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Abstract 

For grid-connected homes equipped with solar panels, power electronics are necessary to 

manage and convert power between the solar panels, battery storage, grid, and residential load. A 

power router can be used to manage these power electronics and govern power generation, 

storage, and distribution within the household. This level of control makes power routers that do 

not employ cybersecurity a target for external attacks. The use of command validation is an 

effective way to prevent unauthorized commands from maliciously altering the state of a home’s 

power router. The purpose of this thesis is to describe the development of the command 

validation module for the Cybersecure Power Router (CSPR) being developed under the 

Cybersecurity Center for Secure Evolvable Energy Delivery Systems (SEEDS).  

 Packets sent over serial communication to CSPR are decoded to obtain a command that 

then must pass command validation to ensure the command is safe and the source is trustworthy. 

The command validation for CSPR consists of two phases: syntax validation and modelling 

validation. Syntax validation is performed by analyzing the structure of the command, whereas 

modelling validation checks to ensure that CSPR will not enter an unsafe state if the command is 

executed. The command validation for CSPR was initially prototyped in Python to verify the 

module met all project requirements. The module was then implemented in VHDL to be 

uploaded to a Field-Programmable Gate Array (FPGA) for simulation and testing according to 

project requirements. The research in this paper evaluates the effectiveness of using command 

validation for preventing malicious attacks on CSPR. Simulation results for both the Python and 

VHDL implementation are compared to assesses the usefulness of prototyping hardware 

descriptive code using Python.  
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1.0 Introduction 

1.1 Motivation 

 In recent years, the number of homes supplying their own power independently of the 

grid has been increasing rapidly. From 2012 to 2015 residential solar installed capacity increased 

by over 50% [1]. Traditionally, the electrical grid has been fed almost exclusively by large, 

centralized power plants. However, as renewable energy sources increase in availability, the grid 

is gradually transitioning toward a distributed generation model where electricity is generated by 

smaller facilities located closer to their load [2].  

 Photovoltaic (PV) systems are unable to generate power in the absence of sunlight. If 

homeowners wish to have energy on demand, they must utilize some form of energy storage 

system in conjunction with their solar panels. Rather than using high-capacity battery storage 

systems, many owners of residential PV systems choose to buy and sell power to the utility 

company through the grid. In modern homes, power electronics within energy management 

systems (EMSs) are used to optimize the power flow between the various electrical systems in a 

home, often with the intention generating maximum energy savings [3].  

The electronics that manage power generation, storage, and distribution within a grid-

connected PV system are packaged together into a particular type of EMS referred to in this 

paper as a power router. A power router is responsible for supervising the current, voltage, and 

frequency between a home’s photovoltaics, batteries, converters, and grid and load connections. 

Because a power router manages such a large amount of energy, it is important that homeowners 

choose power routers that are robust and secure. If an unauthorized entity were to gain control of 

the power router, they could cause great damage to the grid and the home of installation. One 

way attackers may control an unsecure power router is by sending unauthorized commands to the 
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router via serial communication. By incorporating command validation in the security of a power 

router, the threat that malicious commands impose on the system can be minimized. 

1.2 Thesis Objective 

This thesis aims to describe the design and development of the command validation 

module for the Cybersecure Power Router (CSPR). Also covered is the design of the finite state 

machine (FSM) used for modeling validation for CSPR. The command validation was first 

modeled in Python before being implemented in VHDL, so a discussion about the use of Python 

for prototyping is included as well. The simulation results of the VHDL module are included at 

the end for proof of concept. These results are compared to the Python module simulations to 

demonstrate the effectiveness of using Python to prototype code before implementing a design 

using a lower level language such as VHDL. 

1.3 Thesis Organization 

This thesis is divided into five chapters total, beginning with the introduction in Chapter 

1. Chapter 2 provides background about the role of security in energy management devices and 

how CSPR is being developed to combat the threat of security breaches in power routers. 

Chapter 3 focuses on the design and development of the command validation module for CSPR. 

