
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2018

Training Machine Learning Agents in a 3D Game Engine Training Machine Learning Agents in a 3D Game Engine

Diego Calderon
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

 Part of the Other Computer Engineering Commons

Citation Citation
Calderon, D. (2018). Training Machine Learning Agents in a 3D Game Engine. Computer Science and
Computer Engineering Undergraduate Honors Theses Retrieved from https://scholarworks.uark.edu/
csceuht/50

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at
ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information,
please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csce
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.uark.edu%2Fcsceuht%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/50?utm_source=scholarworks.uark.edu%2Fcsceuht%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/50?utm_source=scholarworks.uark.edu%2Fcsceuht%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

1

Training Machine Learning Agents in a 3D Game Engine

Diego Calderon

4/9/2018

Abstract

Artificial intelligence (AI) and video games benefit from each other. Games

provide a challenging domain for testing learning algorithms, and AI provides a

framework to designing and implementing intelligent behavior, which reinforces

meaningful play. Medium and small studios, and independent game developers, have

limited resources to design, implement, and maintain agents with reactive behavior. In

this research, we trained agents using machine learning (ML), aiming to find an

alternative to expensive traditional algorithms for intelligent behavior used in video

games. We use Unity [14] as a game engine to implement the environments and

TensorFlow [13] for the neural network training.

1. Introduction

AI is the science and engineering of making intelligent machines. AI is a very

broad area of study addressing a wide range of topics; which include planning, learning,

natural language processing, perception, and the ability to manipulate objects (see

figure 2). As you may suspect, the effort of advancing knowledge in AI is

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html

2

multidisciplinary, attracting talent from computer science, mathematics, neuroscience,

and many other fields. Even though AI does not yet present itself with characteristics of

human intelligence, there are technologies that perform tasks better than humans.

These tasks are under the concept of "narrow AI," which only have one narrow task. A

good example of narrow AI is the task of image classification on a service like face

recognition of Facebook. These technologies exhibit similarities of human intelligence,

which come from ML [5].

One important field of study within AI is the development of intelligent agents.

Any device that perceives its environment and can make decisions and act in a rational

way (which maximizes its chances of success at a defined goal) is an intelligent agent.

The diagram below shows how an agent perceives its environment, assesses its current

state, evaluates the consequence of its actions, makes a decision, and finally, takes an

action that will affect the environment. This process is repeated until a goal is reached.

Figure 1: Model and goal based agent. Originally from Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach
p.52

https://commons.wikimedia.org/w/index.php?title=Stuart_J._Russell&action=edit&redlink=1
https://commons.wikimedia.org/w/index.php?title=Peter_Norvig&action=edit&redlink=1
https://commons.wikimedia.org/w/index.php?title=Artificial_Intelligence:_A_Modern_Approach&action=edit&redlink=1

3

1.1 Machine Learning

ML is a subfield of AI that aims to provide machines with the ability to learn

without explicit programming. Conceptually, the goal of ML is to automatically discover

the mapping function that takes a set of inputs A and calculates output B. This could

mean given an input, we want to predict its output. For example, given a loan

application, we want to know if it will be accepted. Basically, ML is the practice of using

algorithms to parse data, learn from it, and predict a new outcome given access to new

data. This means that instead of having a static hand-coded set of instructions with a

specific purpose, the machine is trained with a large dataset and algorithms that result

in the ability to perform certain tasks. Most ML problems fall into one of two categories:

supervised or unsupervised learning [5]. The example of mapping set A to B falls into

the supervised learning domain. In this setting we wish to fit a model that relates

observations to responses, with the purpose of accurately predicting the response of

observations not seen before. On the other hand, unsupervised learning describes the

scenario in which for every observation 𝑖 = 1, … , 𝑛, we observe a vector of

measurements 𝑥𝑖, but no associated response 𝑦_𝑖. In other words, we cannot supervise

the analysis because we lack response variables.

4

Figure 2 Different branches of AI.

