
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2018

Comparison of Data Transfer Alternatives in Asynchronous Comparison of Data Transfer Alternatives in Asynchronous

Circuits Circuits

Mark Howard
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

 Part of the Digital Circuits Commons, and the Power and Energy Commons

Citation Citation
Howard, M. (2018). Comparison of Data Transfer Alternatives in Asynchronous Circuits. Computer
Science and Computer Engineering Undergraduate Honors Theses Retrieved from
https://scholarworks.uark.edu/csceuht/51

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at
ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information,
please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csce
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/260?utm_source=scholarworks.uark.edu%2Fcsceuht%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=scholarworks.uark.edu%2Fcsceuht%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/51?utm_source=scholarworks.uark.edu%2Fcsceuht%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Comparison of Data Transfer Alternatives in Asynchronous Circuits

A thesis submitted in partial fulfillment

of the requirements for the award of

Honors for Bachelor of Science in Computer Engineering

by

Mark Howard

University of Arkansas

May 2018

University of Arkansas

This thesis is approved for recommendation to the Honors College.

Jia Di, Ph.D.

Honors Advisor and Committee Member

_________________________ _________________________

Patrick Parkerson, Ph.D. David Andrews, Ph.D.

Committee Member Committee Member

©2018 by Mark Howard

Abstract

Digital integrated circuits (ICs) have become progressively complex in their functionality. This

has sped up the demand for asynchronous architectures, which operate without any clocking

scheme, considering new challenges in the timing of synchronous systems. Asynchronous ICs

have less stringent environmental constraints and are capable of maintaining reliable operation in

extreme environments, while also enjoying potential benefits such as low power consumption,

high modularity, and improved performance. However, when the traditional bus architecture of

synchronous systems is applied to asynchronous designs, handshaking protocols required for

asynchronous circuit operation result in significantly increased power consumption, offsetting the

low power benefit of asynchronous designs. In this thesis, NULL Convention Logic is used to

implement two data transfer alternatives to the bus, and their performance is compared to that of

the prevailing bus architecture. According to the results, both of these proposed architectures

demonstrate power-saving qualities while sacrificing area, indicating potential utilization in

power-constrained applications where speed is not a prioritized design constraint, as in Internet of

Things (IoT) devices.

Acknowledgements

This research is supported by both NSF Award ECCS-1607285 and a University of Arkansas

Honors College Research Grant. Additionally, I would like to thank Dr. Jia Di for his guidance in

this research project and my fellow lab colleagues that assisted me in the completion of this thesis.

To my family and friends, I cannot thank you all enough for your support through my

undergraduate career, despite the obstacles that were presented along the way.

Table of Contents

I. Introduction..…………….…………….……………………………….…………………….1

A. Problem Statement.………………………………………………………………………….1

B. Thesis Statement.…………………………………………………………………………….1

C. Thesis Organization …………………………………………………………………………2

II. Background.………………………………………………………………………………….2

A. NULL Convention Logic (NCL) ……………………………...…………………………….2

Multi-rail Encoding.…………………………...………………………………………...3

NCL Gates.…………………………………………………...…………………………..4

Hysteresis ………………………………………………………………………………...6

 NCL Register ………………………………………………………………………….…7

 Single-Stage NCL Pipeline ……………………….…….…………………………….…8

III. Approach …………………………………………………………….…………………..…10

A. Drawbacks of NCL Bus ……………………………………………………………………10

B. Proposed Alternative Communication Methods ……………..………….…………….…11

C. MUX Bus ……………………………………………………………………………………12

D. STAR ………………………………………………………………………………………..13

IV. Results and Comparisons …………………………….……..…………………………….14

A. Tested Components …………………………………………………………………………14

B. Test Setup ……………………………………………………………………………………15

C. Simulation Results ………………………………………………………………………….15

V. Conclusion …………………………………………………………………………………..17

VI. References …………………………………………………………………..…….………..18

List of Tables

Table 1: Dual-Rail Encoding …………………………………………………….………..…… 3

Table 2: Fundamental NCL Gates ………………………………………….………..……….... 5

Table 3: Data Transfer Architecture Performance Comparison …………………….……..…. 16

List of Figures

Figure 1: NCL Threshold Gates (a) TH34 Gate (b) TH34w32 Weighted Gate (c) TH12b Inverting

