 1). NF-κB and 

AP-1 cause inflammation by increasing transcription of pro-inflammatory genes, notably TNF 

and interleukin 1 (IL-1). 

TLR2 has previously been shown to trigger a number of inflammatory reactions in 

mammalian and avian models. In cultured chicken heterophils, it was found that LTA was able 

to stimulate an oxidative burst, a sudden release of reactive oxygen species (ROS) which kill 

phagocytized bacteria, in a TLR2- and CD14-dependent manner (Farnell et al., 2003). In murine 

macrophages, it was shown that LTA can trigger the NLRP6 inflammasome (Hara et al., 2018). 

An inflammasome is a multiprotein complex that forms in the cytosol from three different types 

of subunits: an NLRP (nucleotide-binding oligomerization domain, leucine rich repeat, and pyrin 

domain containing) receptor, an ASC (apoptosis-associated speck like protein containing a 

caspase recruitment domain) adaptor, and a caspase protein. The NLRP6 inflammasome contains 

the NLRP6 receptor, which was found to be activated by LTA. The activated NLRP6 protein 

binds to ASC which binds and activates caspase-11. Caspase-11 then activates caspase-1, which 

leads to cleavage of pro-IL-1β and pro-IL-18 into the active IL-1β and IL-18 forms. Activation 

of the inflammasome complex can also trigger pyroptosis in macrophages and dendritic cells, a 
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type of inflammatory cell death (Abbas et al., 2018). In chicken macrophages, LTA has been 

found to upregulate IL-1β and iNOS (inducible nitric oxide synthase), a producer of nitric oxide, 

which can form microbicidal peroxinitrites when combined with ROS (Haddadi et al., 2015). In 

human keratinocytes, LTA was found to increase cytokines IL-1α, IL-1β, IL-36α, and IL-8 and 

chemokines CXCL1 and CXCL2 (Brauweiler et al., 2019a).   

γδ T cells are a poorly understood subset of T cells that function in both innate and 

adaptive responses (Abbas et al., 2018). Uniquely, their receptors contain γ and δ subunits 

instead of the α and β subunits on other subtypes of T cells. γδ TCRs are unique in that they have 

the ability to recognize non-protein antigens and can do so independently of MHC molecules 

(Abbas et al., 2018; Wesch et al., 2011). γδ T cells are known to express TLRs, including TLR2, 

and have been shown to respond to LTA (Wesch et al., 2011). γδ T cell recognition of LTA by 

TLR2 is facilitated by LTA capture by CD36 (Lubick & Jutila, 2006). While γδ TCRs recognize 

a number of glycolipid and phospholipid antigens, no research has investigated whether the γδ 

TCR is able to directly bind LTA. 

Few studies have previously looked at the in vivo effects of LTA. Brauweiler et al. 

(2019a) investigated the effects of intradermal LTA in mice. This study found that 50 μg LTA 

injected intradermally resulted in a 500-fold increase in mRNA of the neutrophil marker Ly-6G 

as well as increased expression of CXCL1 and CXCL2 at 48 hours after injection. IL-1β and IL-

36 also increased in response to LTA. IL-1α expression was not significantly different from the 

control in vivo, even though the same study did find an increase in IL-1α in human keratinocytes 

in response to LTA. LTA injection also caused hyperproliferation and epidermal thickening. A 

later study by Brauweiler et al. (2019b) found that intradermal LTA in mice after 48 hours 

resulted in increased mRNA levels of TSLP (thymic stromal lymphopoietin) and IL-4 by 60-fold 
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and 40-fold respectively, as well at IL-13 and TNF by around 10-fold. Furthermore, PCR 

analysis of mRNA markers specific to helper T cells, mast cells, eosinophils, and basophils 

found that only basophil-specific mRNA expression was elevated at 48 hours after intradermal 

injection with LTA. No research, however, has investigated dermal LTA response in chickens. 

