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I. Abstract 

 
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), has overwhelmingly impacted the global population, accounting for 

millions of confirmed infections and deaths over the last year. The virus’s influence on the health 

and safety of individuals, the economy, and daily life has been disruptive and devastating. While 

SARS-CoV-2 and SARS-CoV-1, two closely related members of the SARS coronaviruses, have 

shown the ability to cross the species barrier and infect humans, SARS-CoV-2 has predominantly 

been the virus responsible for the number of infections presently known. SARS-CoV-2 has also 

proven to be volatile, as many variants have recently materialized based on amino acid structure 

mutations. Understanding the differential behavior of the SARS coronaviruses and the many 

SARS-CoV-2 variants may provide insight into interpreting how the spreading of COVID-19 occurs 

and could lead to further intuition and discovery. Specifically, studying the structural dynamics 

of spike proteins that play a crucial role in host cell receptor recognition could expedite the 

development of vaccines and antivirals that identify sites as potential drug targets. 

All variants of SARS-CoV-2 recognize the same receptor in humans, yet oftentimes the 

variants themselves exhibit varying degrees of characteristics such as transmissibility and 

infectivity. It is implied that the spike proteins, which are the most variable region in the entire 

genome, may potentially be a source of the different traits these variants present. Specifically, in 

the lab, we aimed to investigate the activation process of the spike protein and the 

conformational changes that must occur for the receptor-binding motif (RBM) to be made 

available for binding to the human receptor (ACE2). We analyzed and targeted the D614G 

mutation present in many of the SARS-CoV-2 variants and compared it to the differential 
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characteristics present in the wild-type form of the virus. To visualize a detailed account of 

prefusion spike protein binding to ACE2, we used an extensive set of equilibrium microsecond-

level all-atom molecular dynamics simulations. These models are both atomistic and dynamic, 

allowing us to visualize differences in protein conformation over time at remarkable degrees. The 

differential behaviors analyzed aided in determining the dynamical changes of the spike proteins 

and not just their inactive and active states. We determined that the D614G mutation altered 

sets of interactions throughout the spike protein, potentially resulting in different structural 

conformations. We also concluded that the D614G variant favored an active state due to 

increased relative stability, while the original Wild Type variant preferred an inactive state. These 

results suggest that the D614G mutation may cause variability in the activation mechanisms and 

stability of virus variants, potentially playing a crucial role in determining the differential 

characteristics that the viruses possess. 

II. Introduction 

 
Over the last two years, coronavirus disease 2019 (COVID-19) has swept the globe, 

infecting millions worldwide. Originally appearing in Wuhan, China, it has affected individuals in 

many ways as it has disturbed daily life, put health in jeopardy, and disrupted the economy 

(Harapan et al., 2020).  On January 20, 2020, the World Health Organization declared a Public 

Health Emergency of International Concern due to the COVID-19 pandemic, a disease caused by 

novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Harapan et al., 

2020).  SARS-CoV-2, along with other pathogenic species of coronaviruses such as SARS-CoV-1 

and MERS-CoV, is classified as a Betacoronavirus among the four genera: Alphacoronavirus, 

Betacoronavirus, Gammacoronavirus, and Deltacoronavirus (Ciotti et al., 2020). SARS-CoV-2, 
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SARS-CoV-1, and MERS-COV are all originally zoonotic in origin and have the potential to cross 

the species barrier and infect humans, causing severe respiratory illnesses and fatalities 

(Hasoksuz et al., 2020). Despite striking similarities between the SARS-CoV-1 and SARS-CoV-2 

coronaviruses, the pandemic caused by the SARS-CoV-2 virus has been significantly more 

widespread than the 2003 SARS epidemic caused by SARS-CoV-1. As of March 2022, infections of 

COVID-19 due to SARS-CoV-2 have expanded to more than 450,000,000 cumulative cases and 

over 6,000,000 cumulative deaths (World Health Organization, 2022). 

Recognition Mechanism of Coronavirus via Spike Protein Binding 

Undoubtedly, the impact that SARS-CoV-2 has had on the population has been extensive. 