Chapter 4 showcases the results from testing the Python and VHDL implementations of the 

command validation module. Chapter 5 summarizes the research and concludes the work 

performed for this thesis, while also discussing the potential for future research. 
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2.0 Background 

2.1 Potential Threats to Power Routers 

To better understand the importance of security, it is helpful to discuss the threats that 

may be faced by energy management devices such as power routers. Because a power router acts 

as the controller for the main components of a household distribution network, if a hacker were 

to gain unauthorized access to the router they could manipulate the flow of electricity between 

these components. Frequent switching of device relays could be used to short-circuit expensive 

electronics and potentially cause fires. Unauthorized manipulation of a power router could even 

be used to inject harmonics into the grid through denial-of-service (DoS) attacks [4]. 

2.2 Cybersecure Power Router (CSPR) 

CSPR is being developed under the Cybersecurity Center for Secure Evolvable Energy 

Delivery Systems (SEEDS). SEEDS aims to address the lack of security in the power routers 

available on the market today by sponsoring the design of CSPR, which will provide 

cybersecurity for a grid-connected EMS. CSPR is based on the Smart Green Power Node 

(SGPN) that is researched in [5-7]. 

 

Figure 1 – DSP controller board and power electronics board used for CSPR [4]. 
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Figure 2 – CSPR power flow diagram. 

CSPR manages the power flow between the solar panels, batteries, converters, grid, and 

load of the residential home. The state of these individual devices is defined by the direction of 

current flow through them, while the state of the power router is defined by the power flow 

through the system as a whole. The state and current flow between each of these devices must be 

coordinated depending on the current state of the power router. If an error were to occur that 

caused a conflicting state of power flow, equipment could get damaged. The power flow diagram 

in Fig. 2 shows the components managed by CSPR along with their corresponding states. 

CSPR can be viewed as a collection of defended layers that work together to minimize 

the potential for malicious attacks. Each layer has its own security features while also being 

protected by the layers wrapping it. These layers all work together to ensure the confidentiality, 

integrity, and availability of the system. The work in this thesis focuses on the command layer, 

which is protected through validation of encrypted commands that are sent over the 

communication port. 
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Figure 3 – Diagram of Cybersecure Power Router as defended layers [4]. 

CSPR is designed to receive network packets through serial communication. A single 

network packet consists of a frame header, an address, a payload, and a cyclic redundancy check 

(CRC). The frame header, address, and CRC are control data used to evaluate the destination and 

integrity of the message. The payload contains an encrypted command that carries information 

telling the power router what to do. Performing command validation on the decrypted payload 

adds a greater depth of security to the system, ensuring the command is a known command that 

will not cause the system to enter an unwanted state. 

 

Figure 4 – CSPR network packet. 
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3.0  Command Validation Module Design 

3.1 System Design 

CSPR can be modeled by a finite state machine (FSM) that is based on the work 

proposed for the SGPN in [5]. Each state falls into one of two categories: islanding and grid-

connected. Islanding states describe states where the relays between the grid and household are 

opened and therefore the house is disconnected from the grid. Grid-connected states, as the name 

suggests, are states where power may be exchanged between the grid and the house. The inputs 

to the FSM are the commands that are transmitted via serial communication, and the current 

being supplied by the home’s solar panels. Fig. 5 shows an illustration of the state machine 

diagram. Note that Fig. 5 does not specify the inputs that would result in each state change, but 

instead demonstrates the state changes that are allowable. 

 

Figure 5 – CSPR state machine diagram. 
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Table 1 – CSPR States 

Name Bit 

Code 

PV Battery Dual Half-

Bridge 

Grid 

Connected 

Allowed State Changes 

shut_down 0000 Off Off Off No standby, ups, island_charging 

standby 0001 Off Off Off Yes shut_down, 

charging_from_grid, 

charging_from_pv, sell_pv, 

sell_battery, ups, 

island_charging 

charging_from_grid 0010 Off Charging To 

PV/Battery 

Yes standby, sell_battery 

charging_from_pv 0011 On Charging Off Yes standby, charging_sell_pv, 

island_charging 

charging_sell_pv 0100 On Charging To 

Grid/Load 

Yes charging_from_pv, sell_pv, 

sell_both 

sell_pv 0101 On Off To 

Grid/Load 

Yes standby, charging_sell_pv, 

sell_both 

sell_both 0110 On Discharging To 

Grid/Load 

Yes charging_sell_pv, sell_pv, 

sell_battery, pv_assist_ups 

sell_battery 0111 Off Discharging To 

Grid/Load 

Yes standby, charging_from_grid, 

ups 

ups 1000 Off Discharging To 

Grid/Load 

No shut_down, standby, 

sell_battery, pv_assist_ups 

pv_assist_ups 1001 On Discharging To 

Grid/Load 

No sell_both, ups, 

island_charging 

island_charging 1010 On Charging Off No standby, charging_from_pv, 

pv_assist_ups 

 

