
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Electrical Engineering Undergraduate Honors
Theses Electrical Engineering

5-2018

Command Validation for Cybersecure Power Router Command Validation for Cybersecure Power Router

Isaac M. Kroger
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/eleguht

 Part of the Electrical and Electronics Commons, and the Other Electrical and Computer Engineering

Commons

Citation Citation
Kroger, I. M. (2018). Command Validation for Cybersecure Power Router. Electrical Engineering
Undergraduate Honors Theses Retrieved from https://scholarworks.uark.edu/eleguht/57

This Thesis is brought to you for free and open access by the Electrical Engineering at ScholarWorks@UARK. It has
been accepted for inclusion in Electrical Engineering Undergraduate Honors Theses by an authorized administrator
of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/eleguht
https://scholarworks.uark.edu/eleguht
https://scholarworks.uark.edu/eleg
https://scholarworks.uark.edu/eleguht?utm_source=scholarworks.uark.edu%2Feleguht%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=scholarworks.uark.edu%2Feleguht%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=scholarworks.uark.edu%2Feleguht%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=scholarworks.uark.edu%2Feleguht%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/eleguht/57?utm_source=scholarworks.uark.edu%2Feleguht%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Command Validation for Cybersecure Power Router

An undergraduate honors college thesis submitted in partial fulfillment

of the requirements for the degree of

Bachelor of Science in Electrical Engineering with Honors

by

Isaac M. Kroger

April 2018

University of Arkansas

This thesis is approved.

Dr. H. Alan Mantooth

Thesis Director

Dr. Jingxian Wu

Department Honors Advisor

Abstract

For grid-connected homes equipped with solar panels, power electronics are necessary to

manage and convert power between the solar panels, battery storage, grid, and residential load. A

power router can be used to manage these power electronics and govern power generation,

storage, and distribution within the household. This level of control makes power routers that do

not employ cybersecurity a target for external attacks. The use of command validation is an

effective way to prevent unauthorized commands from maliciously altering the state of a home’s

power router. The purpose of this thesis is to describe the development of the command

validation module for the Cybersecure Power Router (CSPR) being developed under the

Cybersecurity Center for Secure Evolvable Energy Delivery Systems (SEEDS).

 Packets sent over serial communication to CSPR are decoded to obtain a command that

then must pass command validation to ensure the command is safe and the source is trustworthy.

The command validation for CSPR consists of two phases: syntax validation and modelling

validation. Syntax validation is performed by analyzing the structure of the command, whereas

modelling validation checks to ensure that CSPR will not enter an unsafe state if the command is

executed. The command validation for CSPR was initially prototyped in Python to verify the

module met all project requirements. The module was then implemented in VHDL to be

uploaded to a Field-Programmable Gate Array (FPGA) for simulation and testing according to

project requirements. The research in this paper evaluates the effectiveness of using command

validation for preventing malicious attacks on CSPR. Simulation results for both the Python and

VHDL implementation are compared to assesses the usefulness of prototyping hardware

descriptive code using Python.

Acknowledgements

 I would like to thank Dr. Alan Mantooth for connecting me with the SEEDS team

involved with CSPR and for serving as my thesis advisor. A very special thank you goes out to

Joe Moquin, who has guided me every step of the way during my first undergraduate research

experience. Joe’s leadership and passion made this an exciting and impactful learning experience

for me. I would like to recognize Chris Farnell for his leadership to the CSPR team and for

holding the team accountable for clear communication. Finally, Nicholas Blair and Sang Yun

Kim, the other two undergraduates on the CSPR team, both played a valuable role in this project

by sharing their experiences, brainstorming ideas, and troubleshooting software with me.