Retrieved from https://mse238blog.stanford.edu/2017/08/jgokani/the-evolution-of-banking-ai/

1.2 Artificial Neural Networks

A popular technique to build programs that learn from data is using artificial

neural networks. At its most basic level, a neural network is inspired by our

understanding of the brain [7]. To implement it, a collection of neurons is created and

connected (allowing communication between them). Mathematically speaking, the

simplest artificial neuron takes binary inputs, and produces a single binary output (note

that artificial neurons also compute continuous inputs and outputs). In this model, the

concept of weights was introduced to compute the output. These weights, 𝑤1, 𝑤2, … , 𝑤𝑛,

are real numbers that represent the importance of the respective inputs to the output.

The neuron’s output is determined by the following algebraic term:

5

𝑜𝑢𝑡𝑝𝑢𝑡 = {
0 𝑖𝑓 ∑ 𝑤𝑗𝑥𝑗 ≤ 𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑗

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

To illustrate this concept, let us consider a toy example. Imagine we have a non-player

character in a video game whose objective is to attack the player. The agent might

make decisions by weighting up three factors: Is the agent’s life low? Is the player’s life

low? Is there an ally near? If the agent’s life is low, the player’s life is not low, and there

are no allies nearby, our input would look like 𝑥1 = 1, 𝑥2 = 0, 𝑎𝑛𝑑 𝑥3 = 0. Now, let us

suppose that we greatly value whether the player’s life is low, we moderately value the

agent’s life, and we do not care if there are nearby allies. In this case, the decision to

attack or not could be represented as 𝑤1 = 3, 𝑤2 = 6, 𝑎𝑛𝑑 𝑤3 = 1. Note that other

weights would produce different attack behaviors.

1.3 Reinforcement Learning

Furthermore, a successful technique for ML is reinforcement learning (learning

from rewards or punishments). Reinforcement learning involves an agent, a set of

states, and a set of actions [11]. By performing actions, the agents transitions between

states. This method allows agents to learn how to achieve successful strategies (a

sequence of actions) that lead to the greatest utility in the long term (they seek to

maximize long-term rewards) without any hand-coded features. These agents are now

beating humans at playing Atari games [6], and they even beat champions at the

strategy board game Go. DeepMind presented a successful deep learning model that

learns control policies from high-dimensional input using reinforcement learning. The

authors used this method to play seven Atari 2600 games using the Arcade Learning

https://deepmind.com/blog/deep-reinforcement-learning/

6

Environment (without adjusting the architecture or learning algorithm to play the

different games).

Figure 3:Reinforcement Learning training cycle. Retrieved from https://blogs.unity3d.com/2017/09/19/introducing-unity-machine-
learning-agents/

In other words, their agent interacts with an environment (the Atari emulator) in a

sequence of actions, observations, and rewards. At each step, the agent selects a valid

action, which modifies the game’s internal state and score [15]. A simple example of a

reinforcement learning task is playing Pong. The agent controls a paddle in a vertical

motion (up and down). The objective is to bounce a ball in the paddle and make the

opponent miss the ball. For this task, the agent receives a byte array with pixel values

(a 210x160x3 byte array with integer values ranging [0,255]), which represents the

current information on the computer screen, and learns to decide whether to move the

paddle up or down [6]. After each decision, the simulator executes the action and

rewards the agent: 1 if the opponent missed the ball, -1 if the agent missed the ball, and

0 otherwise. What makes reinforcement learning even more challenging is that we do

not have the correct label for the input (we do not know what is the right action given the

game state beforehand). In the supervised learning task, we train over known data,

mapping input to output, and then testing it with unseen data. A common reinforcement

https://blogs.unity3d.com/2017/09/19/introducing-unity-machine-learning-agents/
https://blogs.unity3d.com/2017/09/19/introducing-unity-machine-learning-agents/

7

technique is Q-learning, which does not require a model of the environment [11]. Recall

that the reinforcement learning tasks consists of an agent, a set of states 𝑠 ∈ 𝑆, and a

set of actions 𝑎 ∈ 𝐴. On a high level, the Q-learning algorithm performs the following

computation:

• Perform action 𝑎 𝑖𝑛 𝑠

• Receive consequences of the actions performed: 𝑠’

• Compute an evaluation of 𝑠’: 𝑉(𝑠’)

• Update crossbar value 𝑊’(𝑎, 𝑠) = 𝑊(𝑎, 𝑠) + 𝑉(𝑠’).