Detailed information about each state is given in Table 1. The name of each state as used 

in code is given along with the state’s corresponding bit code that is serving as a place holder for 

what might be transmitted through the payload of the serial communication. The state of each of 

the components shown in the power flow diagram of Fig. 2 is given as well. The PV system can 

either be on or off, and the battery can be charging, discharging, or off. The dual half-bridge 

converter can be pushing power to the grid/load or to the PV/battery system. Also, the system 

can either be grid connected or islanding. Each of the allowed state changes is given for every 

state, which can also be inferred from the state machine diagram of Fig. 5. Note that 

uninterruptable power supply mode is abbreviated to ups in Fig. 5 and Table 1. 
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The command validation consists of two phases: syntax validation and modeling 

validation. Syntax validation is performed by comparing the command to a list of acceptable 

commands stored in memory. If the command is contained in the list of acceptable commands, 

then the command passes syntax validation. Modeling validation is performed through the use of 

the state machine. If the state change suggested by the command is acceptable according to the 

state machine, then the command passes modeling validation. If either syntax validation or 

modeling validation fails, the command is rejected. If both syntax validation and modeling 

validation pass, the state machine is updated to reflect the state change carried by the command. 

 

Figure 6 – Command validation logic flow chart. 
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3.2 Python Implementation 

Beginning with a Python model before moving on to the final VHDL implementation 

was ideal because Python is a comparatively user-friendly language to work with. Python code is 

very clear and concise compared to VHDL, making it easy to share and review with others. The 

data structures available in Python are a great resource when modeling complex systems. 

Further, testing Python code is very simple and fast when compared to simulating VHDL 

modules. Consequently, verifying that the command validation model was designed correctly 

and met all requirements was made much easier by utilizing Python. 

The Python code is split into two files: payloadvalidation.py and statemachine.py. The 

file payloadvalidation.py contains the function payload_validation, which accepts a payload and 

a photovoltaic (PV) current as inputs. The function payload_validation calls syntax_validation, a 

function that compares the payload to a dictionary containing each of the acceptable commands 

and the state change associated with each command. If syntax_validation returns false, the 

payload validation returns false and prints a relevant message stating why validation failed. If 

syntax_validation returns true, modelling_validation is called. If modelling_validation returns 

true, then payload_validation returns true to signal to the system that the command is authentic 

and safe. If either syntax_validation or modelling_validation return false, then a relevant 

message stating why the validation failed is printed to the console and payload_validation 

returns false. 
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Figure 7 – Python code: payload_validation function. 

 

Figure 8 – Python code: syntax_validation function. 

 

Figure 9 – Python code: modelling_validation function. 

The backbone of the modelling_validation function is the statemachine.py file that 

contains the definition of the State and StateMachine classes. The State class contains properties 

inherent to each state of CSPR. A group of properties are used to define whether the direction of 

current flow is in or out for the PVs, batteries, and grid. Each of these properties accept a 

Boolean value to designate whether current in is true/false or current out is true/false. If the 

component is disconnected for the particular state being defined, then both current in and current 

out receive false values. In no case may both current in and current out receive the value true. 
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Another important property is a list of each allowable state change for the state being defined. 

The StateMachine class contains definitions for each state of CSPR. 

 

Figure 10 – Python code: State class. 

 

Figure 11 – Python code: StateMachine class. 
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3.3  VHDL Implementation 

To make the transition from Python to VHDL, the set of inputs, processes, and outputs 

must be abstracted from the previous implementation. By modeling the command validation 

module in Python to begin with, all the inputs and outputs of the system had been identified and 

the basic logic had been determined. A 4-bit payload containing a command is input to the 

system along with a measurement of the current being produced by the PV system expressed in 

mA by a 16-bit vector. Single bit clock and reset inputs were added to the input list since a state 

machine is a synchronous system. The outputs are active high single bit signals used to express 

the type of error and whether the payload was valid or not. The system inputs and outputs are 

listed in Table 2.  