Haddadi et al. (2015) found that chicken embryos injected with LTA had an increased number of 

macrophages in the lungs and increased IL-1β expression. 

Function of LTA-Associated Cytokines and Chemokines 

 Several cytokines and chemokines expressed in response to LTA have been identified. 

TNF and IL-1 are two of the most common inflammatory cytokines, and both have been 

identified as transcripts resulting from activation of the MyD88 pathway by TLRs (Oliveira-

Nascimento et al., 2012). TNF produces a number of inflammatory effects including activation 

of inflammation in endothelial cells, activation of neutrophils, and fever (Abbas et al., 2018). IL-

1 is another inflammatory mediator that activates inflammation in endothelial cells and fever. It 

also activates synthesis of acute-phase proteins, proteins produced by the liver that function in 

inflammation. Additionally, IL-18 is expressed in response to LTA (Hara et al., 2018). IL-18 is 

involved in stimulating interferon γ (IFN-γ) production by natural killer cells and T helper cells.  

IFN-γ is a potent activator of macrophages and stimulator of MHCII expression (Abbas et al., 

2018). 

 Brauweiler et al. (2019a) found a significant increase in IL-8 and IL-36 as well as 

CXCL1 and CXCL2 in mice injected intradermally with LTA. IL-8 is also known as CXCL8. It 

is a chemokine that causes recruitment of neutrophils to the target area (Abbas et al., 2018). IL-

36 is less understood, but it is a cytokine that is believed to contribute to inflammatory response 

in the skin and enhance Th17 response (Zhou & Todorovic, 2021). CXCL1 and CXCL2 are 
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important chemokines that, like IL-8, are associated with activation and recruitment of 

neutrophils to the targeted area (Abbas et al., 2018). Brauweiler et al. (2019b) later found that 

TSLP, IL-4, and IL-13 are also upregulated in response to LTA in mice. TSLP is known to be 

produced by epithelial cells in response to signals from helminths and causes Th2 activation, 

leading to an anti-helminth or allergic response (Abbas et al., 2018). IL-4 and IL-13 are produced 

by several cells in response to TSLP including eosinophils, mast cells, and Th2 cells (Brauweiler 

et al., 2019b). IL-4 and IL-13 have very similar functions including further stimulation of Th2 

development, production of IgE type antibodies by B cells, and activation and recruitment of a 

number of leukocytes, notably eosinophils and mast cells, but also macrophages involved in 

tissue repair. 

 

Methods and Materials 

Experimental Animals 

Two experimental groups of male Light-brown Leghorn (LBL) reared and maintained by 

Dr. Gisela Erf at the University of Arkansas System Division of Agriculture (UADA) Poultry 

Research Farm in Fayetteville, Arkansas, were used for in this experiment. Study 1 involved 15, 

11-week-old male LBL chickens to examine the dose response and time course of the local 

inflammatory response initiated by intradermal injection of LTA into the pulp of GF. Study 2 

involved 12, 15-week-old male LBL chickens to examine the type, quantity, and time course of 

the leukocyte recruitment in response to injection of 10 μg/mL LTA into the pulp of GFs. All 

experimental animals were raised in floor pens on wood shaving litter with standard light and 

temperature protocols as described by Shi and Erf (2012). Food and water were given ad libitum. 
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This research was approved by the University of Arkansas Department of Agriculture 

Institutional Animal Care and Use Committee (UADA-IACUC approval #21035).  