Another popular reinforcement learning approach (moving away from Q-learning) is

using Policy Gradients [10]. On a high level, policy gradients make good actions more

likely and bad actions less likely. We can think of it as a formalization of trial and error: a

stochastic policy that samples actions and then actions that lead to good outcomes are

encouraged in the future, and actions that lead to bad outcomes are discouraged.

Open AI [9] recently proposed a new family of policy gradient methods for reinforcement

learning, which alternates between sampling data through interaction with an

environment, and optimizing an objective function using stochastic gradient ascent. We

will use this method to train our agents.

The fact that there are algorithms that allows agents to learn how to effectively

interact with its environment is exciting, especially for video games. However, AI in

games is not only a matter of developing good algorithms, but also a matter of good

design. We do not want AI to frustrate the player, but to elevate gameplay. Every

system should address AI in a different manner. AI in games should be predictable, but

not easy to beat. Furthermore, it should be designed in a manner that allows players to

8

find behavioral patterns, which would allow them to devise their own meaningful goals

(through their understanding of the game mechanics), and to formulate meaningful

plans. In practice, it is common for video games to use scripted computer opponents.

This means that the designers must build a behavior tree (BT), which describes the

switching between a finite set of tasks in a modular manner. Even though BT can create

complex tasks composed of simple ones, they can grow very large. As you can see in

Figure 4, the complexity of a BT increases with each different action. This means that if

a designer, down the road, decides that it would be appropriate to add a new action the

agent needs to perform, the BT must be modified almost entirely, which is a large

investment of resources.

Figure 4 Handling Complexity in the Halo 2 AI, GDC 2005. Retrieved from
https://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_handling_.php

9

1.3 Game Engine

Unity is a cross-platform game engine which supports the development of 3D

and 2D video games and simulations with drag-and-drop functionality. Originally, Unity

supported scripting using C# and Javascript, but with their latest release they have

started deprecating Javascript. Due to recent advances in graphics hardware, the Unity

Engine is evolving into a complete 3D modeling tool, able to generate high-quality

simulations; which caught the attention of both academia and industry [4].

Unity recently released a toolkit for training ML agents. This tool allows developers and

researchers train and test AI algorithms in a 3D world. We are particularly interested in

using Unity to train agents because of the simplicity in generating games (a well

implemented API and a large, and collaborative, community). As we mentioned before,

with the rise of processing power, simulated environments are becoming a more

common testing platform across disciplines. Simulated 3D environments allow

researchers to test their ideas in a safe manner. Unity’s tool allows the training of

agents using TensorFlow and to export them directly to the environment (to visualize

results, analyze behaviors, and test the agents). Within the tool, the communication

between the game’s environment and the library for numerical computation is displayed

in Figure 5.

10

Figure 5:Unity's learning environment. Retrieved from https://blogs.unity3d.com/2017/09/19/introducing-unity-machine-learning-
agents/

1.3.1 ML-Agents Key Components

Following ML-Agents’ documentation [14], the plugin contains three high-level

components:

• Learning Environment: contains the Unity scene (3D or 2D environment), and

all characters and agents.

• Python API: contains all the ML algorithms used for training (the API is not part

of Unity, and needs an external communicator).

• External Communicator: connects the Learning Environment and the Python

API. It lives inside the Learning Environment.

With this plugin, we can train agents using a variety of methods.Basically, we define

three entities at every moment of the environment:

• Observations: what the agent perceives of the environment, which can be visual

and/or numeric. Observations can be discrete or continuous, depending on the

11

complexity of the environment-- typically, more complex environments require

numerous continuous observations.