Table 2 – Command Validation VHDL Implementation Inputs and Outputs 

Inputs  Outputs 

clock  syntax_error 

reset  modelling_error 

payload  payload_valid 

pv_current   
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The architecture of the VHDL code contains the syntax_validation and 

modelling_validation processes, as well as the asynchronous logic for determining the value of 

payload_valid. Designing the command validation to use two separate processes enables a multi-

core FPGA to take advantage of parallel processing to decrease the latency of the command 

validation. Because payload_valid is determined by combinational logic that depends on whether 

a syntax or modeling error occurred and because VHDL does not support reading from outputs, 

two signals named syntax_error_buffer and modelling_error_buffer are used to temporarily store 

whether a syntax or modeling error occurred. In turn, the outputs syntax_error and 

modelling_error are driven by their temporary counterparts. The syntax_validation process uses 

if statements to compare the current payload input to all expected payload values. If the payload 

doesn’t match any of the bit-strings coded in the if statements, syntax_error_buffer is set to ‘1’. 

The modelling_validation process makes use of the state machine logic to control the 

value of modelling_error_buffer. The user-defined type state_type is used to define the signal 

current_state who can only take on a value that is the name of one of the states that the FSM 

may be in. The modelling_validation process contains hard-coded logic that uses nested case and 

if statements to determine the value that modelling_error_buffer will receive based on the value 

of the current_state signal, the payload port, and the pv_current port. If the modeling validation 

passes, then modelling_error_buffer is initialized to ‘0’ and the value of current_state is updated 

to reflect the state change contained in the command. The temporary signals syntax_error_buffer 

and modelling_error_buffer are used as inputs to a nor gate whose output is payload_valid. This 

way, if either syntax_error_buffer or modelling_error_buffer is high, payload_valid goes low. 
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4.0 Results 

4.1 Simulation Goals 

When simulating the command validation module, the goal was to ensure that commands 

that belong to the list of expected commands that would not result in an illegal state change were 

confirmed valid by the code. Commands that do not belong to the list of expected commands 

should result in a syntax error. Commands that would result in an illegal state change should 

result in a modelling error. An illegal state change is characterized by trying to make a state 

change that is not supported by the state machine diagram or trying to change to a PV dependent 

state when pv_current is not greater than zero. 

The goal in comparing the Python and VHDL simulation results is to show that both 

implementations of the command validation module produce the same results. The results of the 

Python code were verified before the VHDL implementation was started. Because of this, if the 

VHDL simulation results match the Python simulation results, then the VHDL code successfully 

implements the command validation module that was described in Chapter 3. 

4.2 Python Testing and Simulation Results 

To test the Python implementation of the command validation module, the function 

test_payload_validation (shown in Fig. 12) was created. This function accepts a string for 

payload and an integer for pv_current. The current state of the system is printed along with the 

payload that was input to the function, then the function makes a call to payload_validation 

using the payload and pv_current that were input. Finally, the function updates the current state 

of the system. 
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Figure 12 – Python code: test_payload_validation function. 

 

Figure 13 – Python simulation: syntax_validation test. 

To begin, the proper operation of the syntax_validation function was tested. First, the test 

function was called using the payload “standby”, then once again using the payload 

“invalid_payload”. As expected, “standby” was accepted and “invalid_payload” resulted in a 

syntax error, as shown in Fig. 13. 

 To test the influence of the PV current on the modelling validation, the 

test_payload_validation function was called with the command “sell_pv” and a current of zero. 

As expected, this resulted in a modelling error because sell_pv requires that pv_current is greater 

than zero. Once again, test_payload_validation was called with the command “sell_pv”, but this 

time with a current of ‘1’. This time, the command was accepted, as shown in Fig. 14. 
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Figure 14 – Python simulation: pv_current test. 

 Lastly, the modelling_validation function was tested to ensure that it allowed changes to 

states that were in the current state’s allowed_state_change list and rejected changes to states 

that were not. The list of each state’s permissible state changes is shown in Table 1 of Chapter 3. 