Gate and (d) TH22n Reset Gate …...……………………………………………………………...6

Figure 2: NCL Dual-Rail Register …………………………………………………...………….7

Figure 3: Single-Stage NCL Pipeline …………….………………………………..…………......9

Figure 4: (a) NCL Bus (b) MUX Bus and (c) STAR ………………………….……………..….12

1

I. Introduction

A. Problem Statement

Increasingly complex functionality of digital integrated circuits, issues with clock skews, power

consumption, and variabilities in process, voltage, and temperature have arisen out of tightening

design constraints and have led to an increased demand in circuits that are designed with

asynchronous logic. Asynchronous ICs are capable of dependable operation in less than ideal

environments and present opportunities for power consumption reduction, thanks to the

handshaking protocols that are implemented in lieu of the typical synchronous clock architecture

[1]. Because of the natural design differences between synchronous and asynchronous systems,

some design commonalities for synchronous systems have qualities that hinder performance when

utilized in asynchronous systems, such as the typical bus architecture for intercomponent data

communication. Bus data transfer architecture is applied regularly in synchronous systems as a

means for efficient data transfers, but this method is costly in terms of power consumption when

implemented in asynchronous systems that utilize multi-rail encodings. This negative

characteristic is the result of a network of pull-down resistors that are attached to bus wires to

allow propagation of NULL or spacer cycles between data transfers.

B. Thesis Statement

In response to the issues presented above, which arise from applications of synchronous design

methodologies in asynchronous systems, this thesis presents and implements two new data transfer

architectures as alternative communication methods for asynchronous systems designed with

NULL Convention Logic (NCL). These architectures are all constructed in the IBM 130nm

CMOS semiconductor process, and while there is additional overhead in terms of performance,

2

simulation results for the alternative architectures demonstrate serious improvements in power

consumption when compared to the standard bus architecture.

C. Thesis Organization

Chapter 2 elaborates on background information pertinent to the understanding of key components

and characteristics of asynchronous designs: NULL Convention Logic and specifically multi-rail

encodings, hysteresis, and threshold gates. Chapter 3 explains the proposed architectures, MUX

bus and STAR, and the drawbacks of the prevailing bus architecture. Chapter 4 discusses the

results of simulations of the three aforementioned architectures and indicates situations where

these specific architectures could capitalize on their strengths. Chapter 5 summarizes the

extrapolations that can be made based off of the simulation results and places responsibility on

chip designers to weigh in on characteristics of each architecture when deciding on a data

communication method.

II. Background

A. NULL Convention Logic (NCL)

Distinct from traditional synchronous systems that utilize a global clocking architecture to

implement basic circuit operation, systems that are designed asynchronously make use of

handshaking protocols to accomplish data communication, data requests, and normal circuit

operation. Implementation of normal circuit operation and communication without the overhead

clocking architecture present in synchronous systems provides a number of advantages to circuits

with asynchronous design conventions. These benefits range from more flexible timing

constraints, increased energy efficiency, improved modularity, and average-case performance.

3

Multi-Rail Encoding

NULL Convention Logic (NCL) is a quasi-delay-insensitive (QDI) design methodology for

asynchronous circuits. Where synchronous designs encode a single bit of data with one wire, NCL

implements multi-rail encodings, meaning multiple wires are used to represent a single bit of data.

The most common encoding method in NCL is dual-rail encoding, which uses two wires to

represent the equivalent logic ‘1’ and logic ‘0’ Boolean values of synchronous systems [2]. These

individual wires are referenced as either rail0 or rail1 of an NCL signal, which represent Boolean

logic ‘0’ and logic ‘1,’ respectively. The value of a single rail is manipulated by referencing

individual rails of an NCL signal. For example, signal(i).rail1 references rail1 of bit i in an NCL

dual-rail vector named signal. Additionally, rails of an NCL signal are mutually exclusive,

meaning only one of the two rails can be asserted at a time, and this allows for the representation

of 3 valid states and 1 invalid state in dual-rail logic as described in Table 1. Asserting rail1 of an

NCL signal corresponds to a DATA1 output, and asserting rail0 of an NCL signal corresponds to

DATA0. Asserting neither of the rails results in a NULL output. Since these rails are mutually

exclusive, asserting both rails equates to an INVALID state that should not occur during normal

circuit operation of an asynchronous system designed with dual-rail NCL [3].