 

Study 1. LTA-Dose Response Study 

GF-injection and Sample Collection for Immunohistological Staining 

 When the chickens were 11 weeks of age, the pulp of 18-day-old regenerating GFs were 

injected with 10 μL of LTA suspension per GF as described in French et al. (2020). Different 

concentrations of LTA (Staphylococcus aureus; Sigma-Aldrich, St. Louis, MO) in endotoxin-

free Dulbecco’s phosphate buffered saline (EF-DPBS; Sigma-Aldrich) were used for GF-pulp 

injection; 0.1, 1.0, 10, 100, and 250 µg LTA/mL was administered to 3, 3, 4, 3, and 2 chickens, 

respectively, with 12 GFs injected per bird. Before injection (0 h), and at 6-, 24-, 48-, and 72-

hours post GF-pulp injection, GFs were collected from each chicken for analysis. The pulp of a 

GF was isolated from the sheath, placed in OCT freezing medium in a labeled tissue cryo-

cassette, flash-frozen in liquid nitrogen, and stored at -80°C until use for immunohistochemical 

staining to identify and localize leukocytes responding to the LTA injection. 

Immunohistological Staining of Frozen Pulp Sections 

Frozen pulp tissue sections (6 μm thick) were cut at -23°C using a cryostat, placed on 

positively charged glass microscope slides, fixed in acetone for 5 minutes, and 

immunochemically stained as described in Sullivan and Erf (2017).  To prevent non-specific 

binding of staining reagents, a solution of phosphate buffered saline (0.01 M; PBS) and 10% 

horse serum (HS) was added to the section, and the sections were incubated overnight in a 

humidified chamber at room temperature. After overnight incubation in PBS/10% HS and 

washing with PBS, pulp sections were incubated 30 minutes with a panel of primary mouse-anti-
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chicken (mac) monoclonal antibodies (mAb) specific for cell surface proteins of various 

leukocyte populations or with mouse IgG1 mAb with irrelevant specificity (isotype control). The 

primary mac-mAb (all mouse IgG1 isotype) used included CD45 (pan-leukocyte marker), KUL-

01 (macrophage marker), CD3 (pan-T-cell marker), Bu-1 (B-cell marker), CD4 (T-helper-cell 

marker), CD8 (cytotoxic-T-cell marker), TCR1 (γδ-TCR marker), MHCII, and MCAM 

(endothelial cell marker). All mAbs were purchased from Southern Biotech (Southern Biotech, 

Birmingham, AL). After the incubation, sections were washed with PBS and incubated with 

biotinylated horse anti-mouse (ham) IgG secondary antibody (Vektor Laboratories, Inc, 

Burlingame, CA). Following the 30-minute incubation, the sections were washed again and 

incubated 30 minutes with a mixture of avidin and horseradish-peroxidase-labeled biotin (Vekta-

stain Elite reagents; Vector Laboratories). After this incubation, peroxide-charged 

diaminobenzidine tetrahydrochloride (DAB), a colorogenic substrate for the peroxidase, was 

added to the section. This enzyme-substrate reaction forms a brown precipitate which the cells 

with the antibody complexes brown. The immunochemically stained pulp sections were then 

counter stained with Methyl green nuclear stain. 

 Stained tissue sections were observed using a bright field microscope and photographed 

in order to visualize leukocyte infiltration and complement data obtained by flow cytometry. 

Observations of leukocyte infiltration were used to inform decisions on the concentration of LTA 

to be used in Study 2. 

Study 2. Leukocyte Infiltration Profile Analysis by Fluorescence-Based Flow Cytometry  

LTA-injection and Sample Collection  

 In Study 2, 12, 15-week-old male LBL chickens were used. The pulp of 12, 18-day-old 

GFs per chicken were injected with either 10 μL of 10 μg/mL LTA (0.1 μg LTA/GF; n = 8) or 10 
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μL/GF of EF-DPBS (vehicle-control) as described in French et al. (2020). Before injection (0 

hour), and at 6-, 24-, 48-, and 72-hours post injection a GF was collected from each chicken for 

analysis, placed in Dulbecco’s PBS (DPBS), and kept on ice until preparation of pulp 

suspensions.  

Immunofluorescent Staining and Flow Cytometry 

Pulp cell suspensions were prepared and immunofluorescently stained as described by 

French et al. (2020). Briefly, the sheath of the GF was cut longitudinally, and the pulp was 

removed with forceps, and placed in 0.1% collagenase-dispase solution for 10 minutes at 40°C. 