• Actions: what actions the agent can take. Actions can also be discrete or

continuous numerical values, depending on the complexity of the environment

and the agent. For example, if the actions of the agent depend on more than one

factor, for example speed and direction, the agent might benefit from having

continuous actions.

• Reward Signals: a scalar value that indicates how well an agent is doing in its

environment. Recall that the reward signals is how the objectives of the task are

communicated to the agent. Therefore, the reward system must be set up such

that maximizing the reward leads to an optimal behavior.

Using these entities, we can train the agent’s behavior. Using the notation of

reinforcement learning, the behavior an agent learns is called a policy, which is an

optimal mapping between observations and actions. Furthermore, the ML-Agents plugin

contains three additional components to help organize the scene:

• Brain: encapsulates the logic for making decisions for the Agent. It is the

component that receives the observations and rewards from the Agent and

returns an action.

• Agent: handles generating observations, performing the actions it receives from

the brain, and assigning a reward when appropriate. Each Agent is linked to

exactly one Brain.

12

• Academy: orchestrates the observation and decision-making process. Within

the Academy, several environment-wide parameters such as the rendering

quality can be specified. The External Communicator lives within the Academy.

To summarize, each agent must be linked to a brain, and it is possible to have multiple

agents linked to a single brain. Note that the brain defines the space of all possible

actions and observations, and the agents that are connected to a specific brain can

have unique observation and action values. In other words, the brain receives

observations and rewards from the agents and returns actions. Each learning

environment will have a global academy, which ensures that all the agents and brains

are synchronized and controls environment-wide settings.

2. Approach

The first step is to download and install Unity 2017.1. There are several options

for downloading it, but for using for using Unity’s ml-agents, the free personal version

suffices. To access the downloading site, follow the link: https://unity3d.com/get-

unity/download. There are several tutorials online on how to get started with Unity. A

step-by-step guide to getting started can be found here: https://unity3d.com/learn. Since

Unity’s ML-agents is constantly evolving, I would suggest checking their documentation

here: https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Readme.md.

This work was implemented using ML-Agents V0.1, and currently, they released the

third version, which is not compatible with earlier versions of Unity and ML-Agents. The

newer versions introduced new learning algorithms, such as curriculum and imitation

learning, which we did not use to train our agents.

https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/learn
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Readme.md

13

Also, it is good to note that the ML-Agents developing team constantly update

their documentation, making it easier for developers to interface with their code. Once

Unity 2017.1 is installed, we need to install TensorFlow. On 2015, Google released an

open source software library called TensorFlow, which is used for ML and Deep

Learning for numerical computations. TensorFlow can run on multiple CPUs and GPUs,

and since we will work with large datasets, it will be beneficial to run these algorithms on

CUDA enabled Nvidia GPUs to achieve faster execution. We used Windows 10,

therefore, we will explain the installation process. The first step is to check if your Nvidia

GPU is CUDA compatible, which you can check here:

https://developer.nvidia.com/cuda-gpus. If your GPU is compatible, the next step is to

set it up. First, you need to install Cuda Toolkit 8.0 and cuDNN v5.1. You can download

the toolkit from https://developer.nvidia.com/cuda-downloads, and the cuDNN library for

Windows 10 from https://developer.nvidia.com/cudnn.

For a graphical explanation of how to install those components, you can follow

Nitish Mutha’s guide [8]. Once the toolkit and library are installed, you need to install

Python 3: download and install Anaconda for Windows. For the V0.1 of ML-Agents, you

could use Python 2 or Phyton 3. Note that for newer versions, Python 2 is no longer

supported. Once Anaconda is installed, you need to activate a new conda environment,

and install all the dependencies. The most straight forward way of installing

dependencies is to clone the following repository: git clone git@github.com:Unity-

Technologies/ml-agents.git, navigate to the directory in anaconda prompt, and then run

the command “pip install .” Once those requirements are installed, run the command

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cudnn

14

“pip install tensorflow-gpu.” Now we are ready to train agents in Unity! For a deeper

insight into Unity, refer to [14].