Table 1. Dual-Rail Encoding

 NULL DATA0 DATA1 INVALID

rail0 0 1 0 1

rail1 0 0 1 1

4

NCL Gates

NCL can be implemented structurally in the VHDL hardware description language by using 27

fundamental NCL logic gates. These gates are called threshold gates, and the Boolean

functionality that each gate implements is depicted in Table 2. These gates are named for the

method in which the gate output is evaluated, implying that a certain amount of a gate’s inputs

must be asserted before the gate output will transition from logic ‘0’ to logic ‘1.’ These threshold

gates range from two to four inputs, and each gate executes a unique Boolean operation such that

they comprise all combinations of four or fewer inputs [4]. Each threshold gate uses a naming

format that simultaneously identifies the number of inputs, the threshold value, and any input

weights for that specific gate. The format is THmn, where the threshold value, m, ranges from 1

to n, n being the number of single-bit inputs. Therefore, these gates do not necessarily accept a

full dual-rail signal as an input, but rather, a gate can accept rail1, rail0, or both rails of an NCL

dual-rail signal. As mentioned previously, inputs to threshold gates may be weighted differently,

resulting in a naming change that reflects the alteration. When a threshold gate has weighted

inputs, a w follows the n value in the gate nomenclature, and it is succeeded by the weight values.

These values identify the appropriate weight for each input, beginning at input A. For example, a

TH34w32 gate will operate similarly to a TH34 gate with the caveat that input A will have a weight

of 3, and input B will have a weight of 2. Now, instead of requiring 3 of the 4 inputs to be asserted

before output evaluation, as in the TH34 gate, the m value can be met with any combination of the

weighted or non-weighted inputs. Asserting input A for a TH34w32 gate will assert the output

since the weight of input A matches the threshold value of the gate. Likewise, assertion of inputs

B and C would also cause output evaluation. It is important to note that surpassing the threshold

value does not adversely affect the functionality of a threshold gate.

5

Table 2. Fundamental NCL Gates

Gate Boolean Function

TH12 A+B

TH22 AB

TH13 A+B+C

TH23 AB+AC+BC

TH33 ABC

TH23w2 A+BC

TH33w2 AB+AC

TH14 A+B+C+D

TH24 AB+AC+AD+BC+BD+CD

TH34 ABC+ABD+ACD+BCD

TH44 ABCD

TH24w2 A+BC+BD+CD

TH34w2 AB+AC+AD+BCD

TH44w2 ABC+ABD+ACD

TH34w3 A+BCD

TH44w3 AB+AC+AD

TH24w22 A+B+CD

TH34w22 AB+AC+AD+BC+BD

TH44w22 AB+ACD+BCD

TH54w22 ABC+ABD

TH34w32 A+BC+BD

TH54w32 AB+ACD

TH44w322 AB+AC+AD+BC

TH54w322 AB+AC+BCD

THxor0 AB+CD

THand0 AB+BC+AD

TH24comp AC+BC+AD+BD

There are two additional threshold gate modifications, output inversion and reset functionality,

that alter both the naming convention and functionality of an NCL threshold gate. A gate that

inverts its output is named similarly to traditional threshold gates, but the n value is followed with

a b. A threshold gate that is resettable will have either a d or an n follow the n value to identify

whether the gate will reset to DATA or NULL. A gate name that ends in an n will output a logic

‘0’ when the reset is asserted, and a gate that ends in a d will output a logic ‘1’ when the reset is

6

asserted. Symbols for a normal, weighted, inverting, and DATA reset NCL threshold gates are

found in Fig. 1.

33

2n1

Z

Z

Z
B
A

Z
B

A

Reset

B

A

D
C

B

A

C
D

(a)

(c)

(b)

(d)

Figure 1. NCL Threshold Gates (a) TH34 Gate (b) TH34w32 Weighted Gate

(c) TH12b Inverting Gate (d) TH22n Reset Gate

Hysteresis

A key characteristic of NCL threshold gates is their implementation of hysteresis. Hysteresis

enforces the paradigm that gate output is dependent on both the assertion of inputs and the current

value of the gate output. In other words, hysteresis requires that all inputs de-assert before the gate

output may de-assert. Proper functionality of the NCL handshaking protocol requires this

hysteresis quality of NCL threshold gates. Communication among components of an NCL design

is accomplished through an NCL handshaking protocol that alternates between DATA and NULL

wavefronts which stem from the valid three-state encoding method {DATA0, DATA1, NULL} of

dual-rail NCL signals. Handshaking results from intercomponent requests for DATA and NULL

wavefronts in an alternating manner such that operations can complete without exact timing or

clocking [5]. Handshaking is implemented through the utilization of completion detection

components, multi-rail encodings, and standard logic completion signals [4].