The pulp was then gently pushed through a 60 μm nylon mesh with extra DPBS. Cells were 

washed twice by centrifugation at 250 x g for 8 minutes at 4℃, and the final pellet was 

resuspended in 0.25 mL of PBS+ (0.1 M DPBS, 1% bovine serum albumin, and 0.1% sodium 

azide). 

Cells were stained using a panel of fluorescently labeled mouse IgG1 monoclonal 

antibodies (mAb) against known leukocyte markers in chickens (Southern Biotech). The mouse 

anti-chicken (mac) antibodies were used in two-color and three-color direct staining 

combinations.  These are the specific staining combinations used:  

1. mac-CD45 mAb conjugated to spectral red (CD45-SPRD; pan-leukocyte marker) and 

mac-KUL-01 mAb conjugated to phycoerythrin (KUL-01-PE; macrophage marker) 

2. mac-TCR1 mAb conjugated to fluoroisothiocyanine (TCR1-FITC; γδ-TCR marker), 

CD4-PE, and CD8α-SPRD 

3. KUL-01-FITC, MHCII-PE, and CD3-SPRD 

4. TCR2&TCR3-FITC (αβ TCR marker) and Bu-1-PE (B cell marker) 
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For immunofluorescent staining, 50 μL of cell suspension was incubated with 50 μL of 

each staining combination in separate wells of a 96-well round-bottom plate and incubated for 30 

minutes at 4℃. Samples of each cell suspension were also pooled and incubated with a mixture 

of fluorescently-labeled mouse IgG1 mAb of irrelevant specificity to determine non-specific 

binding of FITC, PE, and SRPD antibodies (isotype control) and the cut-off between negative 

and positive fluorescence, or single stained with CD45-FITC, CD45-PE, or CD45-SPRD to set 

compensation. After incubation, cells were washed twice via centrifugation at 250 x g for 4 

minutes at 4℃. Finally, cells were resuspended in 200 μL PBS+ and acquired on the flow 

cytometer (Becton Dickinson Accuri C6 Plus; BD Biosciences, San Jose, CA). Flow cytometry 

data were analyzed using FlowJo software (FlowJo, LLC, Ashland, OR) and leukocyte 

infiltration was expressed as % of total pulp cells in the cell suspension. 

Statistical Analysis 

Two-way analysis of variance (ANOVA) was conducted to determine the effect of Time 

(0, 6, 24, 48, and 72 hours post-GF injection), Treatment (LTA, EF-DPBS), and Time by 

Treatment interaction. Multiple means comparisons were made using Fisher’s Least Significant 

Difference (LSD) method. All difference were considered significant at P ≤ 0.05.  

 

Results 

Study 1. LTA-Dose Response Study 

 Pulp tissue sections stained using IHC were inspected by bright-field microscopy for the 

extent of leukocyte infiltration in response to varying doses of LTA. Overall, there was not an 

appreciable difference in leukocyte infiltration profiles between 10 µg/mL and 100 µg/mL LTA 

injection, though at 0.1 µg/mL, 1.0 µg/mL, and 250 µg/mL, overall infiltration seemed to be 
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lower. Representative pictures of IHC staining for MHCII+ cells, T cells (CD3+), and 

macrophages (Kul-01+) before injection and 24 h after intradermal injection of 10 μL of 10 

µg/mL LTA or 100 µg/mL LTA attest to the local inflammatory activity in response to LTA-

injection (Figure 1). Based on the IHC staining evaluation, the 10 μg LTA/mL concentration 

was chosen as the optimal dose for Study 2. 