Table of Contents

1.0 Introduction .. 1

1.1 Motivation .. 1

1.2 Thesis Objective ... 2

1.3 Thesis Organization.. 2

2.0 Background .. 3

2.1 Potential Threats to Power Routers .. 3

2.2 Cybersecure Power Router (CSPR) ... 3

3.0 Command Validation Module Design ... 6

3.1 System Design .. 6

3.2 Python Implementation .. 9

3.3 VHDL Implementation .. 12

4.0 Results .. 14

4.1 Simulation Goals .. 14

4.2 Python Testing and Simulation Results ... 14

4.3 VHDL Testing and Simulation Results .. 18

5.0 Conclusions and Future Research .. 21

References ... 22

List of Figures

Figure 1 – DSP controller board and power electronics board used for CSPR [4]. 3

Figure 2 – CSPR power flow diagram. .. 4

Figure 3 – Diagram of Cybersecure Power Router as defended layers [4]. 5

Figure 4 – CSPR network packet. .. 5

Figure 5 – CSPR state machine diagram. .. 6

Figure 6 – Command validation logic flow chart. ... 8

Figure 7 – Python code: payload_validation function. .. 10

Figure 8 – Python code: syntax_validation function. .. 10

Figure 9 – Python code: modelling_validation function.. 10

Figure 10 – Python code: State class. .. 11

Figure 11 – Python code: StateMachine class. .. 11

Figure 12 – Python code: test_payload_validation function. .. 15

Figure 13 – Python simulation: syntax_validation test. ... 15

Figure 14 – Python simulation: pv_current test. .. 16

Figure 15 – Python simulation: modelling_validation pass test. ... 17

Figure 16 – Python simulation: modelling_validation fail test. ... 17

Figure 17 – VHDL simulation: reset test. .. 18

Figure 18 – VHDL simulation: syntax validation test. .. 18

Figure 19 – VHDL simulation: pv_current test. .. 19

Figure 20 – VHDL simulation: state machine test for standby, 26ns – 46ns. 20

Figure 21 – VHDL simulation: state machine test for standby, 46ns – 66ns. 20

Figure 22 – VHDL simulation: state machine test for standby, 66ns – 98ns. 20

List of Tables

Table 1 – CSPR States ... 7

Table 2 – Command Validation Inputs and Outputs ... 12

1

1.0 Introduction

1.1 Motivation

 In recent years, the number of homes supplying their own power independently of the

grid has been increasing rapidly. From 2012 to 2015 residential solar installed capacity increased

by over 50% [1]. Traditionally, the electrical grid has been fed almost exclusively by large,

centralized power plants. However, as renewable energy sources increase in availability, the grid

is gradually transitioning toward a distributed generation model where electricity is generated by

smaller facilities located closer to their load [2].

 Photovoltaic (PV) systems are unable to generate power in the absence of sunlight. If

homeowners wish to have energy on demand, they must utilize some form of energy storage

system in conjunction with their solar panels. Rather than using high-capacity battery storage

systems, many owners of residential PV systems choose to buy and sell power to the utility

company through the grid. In modern homes, power electronics within energy management

systems (EMSs) are used to optimize the power flow between the various electrical systems in a

home, often with the intention generating maximum energy savings [3].

The electronics that manage power generation, storage, and distribution within a grid-

connected PV system are packaged together into a particular type of EMS referred to in this

paper as a power router. A power router is responsible for supervising the current, voltage, and

frequency between a home’s photovoltaics, batteries, converters, and grid and load connections.

Because a power router manages such a large amount of energy, it is important that homeowners

choose power routers that are robust and secure. If an unauthorized entity were to gain control of

the power router, they could cause great damage to the grid and the home of installation. One

way attackers may control an unsecure power router is by sending unauthorized commands to the

2

router via serial communication. By incorporating command validation in the security of a power

router, the threat that malicious commands impose on the system can be minimized.

1.2 Thesis Objective

This thesis aims to describe the design and development of the command validation

module for the Cybersecure Power Router (CSPR). Also covered is the design of the finite state

machine (FSM) used for modeling validation for CSPR. The command validation was first

modeled in Python before being implemented in VHDL, so a discussion about the use of Python

for prototyping is included as well. The simulation results of the VHDL module are included at

the end for proof of concept. These results are compared to the Python module simulations to

demonstrate the effectiveness of using Python to prototype code before implementing a design

using a lower level language such as VHDL.

1.3 Thesis Organization

This thesis is divided into five chapters total, beginning with the introduction in Chapter

1. Chapter 2 provides background about the role of security in energy management devices and

how CSPR is being developed to combat the threat of security breaches in power routers.

Chapter 3 focuses on the design and development of the command validation module for CSPR.

Chapter 4 showcases the results from testing the Python and VHDL implementations of the

command validation module. Chapter 5 summarizes the research and concludes the work

performed for this thesis, while also discussing the potential for future research.

3

2.0 Background

2.1 Potential Threats to Power Routers

To better understand the importance of security, it is helpful to discuss the threats that

may be faced by energy management devices such as power routers. Because a power router acts

as the controller for the main components of a household distribution network, if a hacker were

to gain unauthorized access to the router they could manipulate the flow of electricity between

these components. Frequent switching of device relays could be used to short-circuit expensive

electronics and potentially cause fires. Unauthorized manipulation of a power router could even

be used to inject harmonics into the grid through denial-of-service (DoS) attacks [4].