7

NCL Register

Crucial to the understanding of DATA/NULL wavefront propagation in an NCL design is

comprehension of a basic NCL register. These asynchronous registers are resettable to DATA or

NULL, and they store single dual-rail signal values. These registers operate such that DATA and

NULL wavefronts are accepted in an alternating manner like any NCL component. However, an

NCL register also accepts and outputs a standard logic completion signal. The output completion

signal, ko, is determined by the current contents of an NCL register. When the register is storing a

NULL wavefront, the ko value is ‘1,’ indicating a register’s ability to accept a DATA wavefront.

When the ko value is ‘1,’ this is considered a request for data (rfd). Conversely, when the register

is storing a DATA wavefront, the ko value is ‘0,’ and this is considered a request for NULL (rfn),

indicating that a register can output its DATA wavefront in exchange for an incoming NULL

wavefront. A gate level schematic of a NULL reset NCL register is exhibited in Fig. 2.

1

2n

2n

Input.rail0

Input.rail1

Output.rail0

Reset

Output.rail1

ko

ki

Figure 2. NCL Dual-Rail Register

8

Single NCL registers are grouped together to handle the processing of dual-rail vectors, and in

doing so, a single ko value must be generated by grouping together the individual register ko signals

[2]. The completion detection component for these NCL vector registers are THnn gates, where n

is the number of ko signals. In instances where more than four of these NCL registers are used to

store a dual-rail vector, the completion detection component is comprised of THnn gates that are

staggered to eventually generate a single ko value for the register set. According to the previous

NCL threshold gate description, using the THnn gates ensures that the final ko value for a register

set will not be rfd until all internal ko values are also rfd. Similarly, the final ko value will not

become rfn until all internal ko values are also rfn. There is another critical completion signal

named ki that is also a standard logic type, and this signal value is the ko value generated by an

NCL register in a successive pipeline stage. NCL registers function such that a DATA wavefront

is only accepted when the subsequent register is requesting DATA (i.e., ki = ‘1’). Similarly, NCL

registers can only accept a NULL wavefront when the subsequent register is requesting NULL

(i.e., ki = ‘0’). It is the interaction of completion signals between NCL register stages from which

the NCL handshaking protocol arises.

Single-Stage NCL Pipeline

As depicted in Fig. 3, two sets of NCL registers and an intermediate combinational logic block

comprise the single-stage pipeline for an NCL design. In such a single-stage NCL pipeline, the

only external signal required other than the expected DATA or NULL dual-rail wavefront is the ki

value for the output register that would normally be generated by the ko value of a subsequent

register. Within the pipeline stage, the output register’s ko becomes the input register’s ki signal.

DATA and NULL wavefronts, indicated by the grey arrows in Fig. 3, flow in the opposite direction

of the completion signals in an NCL design, identified by the black arrows. NCL systems are

9

usually initialized with a reset that causes NCL registers to output NULL, generating a ko value of

‘1,’ or rfd [2]. This allows NCL registers to accept a DATA wavefront upon system initialization.

When DATA is presented at the input of this NCL input register, the DATA wavefront will be

latched by the register since its ki value is ‘1.’ Once this DATA wavefront is latched, the input

register’s ko becomes a ‘0,’ or rfn. After being latched by the input register, the DATA wavefront

propagates through the NCL combinational logic block to the input of the output NCL register.

Once the external ki is asserted, the DATA wavefront will be latched by the output NCL register,

and both registers in the single-stage pipeline will have ko values of ‘0.’ This means that both

registers will now be requesting a NULL wavefront. According to the NCL handshaking protocol,

a NULL wavefront should now be delivered to the input of the NCL input register. Since the

internal completion signal (ki of input register; ko of output register) is rfn, this NULL wavefront

will be latched by the input register. As before, this NULL wavefront will then be propagated

throughout the combinational logic block and presented to the input of the NCL output register.

Only when the external ki is de-asserted will the output register latch this NULL wavefront,

completing a DATA-NULL cycle [4]. When this occurs, both registers in this single-stage pipeline

will be requesting a DATA wavefront, as they were just after initialization.