Therefore, it is necessary to analyze the mechanism by which coronaviruses attach to and gain 

entry into human cells. Coronaviruses enter the host cell through numerous transmembrane 

spike proteins that protrude from their lipid bilayer (Ciotti et al., 2020;  Tortorici & Veesler, 2019; 

Duan et al., 2020). These transmembrane spike proteins are composed of three protomers which 

constitute a protein trimer (Ke et al., 2020). The spike protein trimers are how SARS-CoV-2 can 

bind to receptors on the surface of target cells; in this case, these trimers attach to angiotensin-

converting enzyme 2 (ACE2) in humans and mediate viral uptake and fusion (Ke et al., 2020; Walls 

et al., 2020; Hoffman et al., 2020; Shang et al., 2020; Wang et al., 2020; Wrapp et al., 2020). 

Structurally, the spike protein is comprised of two subunits (S1 and S2) that together are 

responsible for viral entry into the host cell (Ciotti et al., 2020). However, each subunit possesses 

its respective role in the infection process: the S1 subunit is culpable for host cell receptor 

binding, while the S2 subunit is responsible for cellular membrane fusion (Kirchdoerfer et al., 
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2016; Millet & Whittaker, 2015). In order for the spike proteins of the coronaviruses to bind, 

conformational changes must occur for the receptor-binding domain (RBD) to be made available 

to attach to the human receptor ACE2. Figure 1 below provides a visual of the coronavirus binding 

process to host cells. Figure 2 depicts a linear model of a spike protein that highlights its different 

regions and the residue ranges that govern them. 

 

Figure 1: Schematic of the SARS-CoV-2 Spike Protein (Huang et al., 2020) 

Shown above is the binding process between the SARS-CoV-2 spike protein and human 
ACE2 receptor. Image A details the structure of the spike proteins that are located on 
the outer membrane of the SARS-CoV-2 virus and provides an overview of the overall 
appearance of the virus itself. The three protomers that comprise the spike protein are 
shown, as well as the S1 and S2 subunits that assist in receptor binding and cellular 
membrane fusion. Image B depicts the binding between the spike protein and host cell 
receptor, while Image C portrays the process of virus-cell fusion that is mediated by the 
spike protein (Huang et al., 2020). 
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Figure 2: Diagram of functional domains in the SARS-CoV-2 Spike Protein (Woo et al., 
2020) 

Shown above is a diagram of the SARS-CoV-2 spike protein that illustrates its different 
domains. The S1 and S2 subunits are visualized along with their respective constituents. 
Here, the RBD region is shown to extend from residue 318 to residue 541, and the 
Receptor Binding Motif (RBM) is detailed to encompass residues from 437 to 508. The 
RBM is contained in the RBD and aids in mediating contact with the ACE2 human 
receptor.  

 

It has previously been exhibited that the respective receptor binding domains of both 

SARS-CoV-1 and SARS-CoV-2 interact with the human ACE2 receptor (Fang et al., 2005; Xing et 

al., 2013; Wenhui et al., 2003; Tai et al., 2020). However, the molecular reasoning behind SARS-

CoV-2 being considerably more widespread and transmissible is widely unknown. When 

comparing the two viruses, their structural and functional features are reasonably similar 

(Tortorici & Veesler, 2019). Furthermore, genome sequences gathered from SARS-CoV-2 spike 

proteins have displayed a noticeably shared sequence identity of approximately 79% with those 

of SARS-CoV-1 (Zhou et al., 2020; Govind et al., 2022, Hu et al., 2021). Therefore, it comes as a 

bit of a surprise that the RBD of the CoV-2 spike protein has been shown to have a higher affinity 

to the host ACE2 receptor than the CoV-1 spike protein (Tai et al., 2020). Keeping in mind that 

CoV-2 is more transmissible than CoV-1, it can be inferred that there potentially is some 

variability within the spike proteins of each coronavirus that causes them to have varying degrees 



 8 

of characteristics such as this transmissibility (Walls et al., 2020; Wu et al., 2012; Petersen et al., 

2020; Ferretti et al., 2020). 