2.2 Cybersecure Power Router (CSPR)

CSPR is being developed under the Cybersecurity Center for Secure Evolvable Energy

Delivery Systems (SEEDS). SEEDS aims to address the lack of security in the power routers

available on the market today by sponsoring the design of CSPR, which will provide

cybersecurity for a grid-connected EMS. CSPR is based on the Smart Green Power Node

(SGPN) that is researched in [5-7].

Figure 1 – DSP controller board and power electronics board used for CSPR [4].

4

Figure 2 – CSPR power flow diagram.

CSPR manages the power flow between the solar panels, batteries, converters, grid, and

load of the residential home. The state of these individual devices is defined by the direction of

current flow through them, while the state of the power router is defined by the power flow

through the system as a whole. The state and current flow between each of these devices must be

coordinated depending on the current state of the power router. If an error were to occur that

caused a conflicting state of power flow, equipment could get damaged. The power flow diagram

in Fig. 2 shows the components managed by CSPR along with their corresponding states.

CSPR can be viewed as a collection of defended layers that work together to minimize

the potential for malicious attacks. Each layer has its own security features while also being

protected by the layers wrapping it. These layers all work together to ensure the confidentiality,

integrity, and availability of the system. The work in this thesis focuses on the command layer,

which is protected through validation of encrypted commands that are sent over the

communication port.

5

Figure 3 – Diagram of Cybersecure Power Router as defended layers [4].

CSPR is designed to receive network packets through serial communication. A single

network packet consists of a frame header, an address, a payload, and a cyclic redundancy check

(CRC). The frame header, address, and CRC are control data used to evaluate the destination and

integrity of the message. The payload contains an encrypted command that carries information

telling the power router what to do. Performing command validation on the decrypted payload

adds a greater depth of security to the system, ensuring the command is a known command that

will not cause the system to enter an unwanted state.

Figure 4 – CSPR network packet.

6

3.0 Command Validation Module Design

3.1 System Design

CSPR can be modeled by a finite state machine (FSM) that is based on the work

proposed for the SGPN in [5]. Each state falls into one of two categories: islanding and grid-

connected. Islanding states describe states where the relays between the grid and household are

opened and therefore the house is disconnected from the grid. Grid-connected states, as the name

suggests, are states where power may be exchanged between the grid and the house. The inputs

to the FSM are the commands that are transmitted via serial communication, and the current

being supplied by the home’s solar panels. Fig. 5 shows an illustration of the state machine

diagram. Note that Fig. 5 does not specify the inputs that would result in each state change, but

instead demonstrates the state changes that are allowable.

Figure 5 – CSPR state machine diagram.

7

Table 1 – CSPR States

Name Bit

Code

PV Battery Dual Half-

Bridge

Grid

Connected

Allowed State Changes

shut_down 0000 Off Off Off No standby, ups, island_charging

standby 0001 Off Off Off Yes shut_down,

charging_from_grid,

charging_from_pv, sell_pv,

sell_battery, ups,

island_charging

charging_from_grid 0010 Off Charging To

PV/Battery

Yes standby, sell_battery

charging_from_pv 0011 On Charging Off Yes standby, charging_sell_pv,

island_charging

charging_sell_pv 0100 On Charging To

Grid/Load

Yes charging_from_pv, sell_pv,

sell_both

sell_pv 0101 On Off To

Grid/Load

Yes standby, charging_sell_pv,

sell_both

sell_both 0110 On Discharging To

Grid/Load

Yes charging_sell_pv, sell_pv,

sell_battery, pv_assist_ups

sell_battery 0111 Off Discharging To

Grid/Load

Yes standby, charging_from_grid,

ups

ups 1000 Off Discharging To

Grid/Load

No shut_down, standby,

sell_battery, pv_assist_ups

pv_assist_ups 1001 On Discharging To

Grid/Load

No sell_both, ups,

island_charging

island_charging 1010 On Charging Off No standby, charging_from_pv,

pv_assist_ups

Detailed information about each state is given in Table 1. The name of each state as used

in code is given along with the state’s corresponding bit code that is serving as a place holder for

what might be transmitted through the payload of the serial communication. The state of each of

the components shown in the power flow diagram of Fig. 2 is given as well. The PV system can

either be on or off, and the battery can be charging, discharging, or off. The dual half-bridge

converter can be pushing power to the grid/load or to the PV/battery system. Also, the system

can either be grid connected or islanding. Each of the allowed state changes is given for every

state, which can also be inferred from the state machine diagram of Fig. 5. Note that

uninterruptable power supply mode is abbreviated to ups in Fig. 5 and Table 1.