The modelling validation was tested for the state sell_pv, which should only allow state changes 

to standby, charging_sell_pv, and sell_both. For test purposes, each time the payload was 

validated and current_state was changed, current_state was then manually overridden back to 

sell_pv again. Fig. 15 shows that modelling validation passed for the three state changes that 

were expected to pass, and Fig. 16 shows that modelling validation failed for the other attempted 

state changes. 
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Figure 15 – Python simulation: modelling_validation pass test. 

 

Figure 16 – Python simulation: modelling_validation fail test. 
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4.3 VHDL Testing and Simulation Results 

 A testbench was created to test the VHDL command validation module’s operation. To 

begin with, the reset input is tested by moving the current state into standby then raising reset to 

‘1’. The expected result is that current_state will go to shut_down, syntax_error and 

modelling_error will go to ‘1’, and, consequently, payload_valid will go to ‘0’. The waveforms 

in Fig. 17 over the time period of 6ns to 10ns confirms that the expected results were achieved. 

The syntax_validation process was tested after this to be sure that any unexpected 

commands cause syntax_error to go to ’1’ and payload_valid to go to ‘0’. The results of this test 

are shown in Fig. 18, where the payload “1111” causes syntax_error to go to ‘1’ from 14ns to 

18ns. 

 

Figure 17 – VHDL simulation: reset test. 

 

Figure 18 – VHDL simulation: syntax validation test. 
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Figure 19 – VHDL simulation: pv_current test. 

Next, the system was tested to make sure that states that are PV enabled could not be 

moved in to if pv_current was not greater than zero. If a payload commands the system to move 

in to a PV enabled state and pv_current is not greater than zero, then modelling_error should go 

to ‘1’, payload_valid should go to ‘0’, and current_state should remain the same. This is 

demonstrated in Fig. 19. From 18ns to 22ns, pv_current is 0 so the payload of “1010” that should 

result in a state change to island_charging fails. For the next clock cycle, shown from 22ns to 

26ns, pv_current is set to ‘1’ so the payload “1010” results in a successful state change to 

island_charging. 

For the next test, the modelling_validation process is tested for the standby state. To 

accomplish this, the system is moved into standby and the effect of each command is tested 

while the system is in standby. If an illegal state change is attempted, modelling_error should go 

to ‘1’, payload_valid should go to ‘0’, and current_state should remain standby. If the payload 

commands the system to make a legal state change, payload_valid goes to ‘1’ and current_state 

changes to reflect the command carried by the payload. Note that current_state is changed back 

to standby after each successful state change. All of this is demonstrated in the waveforms in 

Figs. 20-22. This test shows that the state machine is correctly implemented for standby state. 
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Figure 20 – VHDL simulation: state machine test for standby, 26ns – 46ns. 

 

Figure 21 – VHDL simulation: state machine test for standby, 46ns – 66ns. 

 

Figure 22 – VHDL simulation: state machine test for standby, 66ns – 98ns. 

The results of the VHDL simulations show that the system yields the same results as the 

Python model given the same inputs, as discussed in Chapter 3. Further, the VHDL command 

validation module behaves just as the Python module in terms of rejecting payloads that do no 

pass both syntax and modelling validation.  



   

 

 

21 

5.0 Conclusions and Future Research 

 The simulation results of section 4.2 demonstrate that the Python code appropriately 

models the command validation module and state machine logic for CSPR. The payload input to 

the system was rejected in all the test cases where rejection was expected due to failing either the 

syntax or modeling validation. Python’s simplicity and readability made it the ideal language for 

modeling the command validation logic before moving on to the more complicated VHDL 

implementation. The simulation results of section 4.3 demonstrate that the VHDL code correctly 

synthesized the command validation module that had been modeled in Python. 

 The next step in this project is to upload the command validation module to the Lattice 

MachXO2 FPGA for testing. This will allow for accurate timing tests to be performed on the 

command validation module to verify whether the code is too slow to be used in a production 

model of CSPR. Many problems can arise when moving VHDL code over to an FPGA, but the 

real-world testing of the command validation module would be the best way to demonstrate 

proof-of-concept. The command validation module may need to be tweaked as CSPR’s state 

machine is revised, but the current VHDL implementation provides a solid framework for the 

CSPR group to work with in the future. 
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