Many variants of SARS-CoV-2 have also been found to display different intensities of 

transmissibility and infectivity. Recently, many variants of the virus have shown increased 

contagiousness, including the Alpha, Beta, Delta, and Omicron variants, as well as other variants 

of interest (Campbell et al., 2021; Karim & Karim, 2021). The Delta variant particularly showed a 

significant increase in the effective reproduction number at +100% compared to non-variants 

(Campbell et al., 2021; Department of Health and Social Care, 2021). In addition, the Delta variant 

has been shown to be approximately 63-167% more transmissible than the Alpha variant (Earnest 

et al., 2022). Due to its higher viral load, longer duration of infectiousness, and ability to elude 

natural immunity, the Delta variant provides an excellent example of how some of the SARS-CoV-

2 variants possess different characteristics that lead to varying levels of viral competence (Karim 

& Karim, 2021; Luo et al., 2021; Wang et al., 2021; Townsend et al., 2021). 

The differing levels of infectivity and transmissibility among variants could be due to 

mutations in the virus’s genome. Past studies have demonstrated that several regions of the 

SARS-CoV-2 genome have the potential to accumulate mutations, including the RBD region in 

spike proteins which has shown to be particularly susceptible (Kaushal et al., 2020; van Dorp et 

al., 2020; Isabel et al., 2020; Koyama et al., 2020; Guruprasad, 2021).  One mutation that was 

consistently present among variants was D614G; in many studies, it was the most observed 

individual mutation in the genome (Guruprasad, 2021; Daniloski et al., 2021; Hou et al., 2020; 

Koyama et al., 2020). The D614G mutation was also one of the most frequent substitutions in 

presently spreading SARS-CoV-2 strains, and has been discovered in the Alpha, Beta, Gamma, 
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Delta, and Omicron variants specifically (Wang et al., 2021; “SARS-CoV-2 Variants of Concern,” 

2022; Jackson et al., 2021). D614G can be characterized as a spike protein mutation that is located 

in the S1 subunit and directly associated with the S2 subunit (Zhang et al., 2020; Morais et al., 

2020; Laha et al., 2020; Commandatore et al., 2020). This mutation was found to play a role in 

the geographical segregation of subtypes of SARS-CoV-2 and ultimately became the predominant 

variation with time (Cortey et al., 2020; Morais et al., 2020, Furuyama et al., 2020). The dramatic 

increase in frequency demonstrated over a short period of time perhaps suggests that the 

mutation induces a transmission advantage (Zhang et al., 2020). In fact, recent studies have 

shown that variants that possess the D614G mutant have a selective advantage. D614G has 

proved to increase infectivity in vitro, suggest a higher viral load in patients, and alter receptor 

binding conformation to increase the likelihood of ACE2 binding (Volz et al., 2021; Korber et al., 

2020; Yurkovetskiy et al., 2020). It has also shown a more efficient replication, transduction of 

cells, and competitive fitness than the wild-type virus (Hou et al., 2020; Daniloski et al., 2021).  

Considering the numerous mutations, such as D614G, and variants of SARS-CoV-2, it is 

imperative to emphasize analysis that focuses more on therapeutic targets and potential hot 

spots of the spike proteins. It is possible that vaccines and treatments targeting only the binding 

interaction of the virus may prove to be ineffective due to the steady emergence of new variants 

and mutants. Recent studies have shown that current COVID-19 vaccines may not be as 

efficacious on some variants of the virus (Krause et al., 2021). Preliminary trials indicate that 

COVID-19 vaccines are about 30% less effective on specific variants of concern than others in 

some places (Fontanet et al., 2021). With this in mind, attempting to discover the long-term 

efficacy of vaccines and treatments by identifying regions of the spike proteins and their role in 



 10 

the activation process could prove valuable in the lab. Here, the mentioned activation process 

refers to the conformational changes in the prefusion spike protein, which takes place prior to 

ACE2 binding. 