Study 2. Leukocyte Infiltration Profile Analysis by Fluorescence-Based Flow Cytometry 

Overall, injection of LTA in the GF resulted in pulp-infiltration of leukocytes (CD45+) 

reaching maximal levels 6 h post injection (p.i.) and remained elevated throughout the 72-hour 

examination (Figure 2). However, of the infiltrating leukocytes, only levels (% pulp cells) of 

macrophages and MHCII+ cells were higher (P ≤ 0.05) in LTA- than in PBS-injected GFs 

(Figure 3).   

 Specifically, for total leukocytes there was a time x treatment interaction (P = 0.048), 

hence time and treatment effects are described for each treatment (LTA, PBS) at each time point 

(0, 6, 24, 48 and 72 h). Before injection (0 h), levels of total leukocytes were not different in 

LTA- and PBS-injected GFs (5% vs. 6%, respectively; Note: percentage pulp cell values are 

rounded to the nearest whole number). At 6 h p.i., the proportion of leukocytes increased in 

LTA-injected GFs to 19% and in PBS-injected GFs to 15% of pulp cells, and this increase was 

higher (P ≤ 0.013) for LTA. In PBS-injected GFs, leukocyte levels dropped to 10% at 24 h, 8% 

at 48 h, and returned to baseline levels at 72 h. However, in LTA-injected GFs, leukocyte levels 

remained elevated at 24 h (17%) before decreasing (P ≤ 0.05) to 10% at 48 h and remained 

elevated (9 %) at 72 h. Leukocyte levels were higher in LTA- than PBS-injected GFs at 6, 24, 

and 72 h p.i. (Figure 2A). Heterophil levels changed over time (P < 0.001) with both treatments 

increasing from 2% before injection to peak levels (5%) at 6 h p.i. and returning to baseline 
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levels by 24 h and then remaining at this level thereafter. There were no treatment differences at 

any of the time points examined (Figure 2B).  

 A time x treatment interaction effect also was observed for the macrophage population (P 

< 0.001). Before injections (0 h), macrophage levels were similar (near 2%) in both LTA and 

PBS treatment groups. Macrophage levels did not change over the time course examined in 

response to PBS injection. However, following injection of LTA, the proportion of macrophages 

increased (P = 0.005) to 3% at 6 h, then increased further (P < 0.001) reaching peak levels of 6% 

at 24 h before dropping (P < 0.001) to above pre-injection levels (3%) at 48 h and remaining at 

this elevated level at 72 h. Macrophage levels in LTA-injected GFs were higher than in PBS-

injected GF at 24, 48, and 72 h p.i. (P < 0.001, P = 0.010, and P < 0.001, respectively) (Figure 

2A).   

 A time-treatment interaction effect was not observed for MHCII+ cells (P = 0.064). 

However, there was a main effect of treatment, with overall higher (P = 0.021) levels of MHCII+ 

cells in LTA- than PBS-injected GFs (5.44 ± 0.28 % vs 4.37 ± 0.03 %), and a main effect of 

time, with elevated levels of MHCII+ cells at 6, 24, and 48 h p.i. In Figure 2B, the time course 

of the PBS and LTA responses are shown separately, rather than the main effect means, to high-

light that the LTA MHCII+ cell profile parallels that observed for macrophages.    

 There were no time x treatment interactions or treatment effects for all T cell populations 

examined (i.e., all T cells (CD3+), and CD4+, CD8+, αβ TCR+, γδ, TCR+ T cell subsets) and 

the CD4 to CD8 T cell ratio (Table 1 & 2). The only treatment effect noted is a lower ratio 

between γδ T cells and αβ T cells in LTA- compared to PBS-injected GFs (0.41 ± 0.02 % vs 0.50 

± 0.03 %; P = 0.031). With the exception of γδ T cell, which were elevated at 6 and 24 h p.i., all 

other T cell subset, the CD4 to CD8 T cell ratio and the γδ TCR to αβ TCR ratio were elevated at 
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6, 24, and 48 h p.i. (Table 1 & 2). Similarly, for B cells (Bu-1+) there was only a main effect of 

time (P < 0.001), with elevated levels at 6 h that reach a peak at 24 and 48 h and drop to 6 h 

levels at 72 h (Table 2).        
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Figure 1. Immunohistochemical staining of MHC II+ cells, T cells, and macrophages in the pulp 

of chicken growing feathers (GFs) injected with lipoteichoic acid (LTA) solution in endotoxin 

free phosphate buffered saline. Growing feathers of 11-week-old chickens were injected with 10 