3. Learning Environment Evaluation

The goal of this research is to demonstrate the benefits of using ML to create

intelligent behavior in video games. To demonstrate the benefits of training intelligent

agents using ML techniques, we designed, implemented, and evaluated 2D

environments (with simple tasks) using Unity as a game engine. We will describe them

in detail in the following subsections.

3.1 3D Ball

 To familiarize ourselves with this new tool, we followed Unity’s example

environment “3D Ball.” The task is to balance a ball in a platform, and keep it on as long

as possible. To summarize (using Unity’s description), the task is as follows:

• Set-up: Balance a ball – the agent controls the platform.

• Goal: Keep the ball on the platform as long as possible.

• Agents: The environment consists of 12 agents linked to a single brain.

• Agent reward function:

o +0.1 for every step that the ball remains on the platform.

o -1.0 if the ball falls.

• Brains: One brain

• State space: Continuous – 8 variables corresponding to: rotation of platform, and

position, rotation, and velocity of the ball.

• Action space: Continuous – 2 possible actions (rotate x axis, and rotate z axis).

• Observations: 0.

15

• Reset parameters: None.

After two hours of training the agents with these settings, we were able to successfully

train an agent to balance the ball. What is unique to this tool is that once we trained the

agent, we were able to modify the environment and see how the trained agents reacted.

For example, we made a platform rotate constantly in the y axis (adding more challenge

to the task). We also made modifications to add random forces to the balls. This

showed us how the agents reacted to “unexpected” events that did not happen during

training.

Figure 6: Agents linked to one brain balancing a ball

3.2 Linear Movement

After training the example environment (where the observations and actions were

given to us), we decided to set a simple environment to test the features of the platform.

The task is to linearly move a character to reach a goal. The setting is as follows:

• Set-up: Move left or right.

• Goal: Reach the goal.

16

• Agents: The environment consists of 1 agent linked to a single brain.

• Agent reward function:

o -0.1 for every action.

o -1 for going out of bounds.

o +1 for arriving at the goal.

• Brains: One brain

• State space: Continuous – 2 variables corresponding to the position of goal, and

the agent’s position. Our setting ranges from 0 to 100 in the x coordinate. The

position of the goal and agent is generated randomly each simulation.

• Action space: Discrete – 2 possible actions (move left, and move right). The

agents move at a constant speed, with no acceleration.

• Observations: 0.

• Reset parameters: Randomly place the goal and agent.

Figure 7:Simple task of reaching goal

17

After 20 minutes of training, the trained agent was able to move towards the goal every

time. With more training time, the agent would move to the target faster. Early versions

of the trained agents would alternate between moving left and right, but would

eventually reach the target. Even in those early versions, the agent would avoid going

out of bounds.

3.3 Linear movement with obstacles

To increase the challenge of the previous approach, we decided to add an obstacle

between the agent and the goal. In this process, we learned that our locomotion

implementation (and the way we handled moving from left to right or vice versa) had

conflicts with the obstacle’s collider. To solve this problem, we changed the

implementation to negatively reward the agent if it collided with the obstacle. The

agent’s task is as follows:

• Set-up: Move left, right, do nothing, and jump.

• Goal: Reach an objective.

• Agents: The environment consists of 1 agent linked to a single brain.

• Agent reward function:

o -0.1 for locomotion.

o -1 for colliding with an obstacle or going out of bounds.

o +1 for reaching an objective.

• Brains: One brain

• State space: Continuous – 5 variables corresponding to the position of the agent,

the position of the goal, the distance between the agent and the goal, the value

of a raycast, and 1 if the raycast hit an obstacle (0 otherwise).

18

• Action space: Discrete – 4 possible actions (move left, right, jump, and do

nothing).

• Observations: Local ray-cast perception.

• Reset parameters: Randomly place the goal, the obstacle, and agent.