Prior research on spike protein conformation does not give complete insight into the 

activation process that occurs before binding to the host cell receptor. Earlier studies have 

detailed several partial or full-length structures of the spike protein ectodomains, potentially 

providing a rational basis for developing therapeutics that inhibit the binding process (Lan et al., 

2020; Wrapp et al., 2020; Walls et al., 2020; Yan et al., 2020). However, the dynamic behavior in 

the prefusion spike protein cannot be identified using methods such as X-ray crystallography and 

cryogenic electron microscopy (cryo-EM). These methods specifically portray static images of the 

proteins in their active and inactive configurations. As a result, studies such as cryo-EM could not 

capture intermediate states in the activation mechanism, nor can they point to why one variant 

of SARS-CoV-2 may have enhanced infectivity and transmissibility. But, while their scope is 

limited, cryo-EM studies on SARS-CoV-1 and SARS-CoV-2 have shown that there are 

conformational changes that the RBD undergoes before engaging with host receptors: the state 

that conceals the determinants of receptor binding is referred to as the “down” state, while the 

state that exposes this section is referred to as the “up” state (Henderson et al., 2020; Barnes et 

al., 2020; Wrapp et al., 2020; Yuan et al., 2017; Walls et al., 2016). Other studies have addressed 

the changes in RBDs that arise due to various mutations, which cause altered interactions of 

antibody-binding surfaces and transformed conformations in virus variants (Cerutti et al., 2022). 

However, these methods focus more on the RBD-receptor interaction rather than the entire spike 

protein activation and possibly neglect the large-scale conformational changes of the protein. 
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Our lab aims to focus not only on the structures of the proteins and their RBDs but also on the 

extensive molecular basis of spike protein activations. For this purpose, we incorporate 

microsecond-level unbiased and biased molecular dynamics (MD) simulations. 

Currently, all-atom molecular dynamics simulation is the only tool to supply a dynamic 

illustration of biomolecular processes at detailed molecular levels with spatiotemporal 

resolutions. Molecular dynamics can be summarized as a computer simulation technique that 

predicts the movement of atoms based on governing interatomic interactions over a given period 

(Hollingsworth & Dror, 2018). It replaces a static model with a dynamic model and has the ability 

to view any internal motions and resulting conformational changes of macromolecules (Karplus 

& McCammon, 2002). The theoretical basis of the approach is relatively straightforward: a 

trajectory of all atoms is developed by repeatedly solving Newton’s equations of motion for the 

interacting system (Binder et al., 2004). Given the positions of atoms in a system and appropriate 

potential energies between them, one can calculate forces exerted on each atom by the other 

atoms and ultimately yield new positions and velocities that characterize atom configurations at 

every point during the time interval (Hollingsworth & Dror, 2018). Applying MD simulations, we 

are able to examine the differential activation behavior of SARS-CoV-2 and the D614G mutation. 

III. Methods 

 
MD equilibrium simulations of D614G 

We used all-atom equilibrium MD simulations to characterize the conformational 

dynamics of the SARS-CoV-2 D614G variant spike protein. Simulations were constructed and 

executed using VMD (Humphey, Dalke, & Schulten, 1999) and NAMD 3Alpha (Phillips et al., 2020), 
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and were based on cryo-EM structures of the WT SARS-CoV-2 spike protein in the active (PDB 

entry:6VYB) (Walls et al., 2020) and inactive (PDB entry:6VXX) (Walls et al., 2020) states. 

CHARMM-GUI website was used to perform the D614G mutation on all three protomers of WT 

SARS-CoV-2 (Jo et al., 2008). Cumulative of 36 disulfide bonds were added to simulation models 

according to the information on the respective PDB files of SARS-CoV-2 (Walls et al., 2020; Jo et 

al., 2008; Lee et al., 2016). Systems were solvated in a cubic water box of 190 Å X 190 Å 190 Å 

and neutralized with 150 mM NaCl to mimic physiological conditions. An explicit water solvent 

(TIP3P) was used, and the systems contained approximately 800,000 atoms. A Monte Carlo 

algorithm within CHARMM-GUI was used to iteratively minimize the energy of the system. 10,000 

Monte Carlo iterations were used to generate the initial models for the equilibrium simulations 

and CHARMM-GUI was then used to build the simulation systems (Jo et al., 2008; Lee et al., 2016).  