µL of 100 µg/mL of LTA (B, D, E) or 10 µg/mL of LTA (F) per GF. GF pulp was isolated from 

the sheath and flash frozen in liquid nitrogen. Histological slides were cut using a cryostat and 

stained with mouse-monoclonal primary antibodies against chicken MHCII (A, B), CD3 (C, D; T 

cells), and Kul-01 (E, F; macrophages), before (A, C) and at 24 hours post-LTA injection (B, D, 

E, F). Photos were taken at 100x magnification on a bright-field microscope; brown cells are 

expressing the markers detected by the primary antibodies. 
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Figure 2. Total leukocyte pulp cell proportion after intradermal injection of lipoteichoic acid 

(LTA) or endotoxin-free phosphate buffered saline (PBS; vehicle control) into growing feathers 

(GFs). Growing feathers of 12, 18-day-old chickens were injected with 10 µL PBS (control) or 

10 µg/mL of LTA per GF. GFs were collected before injection (0 hours), and at 6-, 24-, 48-, and 

72-hours post-injection. Pulp cell suspensions were created from GFs and immunofluorescently 

stained using a panel of fluorescence-conjugated mouse monoclonal antibodies against chicken 

CD45 (pan-leukocyte marker). Cell populations were analyzed by flow cytometry; heterophils 

were identified based on forward and side scatter characteristics of CD45+ cells. Data shown are 

mean ± SEM; LTA n = 8; PBS n = 4. Data shown are mean ± SEM. a-cWithin a treatment (Trt), 

means without a common letter are different (P ≤ 0.05); *Trt means within a time-point are 

different (P ≤ 0.05); A-CTime main effect means without a common letter are different (P ≤ 0.05).  
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Figure 3. Macrophage and MHC class II-expressing pulp cell proportions after intradermal 

injection of lipoteichoic acid (LTA) or endotoxin-free phosphate buffered saline (PBS; vehicle 

control) into growing feathers (GFs). Growing feathers of 12, 18-day-old chickens were injected 

with 10 µL PBS (control) or 10 µg/mL of LTA per GF. GFs were collected before injection (0 

hours), and at 6-, 24-, 48-, and 72-hours post-injection. Pulp cell suspensions were prepared from 

GFs and immunofluorescently stained using a panel of fluorescence-conjugated mouse 

monoclonal antibodies against chicken Kul-01 (macrophage marker) or MHCII. Cell populations 

were analyzed by flow cytometry. Data shown are mean ± SEM; LTA n = 8; PBS n = 4. 
a-cWithin a treatment (Trt), means without a common letter are different (P ≤ 0.05); *Trt means 

within a time-point are different (P ≤ 0.05); A-CTime main effect means without a common letter 

are different (P ≤ 0.05).  
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Table 1. Pulp cell proportions of T cells after intradermal injection of lipoteichoic acid (LTA) or 

phosphate buffered saline (PBS; vehicle control) into growing feathers of 18-day-old chickens.¹ 

Treatment CD3 CD4 CD8 CD4:CD8² 

LTA 4.71 ± 0.24³ 1.45 ± 0.13 2.63 ± 0.10 0.54 ± 0.04 

PBS 4.61 ± 0.32 1.42 ± 0.16 2.70 ± 0.13 0.51 ± 0.06 

     

Time (h)     