8

The command validation consists of two phases: syntax validation and modeling

validation. Syntax validation is performed by comparing the command to a list of acceptable

commands stored in memory. If the command is contained in the list of acceptable commands,

then the command passes syntax validation. Modeling validation is performed through the use of

the state machine. If the state change suggested by the command is acceptable according to the

state machine, then the command passes modeling validation. If either syntax validation or

modeling validation fails, the command is rejected. If both syntax validation and modeling

validation pass, the state machine is updated to reflect the state change carried by the command.

Figure 6 – Command validation logic flow chart.

9

3.2 Python Implementation

Beginning with a Python model before moving on to the final VHDL implementation

was ideal because Python is a comparatively user-friendly language to work with. Python code is

very clear and concise compared to VHDL, making it easy to share and review with others. The

data structures available in Python are a great resource when modeling complex systems.

Further, testing Python code is very simple and fast when compared to simulating VHDL

modules. Consequently, verifying that the command validation model was designed correctly

and met all requirements was made much easier by utilizing Python.

The Python code is split into two files: payloadvalidation.py and statemachine.py. The

file payloadvalidation.py contains the function payload_validation, which accepts a payload and

a photovoltaic (PV) current as inputs. The function payload_validation calls syntax_validation, a

function that compares the payload to a dictionary containing each of the acceptable commands

and the state change associated with each command. If syntax_validation returns false, the

payload validation returns false and prints a relevant message stating why validation failed. If

syntax_validation returns true, modelling_validation is called. If modelling_validation returns

true, then payload_validation returns true to signal to the system that the command is authentic

and safe. If either syntax_validation or modelling_validation return false, then a relevant

message stating why the validation failed is printed to the console and payload_validation

returns false.

10

Figure 7 – Python code: payload_validation function.

Figure 8 – Python code: syntax_validation function.

Figure 9 – Python code: modelling_validation function.

The backbone of the modelling_validation function is the statemachine.py file that

contains the definition of the State and StateMachine classes. The State class contains properties

inherent to each state of CSPR. A group of properties are used to define whether the direction of

current flow is in or out for the PVs, batteries, and grid. Each of these properties accept a

Boolean value to designate whether current in is true/false or current out is true/false. If the

component is disconnected for the particular state being defined, then both current in and current

out receive false values. In no case may both current in and current out receive the value true.

11

Another important property is a list of each allowable state change for the state being defined.

The StateMachine class contains definitions for each state of CSPR.

Figure 10 – Python code: State class.

Figure 11 – Python code: StateMachine class.

12

3.3 VHDL Implementation

To make the transition from Python to VHDL, the set of inputs, processes, and outputs

must be abstracted from the previous implementation. By modeling the command validation

module in Python to begin with, all the inputs and outputs of the system had been identified and

the basic logic had been determined. A 4-bit payload containing a command is input to the

system along with a measurement of the current being produced by the PV system expressed in

mA by a 16-bit vector. Single bit clock and reset inputs were added to the input list since a state

machine is a synchronous system. The outputs are active high single bit signals used to express

the type of error and whether the payload was valid or not. The system inputs and outputs are

listed in Table 2.

Table 2 – Command Validation VHDL Implementation Inputs and Outputs

Inputs Outputs

clock syntax_error

reset modelling_error

payload payload_valid

pv_current

13

The architecture of the VHDL code contains the syntax_validation and

modelling_validation processes, as well as the asynchronous logic for determining the value of

payload_valid. Designing the command validation to use two separate processes enables a multi-

core FPGA to take advantage of parallel processing to decrease the latency of the command

validation. Because payload_valid is determined by combinational logic that depends on whether

a syntax or modeling error occurred and because VHDL does not support reading from outputs,

two signals named syntax_error_buffer and modelling_error_buffer are used to temporarily store

whether a syntax or modeling error occurred. In turn, the outputs syntax_error and

modelling_error are driven by their temporary counterparts. The syntax_validation process uses

if statements to compare the current payload input to all expected payload values. If the payload

doesn’t match any of the bit-strings coded in the if statements, syntax_error_buffer is set to ‘1’.