Energy-minimization was performed for 10,000 steps utilizing the conjugate gradient 

algorithm (Reid J.K., 1971). Subsequently, systems were relaxed using restrained MD simulations 

in a stepwise approach utilizing the standard CHARMM-GUI relaxation step (Jo et al., 2008; Lee 

et al., 2016). Backbone and sidechain restraints were used for 10 ns in the following step with a 

force constant of 1 kcal/mol.Å2 and 0.5 kcal/mol.Å2 respectively. Then systems were equilibrated 

without bias for an extra 10 ns. The initial relaxation was performed in an NVT ensemble. The 

production simulations were run in an NPT ensemble. A timestep of 2 fs was used for the 

simulations at 310 K using a Langevin integrator with a damping coefficient of γ = 0.5 ps-1. Using 

the Nose-Hoover Langevin piston method the pressure in the simulation box was maintained at 

1 atm (Reid J.K., 1971; Martyna G. J., Tobias D. J., & Klein M. L., 1994). For nonbonded 

interactions, the smoothed cutoff distance of 10 to 12 Å was used and particle mesh Ewald (PME) 
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method was used for computing long-range electrostatic interactions (Darden T., York D., & 

Pederson L., 1993). The production runs were then extended to 200 ns and conformations were 

collected every 100 picoseconds for trajectory analyses. In our analysis, we incorporated data 

from all-atom equilibrium MD simulations performed on the wild-type (WT) SARS-CoV-2 variant 

spike protein and used the same distance, RMSF, and salt-bridge analyses methodology 

delineated at (Govind et al., 2022). 
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IV. Results 

Distance Analysis of SARS-CoV-2 WT spike protein and D614G spike protein 

 

A

 

B  
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C

 
D
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Figure 3: Distance analysis of different domains of the spike protein in the inactive 
and active states of both Wild Type and D614G 
3A: Distance analysis of the inactive, closed Wild Type variant 
3B: Distance analysis of the active, open Wild Type variant 
3C: Distance analysis of the inactive, closed D614G variant 
3D: Distance analysis of the active, open D614G variant 

 

 Distance analysis was conducted on all variant states to visualize relative flexibility and 

movement within independent internal regions of each spike protein (Fig. 3). Distance evaluation 

was carried out by measuring the Center of Mass (COM) distance between separate domains of 

the spike protein and allowed us to view how each area dynamically moved with respect to other 

regions. For instance, when measuring the COM distance in the RBD1-S1 complex, we were able 

to distinguish the relative distance between the RBD in protomer 1 and the S1 subunit and see 

how this distance evolved over time. This way, magnitudes of any conformational changes in that 

area were capable of being observed based on whether one region of the spike protein grew 

apart or closer to another reference region. 

With this in mind, we set out to visualize how the D614G mutation may alter sets of 

interactions in individual areas of the spike protein. First, the D614G mutation appeared to 

induce an overall larger range of distances between internal domains in the inactive, closed 

D614G variant (3C) compared to the inactive, closed WT variant (3A). One example that 

expressed this sentiment was the RBM1-S1 distance ranging from ~60 Å to ~75 Å in the closed 

D614G state, while the RBM1-S1 distance in the closed WT state only varied from ~60 Å to ~65 

Å. These results indicated that the D614G mutation allowed more freedom of movement to the 

inactive spike protein in multiple areas, possibly resulting in a higher potential of activation. The 
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D614G mutation altered interactions throughout the protein and was not limited to the vicinity 

that it was induced. 