0 2.67 ± 0.45c 0.47 ± 0.24c 2.38 ± 0.19c 0.19 ± 0.08d 

6 6.28 ± 0.45a 2.42 ± 0.24a 3.00 ± 0.19b 0.80 ± 0.08a 

24 6.05 ± 0.45ab 1.96 ± 0.24ab 3.71 ± 0.19a 0.53 ± 0.08bc 

48 4.89 ± 0.45b 1.49 ± 0.24b 2.23 ± 0.19c 0.67 ± 0.08ab 

72 3.40 ± 0.45c 0.83 ± 0.20c 2.01 ± 0.19c 0.43 ± 0.08c 

     

Effects (P-value)     

Treatment 0.798 0.894 0.687 0.633 

Time <0.001 <0.001 <0.001 <0.001 

Treatment x Time 0.470 0.334 0.531 0.529 

¹Growing feathers of 12, 18-day-old chickens were injected with 10 µL PBS (control) or 10 

µg/mL of LTA per GF. GFs were collected before injection (0 hours), and at 6-, 24-, 48-, and 72-

hours post-injection. Pulp cell suspensions were created from GFs and immunofluorescently 

stained using a panel of fluorescence-conjugated mouse monoclonal antibodies against chicken 

CD3 (T cells), CD4 (helper T cells), and CD8 (cytotoxic T cells). Cell populations were analyzed 

by flow cytometry.  

²CD4:CD8 is the ratio of CD4+ cells to CD8+ cells. 

³Data shown are mean ± SEM. 

a, b, c, d: means within a column without a common letter are different based on P ≤ 0.050 

based on multiple means comparisons. 
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Table 2. Pulp cell proportions of lymphocytes after intradermal injection of lipoteichoic acid 

(LTA) or phosphate buffered saline (PBS; vehicle control) into growing feathers of 18-day-old 

chickens.¹ 

Treatment αβ TCR γδ TCR Bu-1 γδ TCR:αβ TCR² 

LTA 3.42 ± 0.18³ 1.29 ± 0.08 0.57 ± 0.07 0.41 ± 0.02b 

PBS 3.13 ± 0.22 1.47 ± 0.11 0.56 ± 0.09 0.50 ± 0.03a 

     

Time (h)     

0 1.79 ± 0.33b 0.88 ± 0.15b 0.11 ± 0.13c 0.52 ± 0.05a 

6 4.37 ± 0.33a 1.91 ± 0.15a 0.45 ± 0.13b 0.43 ± 0.05a 

24 3.99 ± 0.33a 2.06 ± 0.15a 0.86 ± 0.13a 0.56 ± 0.05a 

48 3.87 ± 0.33a 1.02 ± 0.15b 0.93 ± 0.13a 0.27 ± 0.05b 

72 2.36 ± 0.27b 1.04 ± 0.15b 0.47 ± 0.11b 0.47 ± 0.05a 

     

Effects (P-value)     

Treatment 0.326 0.192 0.921 0.031 

Time <0.001 <0.001 <0.001 <0.001 

Treatment x Time 0.605 0.295 0.104 0.750 

¹Growing feathers of 12, 18-day-old chickens were injected with 10 µL PBS (control) or 10 

µg/mL of LTA per GF. GFs were collected before injection (0 hours), and at 6-, 24-, 48-, and 72-

hours post-injection. Pulp cell suspensions were created from GFs and immunofluorescently 

stained using a panel of fluorescence-conjugated mouse monoclonal antibodies against chicken 

αβ T-cell receptor (TCR), γδ TCR, and Bu-1 (B cells). Cell populations were analyzed by flow 

cytometry. 

² γδ TCR:αβ TCR is the ratio of γδ T cells to αβ T cells. 

³Data shown are mean ± SEM. 

a, b, c: means within a column without a common letter are different based on P ≤ 0.050 based 

on multiple means comparisons. 
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Discussion 

 The type of leukocytes that respond to a specific immunogen can reveal a lot about the 

immune response to certain types of pathogens. In chickens, the GF can be used as a minimally 

invasive dermal test site to investigate leukocyte responses to immunogenic substances (Erf & 

Ramachandran, 2016). An understanding of how the immune system responds to LTA in vivo 

can help paint a clearer picture of the progression of infection by Gram-positive bacteria. In this 

experiment, LTA injection into multiple GFs of a chicken and collection of GFs at regular time 

points thereafter provided insight into the type of local cellular responses that LTA is able to 

initiate.  