Input
Register

Combinational
Logic

Output
Register

ko ki ko ki

Figure 3. Single-Stage NCL Pipeline

10

Asynchronous systems that are designed with NCL do not have clock cycles as traditional

synchronous systems do, so their performance is measured by DATA-to-DATA time, or the time

between two successive DATA wavefronts. Since this DATA-to-DATA cycle is generated by the

NCL handshaking protocol, operations are event-driven, not clock-driven. This quality of NCL

results in average-case performance, contrasting the worst-case performance of synchronous

designs [4]. Additionally, this protocol facilitates normal circuit operation in extreme

environments that would negatively impact the functionality of synchronous systems.

III. Approach

A. Drawbacks of NCL Bus

Just as in synchronous IC designs, asynchronous architectures can utilize a bus for intercomponent

data transfers and any other component communication in a system, but this traditional

communication method has characteristics that become cumbersome in asynchronous systems

designed with NCL.

The most impactful difference between the bus communication architecture in synchronous versus

asynchronous designs is that in synchronous systems, the bus is only responsible for data delivery,

whereas an asynchronous bus is required to deliver DATA and NULL wavefronts to system

components [2]. In the common implementation of an NCL bus, it is necessary to attach pull-

down resistors to each bus wire so that a ‘0’ can be delivered to system components from each bus

wire, resulting in delivery of a NULL wavefront. Without this implementation, the bus wires

would be floating during NULL wavefront delivery, resulting in a number of issues including large

short circuit power consumption and even disruption of circuit operation. Delivery of DATA

wavefronts to asynchronous components does not require additional overhead to support it because

11

either rail0 or rail1 of an NCL dual-rail signal will be assigned logic ‘1’ during a DATA wavefront.

This communication architecture can be identified in Fig. 4(a), and its structure is not complicated

with regards to the number of components. Additionally, this architecture demonstrates efficient

performance in combination with little area requirements. However, the pull-down resistors

associated with each bus wire result in higher power consumption when driving these wires to

logic ‘1’ because the current in a bus wire present during a DATA wavefront will sink through the

pull-down resistors. Upon delivery of a DATA wavefront, the successive NULL wavefront that

is expected by NCL components will be presented by discharging asserted bus wires with the pull-

down resistor network. A secondary drawback of this bus communication architecture is that the

pull-down resistor network causes rise and fall delays when the bus wires are asserted and de-

asserted. These architectural disadvantages lay the foundation for further research into new

methods of communication among asynchronous components that improve upon bus

disadvantages while maintaining the inherent advantages of circuits designed with NCL.

12

Slave 3
Ko

Slave 2
Ko

Slave 1
Ko

Master 1
Ki1

Ki2

Ki3

Slave 4
Ko

Slave 5
Ko

Master 2

Ki1

Ki2

Ki3 R

Slave 1

Ko

Data

Slave 2

Ko

Data

Slave 3

Ko

Data

Slave 4

Ko

Data

Slave 5

Ko

Data

Ki1

Ki2

Ki3

Data1

Data2

Data3

Master 1

Ki1

Ki2

Ki3

Data1

Data2

Data3

Master 1

Sel

Slave 1

Ko

Data

Slave 2

Ko

Data

Slave 3

Ko

Data

Slave 4

Ko

Data

Slave 5

Ko

Data

Sel

CCU

Master 1

Data

Ki

Master 2

Data

Ki

(a)

(b) (c)

Figure 4. (a) NCL Bus (b) MUX Bus (c) STAR

13

B. Proposed Alternative Communication Architectures

In response to the drawbacks of the NCL bus communication architecture, MUX Bus and STAR

asynchronous communication architectures are designed and tested. These proposed architectures

promote improved rise and fall times for information transmission between system components,

and both architectures feature multiplexers at the inputs of slave components. In both designs,

select signals for these multiplexers are generated that identify which master and slave components

are involved in DATA/NULL wavefront conveyance. Between the two new architecture

proposals, STAR requires less control logic at the expense of increased NCL gate count and

therefore area.