The modelling_validation process makes use of the state machine logic to control the

value of modelling_error_buffer. The user-defined type state_type is used to define the signal

current_state who can only take on a value that is the name of one of the states that the FSM

may be in. The modelling_validation process contains hard-coded logic that uses nested case and

if statements to determine the value that modelling_error_buffer will receive based on the value

of the current_state signal, the payload port, and the pv_current port. If the modeling validation

passes, then modelling_error_buffer is initialized to ‘0’ and the value of current_state is updated

to reflect the state change contained in the command. The temporary signals syntax_error_buffer

and modelling_error_buffer are used as inputs to a nor gate whose output is payload_valid. This

way, if either syntax_error_buffer or modelling_error_buffer is high, payload_valid goes low.

14

4.0 Results

4.1 Simulation Goals

When simulating the command validation module, the goal was to ensure that commands

that belong to the list of expected commands that would not result in an illegal state change were

confirmed valid by the code. Commands that do not belong to the list of expected commands

should result in a syntax error. Commands that would result in an illegal state change should

result in a modelling error. An illegal state change is characterized by trying to make a state

change that is not supported by the state machine diagram or trying to change to a PV dependent

state when pv_current is not greater than zero.

The goal in comparing the Python and VHDL simulation results is to show that both

implementations of the command validation module produce the same results. The results of the

Python code were verified before the VHDL implementation was started. Because of this, if the

VHDL simulation results match the Python simulation results, then the VHDL code successfully

implements the command validation module that was described in Chapter 3.

4.2 Python Testing and Simulation Results

To test the Python implementation of the command validation module, the function

test_payload_validation (shown in Fig. 12) was created. This function accepts a string for

payload and an integer for pv_current. The current state of the system is printed along with the

payload that was input to the function, then the function makes a call to payload_validation

using the payload and pv_current that were input. Finally, the function updates the current state

of the system.

15

Figure 12 – Python code: test_payload_validation function.

Figure 13 – Python simulation: syntax_validation test.

To begin, the proper operation of the syntax_validation function was tested. First, the test

function was called using the payload “standby”, then once again using the payload

“invalid_payload”. As expected, “standby” was accepted and “invalid_payload” resulted in a

syntax error, as shown in Fig. 13.

 To test the influence of the PV current on the modelling validation, the

test_payload_validation function was called with the command “sell_pv” and a current of zero.

As expected, this resulted in a modelling error because sell_pv requires that pv_current is greater

than zero. Once again, test_payload_validation was called with the command “sell_pv”, but this

time with a current of ‘1’. This time, the command was accepted, as shown in Fig. 14.

16

Figure 14 – Python simulation: pv_current test.

 Lastly, the modelling_validation function was tested to ensure that it allowed changes to

states that were in the current state’s allowed_state_change list and rejected changes to states

that were not. The list of each state’s permissible state changes is shown in Table 1 of Chapter 3.

The modelling validation was tested for the state sell_pv, which should only allow state changes

to standby, charging_sell_pv, and sell_both. For test purposes, each time the payload was

validated and current_state was changed, current_state was then manually overridden back to

sell_pv again. Fig. 15 shows that modelling validation passed for the three state changes that

were expected to pass, and Fig. 16 shows that modelling validation failed for the other attempted

state changes.

17

Figure 15 – Python simulation: modelling_validation pass test.

Figure 16 – Python simulation: modelling_validation fail test.

18

4.3 VHDL Testing and Simulation Results

 A testbench was created to test the VHDL command validation module’s operation. To

begin with, the reset input is tested by moving the current state into standby then raising reset to

‘1’. The expected result is that current_state will go to shut_down, syntax_error and

modelling_error will go to ‘1’, and, consequently, payload_valid will go to ‘0’. The waveforms

in Fig. 17 over the time period of 6ns to 10ns confirms that the expected results were achieved.

The syntax_validation process was tested after this to be sure that any unexpected

commands cause syntax_error to go to ’1’ and payload_valid to go to ‘0’. The results of this test

are shown in Fig. 18, where the payload “1111” causes syntax_error to go to ‘1’ from 14ns to

18ns.

Figure 17 – VHDL simulation: reset test.

Figure 18 – VHDL simulation: syntax validation test.

19

Figure 19 – VHDL simulation: pv_current test.

Next, the system was tested to make sure that states that are PV enabled could not be

moved in to if pv_current was not greater than zero. If a payload commands the system to move

in to a PV enabled state and pv_current is not greater than zero, then modelling_error should go

to ‘1’, payload_valid should go to ‘0’, and current_state should remain the same. This is

demonstrated in Fig. 19. From 18ns to 22ns, pv_current is 0 so the payload of “1010” that should

result in a state change to island_charging fails. For the next clock cycle, shown from 22ns to

26ns, pv_current is set to ‘1’ so the payload “1010” results in a successful state change to

island_charging.