Further comparisons also supported this concept of modified interactions; while the 

RBM2-S1 and RBD2-S1 ranges increased from the inactive to active states in both variants, the 

distances these ranges encompassed were shown to be distinct between the active D614G (3D) 

and active WT (3B). To expound, the range of the RBM2-S1 complex stayed around 13 Å in both 

the active WT and active D614G. However, in the active WT state, the distance range varied from 

~53 Å to ~66 Å, while in the active D614G state, the distance range varied from ~45 Å to ~58 Å. 

Similarly, the range of RBD2-S1 stayed around 9 Å in both active variants. In the active WT state, 

distance varied from ~40 Å to ~50 Å, while in the active D614G state, distance varied from ~34 Å 

to ~43 Å. In these cases, while the range was not affected due to the D614G variant, the overall 

distance was, implying that the mutation led to a different series of interactions that altered the 

structure of the spike protein to a new, unique formation. 

Newly induced internal sets of interactions caused by the D614G mutation may also have 

influenced the preferred state of each variant. When comparing the inactive WT state (3A) to the 

active WT state (3B), it was reasoned that the WT variant favored the inactive state due to its 

increased relative stability and decreased fluctuation. However, when comparing the inactive 

(3C) and active (3D) states of the D614G variant, the mutated variant showed more preference 

for its active form; in the D614G variant, the active state of the spike protein displayed more 

relative stability and less fluctuation than the inactive state. This result would imply that the 

D614G mutation may have altered the activation mechanism of the spike protein, promoting 

conformational changes which further support the active state. This shift in preferred conditions 



 18 

between variants of the virus could potentially be one of the reasons variants might show 

different sets of characteristics compared to their original counterparts. 

Comparative analysis of salt bridges found in D614G variant and WT variant 

 Some of these internal interactions and differences in stability can possibly be attributed 

to salt bridges between opposing amino acid side chain charges. We analyzed the presence of 

salt bridges in each of the inactive and active states of the WT and D614G variants. In our 

investigation, we emphasized spotlighting salt bridges that were between different protomers in 

the spike protein and within either the NTD or RBD domains, as these areas provide major 

implications for the activation mechanism. It is important to note that the following salt bridges 

were not the only salt bridges found, and they were primarily meant to serve as examples that 

showed new sets of interactions between different variants. With this being said, our results 

revealed that there were a multitude of salt bridges that were not shared between the D614G 

and WT variants of the virus. These include five salt bridges that were present in the PROB - PROC 

complex in the inactive WT but not present in the inactive D614G: LYS 462-ASP 198, ARG 357-

ASP 228, ASP 405-ARG 408, ASP 405-LYS 378, and ASP 571-ARG 44. One other salt bridge, ASP 

198-LYS462, was found in the PROA-PROC complex in the inactive WT but was missing in the 

inactive D614G (Fig. 5).  
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A

 

Figure 5: Salt Bridge Analysis 5A: Aspartic 
Acid 198 (Green) and Lysine 462 (Yellow) 
in the inactive WT variant PRO1 – PRO3 
complex 

B

 

Figure 5B: This plot demonstrates that this 
salt bridge remains below 4 Å for about 
80% of the simulation. Nitrogen – Oxygen 
interactions were measured for the salt 
bridge and normally 4 Å signifies a salt 
bridge. 

 

The absence of these salt bridges in the D614G variant suggested that this mutation 

altered protein conformation and had the ability to create new sets of interactions throughout 

the protein. At the same time, the presence of these interactions in only the inactive WT variant 

may additionally explain why the WT variant’s inactive state showed more stability than the 

D614G variant’s inactive state. However, it is important to note that one salt bridge does not 

causally influence the overall stability or flexibility of a spike protein, and multiple tests would 

have to be performed to ensure the determinants for increased stability.  

 There are other factors that point towards the D614G mutation being able to induce new 

sets of electrostatic interactions in the spike protein. One result that backed up this claim was 

the appearance of a salt bridge in the PROA – PROC complex of the D614G inactive state that was 
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not present in the WT inactive state. This newly introduced salt bridge, ASP405-ARG408, further 

suggested that the D614G mutation shifted structural arrangements of the spike protein, 

resulting in the gain and loss of certain amino acid molecular binding (Fig. 6). As shown in Figure 

6B, the salt bridge only appeared midway through the simulation, indicating that the D614G 

mutation altered sets of interactions and caused the salt bridge to form.  