C. MUX Bus

MUX Bus architecture is depicted in Fig. 4(b), and this implementation consists of multiplexer-

based control to connect several master-slave combinations. Since select signals can exclude

master component outputs from being delivered to certain slave components, there is a possibility

in some instances that there could exist multiple non-overlapping master-slave combinations at a

given time. Select signals are determined by the system control finite state machine (FSM) upon

decoding and interpreting an instruction, and they are taken as inputs by the slave data input

multiplexers to determine the data paths from master to slave components in the system. The

select, ko, and ki signals necessary for proper handshaking protocol functionality originate from

the slave component. For example, if a multiplier is attempting to send data to a register, the

appropriate select signal is generated such that the multiplier output is received by the register’s

data input multiplexer. With respect to this specific example, the multiplier is the master that will

be waiting on the register (the slave component) to change its ko output from ‘1’ to ‘0,’ indicating

that it has received the DATA wavefront and is now ready for a NULL wavefront. Since this

14

register ko is sent to the master as the multiplier ki input, the multiplier will send a NULL wavefront

to the slave multiplexer once the rfn is received. The register multiplexer then propagates the

NULL wavefront to the slave, changing the register ko value to ‘1’ from ‘0’ to indicate that it is

prepared to accept another DATA wavefront.

D. STAR

Different from MUX Bus architecture in STAR architecture is the Central Control Unit (CCU)

that is responsible for select signal generation for all component data input multiplexers. STAR

architecture is identified in Fig. 4(c). The CCU generates these select signals based on the ko

completion signals of the system and the communication instructions from the system FSM. As

with other NCL components, the CCU requires a NULL wavefront after it propagates a DATA

wavefront throughout a system for reinitialization to process successive DATA wavefronts. Since

the CCU is dependent upon instructions from the system FSM, STAR does not maintain the MUX

Bus architectural advantage of allowing non-overlapping instructions (multiple groups of slave-

master components). Therefore, execution time for STAR is expected to be longer when compared

to the two alternative architectures discussed. In addition, due to the decoder in the CCU that

generates the system’s internal handshaking and selection logic, there are specific instructions that

may have a longer execution time. The instructions that will be affected most by this structural

alteration are instructions that require multiple DATA-NULL cycles.

In lieu of accepting every component ko signal, the CCU generates the required internal system

signals based off a given instruction. These instructions are delivered to the CCU as previous

instructions are completed, as identified by the completion logic. This aspect of STAR makes the

architecture handle the least amount of input/output of the three transfer architectures discussed.

15

IV. Results and Comparisons

A. Tested Components

All three data transfer architectures utilized the same five NCL components for communication

during simulation. The five components used were two 8-bit NCL registers, an 8-bit NCL program

counter (PC), a 4 × 4 NCL multiplier, and an 8-bit NCL ripple-carry adder. Each of these

components, regardless of the architecture, was designed to operate with 8-bit dual-rail signals.

Furthermore, all components and data transfer architectures themselves were simulated with the

IBM 130nm semiconductor process.

B. Test Setup

Each data communication architecture was functionally verified in VHDL, flattened into an NCL

threshold gate netlist, imported into Cadence, and simulated at the transistor-level in the 130nm

IBM semiconductor process so that power and timing data could be determined. The sole

differences between the simulated transfer architectures were how DATA and NULL wavefronts

were delivered to the NCL components of the design. Obtaining meaningful power and timing

information was achieved by designing architecture-specific VerilogA controllers to be associated

with their appropriate architecture symbols in the Cadence schematic environment so that inputs

could be delivered to the architectures. Similarly, the outputs of each communication architecture

were delivered to their respective VerilogA controller to allow the three systems to fully simulate

and be self-dependent once the simulation was started.

Not only did each transfer architecture use the same components, but they also implemented the

same instruction set to guarantee comparable results. The instruction set is as follows: (1) Load

a register with a value; (2) Load data into the multiplier; (3) Load a second register with the

16

multiplier output; (4) Store a register value into input A of the adder; (5) Store the second register

value into input B of the adder; (6) Store the adder output to a register; (7) Deactivate the program

counter and store the final PC value into a register. The final NCL register contents should be the

final PC value and the result of the addition step.

C. Simulation Results

Performance characteristics of the data transfer architectures that were deemed important for

meaningful comparisons were speed, leakage power, size, and active energy. Active energy

indicates the energy that an architecture consumes during execution of the aforementioned

instruction set. Size was gauged on the quantity of NCL threshold gates utilized in each

architecture implementation. Leakage power is a designation of the power consumed when

architectures are idle. The results with regards to these performance indices are shown in Table 3.