 The local cellular response to LTA in dermal tissue of chickens is dominated by 

macrophages. Total leukocytes, macrophages, and MHCII+ cells were the only groups of cells 

whose concentrations increased significantly in the pulp following injection of LTA when 

compared to the PBS control. Given that macrophages are included in both total leukocytes and 

MHCII+ cells, it is likely that the increase in these two groups can be explained at least partially 

by the increase in macrophages. As illustrated in Figure 3, the response to LTA of MHCII+ cells 

over time closely reflects the response of macrophages, suggesting that macrophages make up 

the major portion of the MHCII+ cells. Other MHCII+ cells likely are B cells and endothelial 

cells of venules. 

 Surprisingly, heterophils were not recruited at significantly higher levels in response to 

LTA compared to the PBS control. This means the increased levels of heterophils seen at 6 h p.i. 

are only a result of tissue damage associated with the injection. Heterophils, the avian equivalent 

of neutrophils, are the most abundant and primary responders in an inflammatory reaction 

(Abbas et al., 2018). French et al. found that heterophils dominated the immune response to 
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intradermal lipopolysaccharide (LPS), a major immunogen and TLR4 ligand found in Gram-

negative bacteria (French et al., 2020). Furthermore, Brauweiler et al. (2019a) found that 

intradermal LTA increased mRNA concentration of the neutrophil marker Ly-6G in mice when 

compared to a PBS control. As macrophages were recruited at significantly higher levels 

compared to the PBS control, it appears that the macrophage-dominated local leukocyte response 

to LTA in chickens involves the expression of a different set of cytokines and chemokines 

compared to mice, as well as a different set of signaling molecules than those expressed in 

response to LPS. Chicken TLR2 is known to cause expression of CXCL8, a heterophil attracting 

chemokine (Keestra et al., 2013). However, it appears that this pathway was not activated at a 

sufficient level to significantly increase heterophil infiltration beyond the level induced by the 

vehicle injection control.  

Lymphocytes were not recruited at levels significantly higher after LTA injection when 

compared to the PBS control. Interestingly, the ratio of γδ T cells to αβ T cells was significantly 

lower in response to LTA injection when compared to PBS. GFs injected with LTA averaged 

higher levels of αβ T cells and lower levels of γδ T cells than those injected with PBS, though 

these values were not statistically significant. It is unclear why T cell infiltration in response to 

LTA may include lower levels of γδ T cells relative to αβ T cells, and more research needs to be 

done to investigate this. 

 While macrophages levels peaked at 24 h p.i., total leukocytes infiltration peaked at 6 h 

p.i. At 6 h p.i. macrophage infiltration was not significantly different between treatments, while 

total leukocyte infiltration was. This suggests that some leukocyte other than macrophages, 

heterophils, or lymphocytes accounted for the difference in total leukocyte levels. Given that 

Brauweiler et al. (2019b) found that LTA stimulated recruitment of basophils in the murine 
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dermis, it is possible that basophil recruitment contributed to the increase in total leukocytes 

observed at 6 h p.i. 

 While a number of studies have investigated in vitro effects of LTA, there is a lack of 

research investigating the effects of this molecule in vivo, and none of these studies have been 

performed in chickens. Future research should investigate changes in cytokine and chemokine 

levels in response to intradermal LTA injection in order to paint a clearer picture of why LTA-

stimulated leukocyte infiltration is dominated by macrophages and lacking in heterophils and 

lymphocytes. It will also be important to investigate infiltration of other subsets of leukocytes, 

specifically granulocytes.  
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