For the next test, the modelling_validation process is tested for the standby state. To

accomplish this, the system is moved into standby and the effect of each command is tested

while the system is in standby. If an illegal state change is attempted, modelling_error should go

to ‘1’, payload_valid should go to ‘0’, and current_state should remain standby. If the payload

commands the system to make a legal state change, payload_valid goes to ‘1’ and current_state

changes to reflect the command carried by the payload. Note that current_state is changed back

to standby after each successful state change. All of this is demonstrated in the waveforms in

Figs. 20-22. This test shows that the state machine is correctly implemented for standby state.

20

Figure 20 – VHDL simulation: state machine test for standby, 26ns – 46ns.

Figure 21 – VHDL simulation: state machine test for standby, 46ns – 66ns.

Figure 22 – VHDL simulation: state machine test for standby, 66ns – 98ns.

The results of the VHDL simulations show that the system yields the same results as the

Python model given the same inputs, as discussed in Chapter 3. Further, the VHDL command

validation module behaves just as the Python module in terms of rejecting payloads that do no

pass both syntax and modelling validation.

21

5.0 Conclusions and Future Research

 The simulation results of section 4.2 demonstrate that the Python code appropriately

models the command validation module and state machine logic for CSPR. The payload input to

the system was rejected in all the test cases where rejection was expected due to failing either the

syntax or modeling validation. Python’s simplicity and readability made it the ideal language for

modeling the command validation logic before moving on to the more complicated VHDL

implementation. The simulation results of section 4.3 demonstrate that the VHDL code correctly

synthesized the command validation module that had been modeled in Python.

 The next step in this project is to upload the command validation module to the Lattice

MachXO2 FPGA for testing. This will allow for accurate timing tests to be performed on the

command validation module to verify whether the code is too slow to be used in a production

model of CSPR. Many problems can arise when moving VHDL code over to an FPGA, but the

real-world testing of the command validation module would be the best way to demonstrate

proof-of-concept. The command validation module may need to be tweaked as CSPR’s state

machine is revised, but the current VHDL implementation provides a solid framework for the

CSPR group to work with in the future.

22

References

[1] SEIA, “Solar Industry Research Data”, 2017. [Online]. Available:

https://www.seia.org/solar-industry-research-data. [Accessed: April 24, 2018].

[2] Zhao, B. Wang, C. Zhang, Xuesong, “Grid-Integrated and Standalone Photovoltaic

Distributed Generation Systems – Analysis Design and Control”. John Wiley and Sons,

2018.

[3] S. Lisauskas, R. Kline, “Energy Management Systems: Maximizing Energy Savings

(Text Version)”. Office of Energy Efficiency & Renewable Energy. [Online]. Available:

https://www.energy.gov/eere/wipo/energy-management-systems-maximizing-energy-

savings-text-version. [Accessed: April 24, 2018].

[4] H. A. Mantooth, J. Moquin, “Cybersecure Power Router (CSPR)”. SEEDS Proposal

Presentation, 2018. [Powerpoint].

[5] S. Zhao, J. Umuhoza, Y. Zhang, J. Moquin, C. Farnell and H. A. Mantooth, "Analysis

and optimization of a high-efficiency residential energy harvesting system with dual half-

bridge converter," 2017 IEEE Applied Power Electronics Conference and Exposition

(APEC), Tampa, FL, 2017, pp. 2838-2844.

[6] Y. Zhang, J. Umuhoza, Y. Liu, C. Farnell, H. A. Mantooth, R. Dougal, “Optimized

control of isolated residential power router for photovoltaic applications,” IEEE Energy

Conversion Congress and Exposition (ECCE), pp. 53-59, Sept. 2014.

[7] Y. Zhang, J. Umuhoza, H. Liu, F. Hossain, C. Farnell, H. A. Mantooth, “Realizing an

integrated system for residential energy harvesting and management,” IEEE Applied

Power Electronics Conference (APEC), pp. 3240-3244, March 2015.

https://www.seia.org/solar-industry-research-data
https://www.energy.gov/eere/wipo/energy-management-systems-maximizing-energy-savings-text-version
https://www.energy.gov/eere/wipo/energy-management-systems-maximizing-energy-savings-text-version

	Command Validation for Cybersecure Power Router
	Citation

	tmp.1525198715.pdf.KeFbp