Table 3. Data Transfer Architecture Performance Comparison

Transfer Architecture NCL Bus MUX Bus STAR

NCL Gate Count 1,292 1,621 1,962

Active Energy (picojoules) 74.33 10.41 18.7

Leakage Power (microwatts) 0.855 1.648 2.078

Execution Time (nanoseconds) 17 12.3 30

According to the data presented in Table 3, the two proposed data transfer alternatives showed

improvements in some areas when compared to the NCL bus implementation, but these

architectures also had some comparative disadvantages. Thus, there are specific situations where

one might choose NCL bus over either of the proposed architectures and vice versa. Due to the

absence of pull-down resistors on bus wires that would need to be asserted/de-asserted during

execution, MUX bus achieves a shorter execution time than NCL bus. The active energy of MUX

bus is less than that of NCL bus for the same logic (14% of NCL bus active energy). Since MUX

17

bus implemented multiplexers for master/slave component communication, this instinctively

results in more NCL gates. The increased gate count in MUX bus is also the reason for increased

idle-state leakage power when compared to NCL bus (92% increase). Thus, MUX bus is the

advantageous architecture when importance is placed on execution time or active energy, as

opposed to space and leakage power. However, NCL bus remains ideal in situations that are

constrained by space requirements or that allow systems to idle for lengthy amounts of time.

The differences between STAR architecture and MUX bus architecture are minimal, so similar

trends with regards to performance measurements are anticipated. STAR architecture and MUX

bus architectures are quite alike, with the caveat that STAR utilizes a CCU to generate select

signals for the multiplexers that are responsible for controlling component data inputs and the

handshaking protocol through ki selection. The CCU naturally resulted in more NCL threshold

gates than MUX bus (around 300 more gates than MUX bus). This additional component, while

reducing the number of inputs required for proper system functionality, did come with some

expenses. The execution time of STAR architecture was nearly double that of the NCL bus

architecture, and it had a 52% NCL gate increase over NCL bus (roughly 700 more NCL threshold

gates). Again, the increased gate count naturally equates to increased leakage power when the

system idles. The major advantage of STAR over the traditional NCL bus architecture is decreased

active energy, as is the case with MUX bus. STAR had 25% of the active energy demanded by

the NCL bus, and like MUX bus, this is because of the absence of bus wires that are tied to a pull-

down resistor network. As the CCU is essentially a large decoder, the increased execution time of

STAR over NCL bus can be attributed to the interpretation of data communication instructions

and to the absence of multiple master-slave communication paths at once. In closure, utilization

18

of the STAR architecture seems to be limited by chip area requirements and leakage power

constraints.

V. Conclusion

This research proposed, implemented, and analyzed the tradeoffs of two new data transfer

architectures as alternatives to the typical NCL bus communication method. These new

architectures succeeded in reducing the active energy requirements for asynchronous systems

designed with NULL Convention Logic (NCL). On-chip area and leakage power are sacrificed

in both implementations to achieve this advantage. Consequently, chip designers should

consider all project-specific design constraints when choosing between any of these transfer

architectures.

19

VI. References

[1] N. Kuhns, L. Caley, A. Rahman, S. Ahmed, J. Di, H. A. Mantooth, A. M. Francis, and J.

Holmes, Complex High-Temperature CMOS Silicon Carbide Digital Circuit Designs,

IEEE Transactions on Device and Materials Reliability, Vol. 16, Issue 2, pp. 105-111,

February 2016

[2] N. Kuhns, Power Efficient High Temperature Asynchronous Microcontroller Design,

University of Arkansas PhD. Dissertation, May 2017.

[3] J. Brady, A. M. Francis, J. Holmes, J. Di, and H. A. Mantooth, “An Asynchronous Cell

Library for Operation in Wide-Temperature & Ionizing-Radiation Environments,” 2015

IEEE Aerospace Conference

[4] Scott C. Smith, Jia Di, Designing Asynchronous Circuits using NULL Convention Logic

(NCL), Morgan & Claypool Publishers, 2009.

[5] N. Kuhns, L. Caley, A. Rahman, S. Ahmed, J. Di, H. A. Mantooth, A. M. Francis, and J.

Holmes, “High Temperature Testing Results of Synchronous and Asynchronous Digital

Silicon Carbide Integrated Circuits,” Government Microcircuit Applications & Critical

Technology Conference (GOMACTech), 2015

	Comparison of Data Transfer Alternatives in Asynchronous Circuits
	Citation

	tmp.1524860531.pdf.fudAi