A

 

Figure 6: Salt Bridge Analysis 6A: Aspartic 
Acid 405 (Green) and Arginine 408 
(Yellow) salt bridge in the inactive D614G 
variant PRO1 – PRO3 complex 

B

 

Figure 6B: This plot demonstrates that this 
salt bridge remains below 4 Å for much of 
the last half of the simulation. 

 

 Differences in interactions governing the D614G and WT variants were not limited to only 

the inactive states, however. Four new salt bridges were present in the D614G active state that 

were missing in the WT active state. These four were GLU 471-LYS 77 and GLU 484-LYS 378 in the 

PROA – PROB complex, ASP 571-ARG44 in the PROA – PROC complex, and ASP 571-ARG 44 in the 

PROB – PROC complex. Salt bridge GLU 471-LYS 77 can be seen in Figure 7 below. 
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A

 

Figure 7: Salt Bridge Analysis 7A: Glutamic 
Acid 471 (Green) and Lysine 77 (Yellow) 
salt bridge in the active D614G variant 
PRO1 – PRO2 complex 

B

 

Figure 7B: This plot demonstrates the 
distance of the salt bridge with respect to 
time. 

 

 From these results, we concluded that the D614G single mutation not only altered amino 

acid configuration in the inactive closed state, but also in the active, open state as well. As the 

D614G mutation modified multiple sets of interactions between amino acids, it potentially 

altered structural dynamics and activation mechanisms throughout the spike protein. Also, the 

appearance of multiple salt bridges in the active D614G state perhaps added to the increased 

relative stability that this variant exhibited compared to its WT counterpart.  

V. Concluding Remarks 

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, has 

influenced the worldwide population in many ways, including the health and safety of individuals, 
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the economy, and daily life in general. It has been the cause of millions of casualties and 

infections, and recently has been spreading due to advantageous amino acid structure mutations.  

Mutations such as D614G are a cause for concern, as vaccines and therapeutics targeting the 

initial SARS-CoV-2 have proven to be less effective on variants of the virus. Understanding the 

differential behavior of SARS coronaviruses and their relation to structural dynamics of spike 

proteins could provide insight into understanding how the spreading of SARS-CoV-2 occurs, 

leading to further intuition and discovery.  

There were some limitations in the analysis that we performed. First, cryo-EM structures 

of the spike protein were relied on as our initial models for the simulations that we executed. 

Second, glycosylated spike proteins were not simulated due to the difficulty of modeling the 

correct glycan chains. Glycans have been proven to have sizable roles in both viral infection and 

evasion of immune response, but in our modelling’s present condition, it would be difficult to 

determine whether conformational changes were occurring due to the internal protein dynamics 

or the glycosylation patterns of spike proteins. Finally, considering the information previously 

mentioned and the need for more research on the topic, we are unable to designate any causal 

inferences that the D614G mutation’s induced conformational changes solely lead to the 

differences in virus characteristics.  

Future research on the differential behavior of spike protein activation is recommended 

to explore this topic further. Already in the lab, free-energy calculations are being executed to 

analyze the energy barriers that are required in order for the spike proteins to shift from their 

inactive to active states. Also, as previously mentioned, further experiments involving the 
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glycosylated spike proteins must be performed to observe more accurate representations of the 

activation mechanism. 

Nonetheless, the findings in this lab can prove to be significant and help lay the 

groundwork for future simulations. Results from studying differential behaviors showed that the 

D614G mutation altered spike protein sets of interactions in multiple regions, thereby changing 

the conformation of the structure as a whole. Results also indicated that the D614G mutation 

shifted the preferred state of the variants from inactive in the WT to active in the D614G.  These 

conclusions could potentially have an impact on the activation mechanisms of spike proteins and 

the mediation of viral entry into a host cell. 
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