Figure 8 Agent avoiding obstacles by jumping

First, we designed and developed the environment, defined possible actions of

characters, set the brain to external, exported the environment created with Unity, and

trained the agents using TensorFlow. With this approach, after 2 hours of training, our

agent learned to jump obstacles when they are in the way of the goal. We added more

obstacles in different locations to test the agent, and it successfully overcame most of

the settings. The most significant problem we had with this approach was the rotating of

the sprites when the agent changed directions. When the agent was close to the

obstacle’s collider, and it moved right and left rapidly, the colliders would overlap and it

would make the agent float (disconnecting the actions from the consequences and

rewards). Once we fixed that problem, the training process was smooth.

3.4 Combat environment

19

In our combat environment we designed and implemented two agents: a range

attacker (an archer), and a melee attacker (in our setting, a ninja). We wanted the

archer to shoot arrows (which follow a parabolic trajectory) to enemies, and the ninja to

attack with a sword to enemies. The idea was to use these two agents to train against

each other. Our first approach was to use a deep neural network to learn features from

raw pixels to allow each agent to decide on what actions to take. First, we designed and

developed an environment, defined possible actions of characters, exported the

environment created with Unity, and trained the agents using TensorFlow. The main

problem was that Unity’s engine physics system and the agent’s step (their actions) had

a different update cycle, resulting in the inability of properly training the agents.

Furthermore, each made decisions at a constant rate, disregarding whether the action

had an immediate consequence or not. Additionally, we learned that learning from raw

pixels is too expensive, and the agents can learn accurately with other parameters

(such as raycasts, and information about the position of objects).

Archer’s task:

• Set-up: Throw arrows, setting a force, and angle.

• Goal: Hit an objective.

• Agents: The environment consists of 1 agent linked to a single brain.

• Agent reward function:

o +0.1 for setting and angle or force.

o +0.2 for shooting an arrow.

o -0.2 for missing an objective.

o +1.0 for hitting the objective.

20

o -0.01 for doing nothing.

• Brains: One brain

• State space: Continuous – 3 variables corresponding to the angle, force, and

position of the objective.

• Action space: Discrete – 4 possible actions (set an angle, set a force, do nothing,

and shoot an arrow).

• Observations: 1 corresponding to the game view.

• Reset parameters: Randomly place the goal and agent.

Ninja’s task:

• Set-up: Move left or right, and attack.

• Goal: Kill an objective.

• Agents: The environment consists of 1 agent linked to a single brain.

• Agent reward function:

o -0.1 for locomotion.

o +0.2 for attacking and hitting an objective.

o -0.2 for attacking and missing an objective.

o +1.0 for hitting the objective and killing it.

o -0.01 for doing nothing.

• Brains: One brain

• State space: Continuous – 4 variables corresponding to the agent’s health, x

position, opponent’s health, and opponent’s x position.

• Action space: Discrete – 4 possible actions (move left, right, attack, and do

nothing).

21

• Observations: 1 corresponding to the game view.

• Reset parameters: Randomly place the goal and agent.

Figure 9: Archer and ninja set-up

After several hours of training, the archer agent was not able to learn the behavior we

desired. It would eventually hit a target, but an agent that picks angles at random, and

shoots at random moments would achieve the same results as the trained agents. As

we mentioned before, we believe that training the archer was not as we expected

because we could not reward the shooting arrow action properly. Between the frame

when the agent shoots the arrow, to when the arrow hits or miss, up to several hundred

frames may pass, and with each frame, an action is performed. Unity’s team

acknowledged this shortcoming, and said that they will address it in the future (allowing

more control on when actions are performed).

22

Figure 10 Trajectory of an arrow

3.5 Google’s T-Rex Game

We also trained an agent to play Google Chrome’s dinosaur game [12]. The

purpose of this agent is to test if an agent is able to learn how to play a game that is

based on a highest score system (meaning that there is one level with increased

difficulty as time passes, but with no concrete end). Besides learning that it is possible

to train agents to play these type of games, we realized that using agents helped us

note shortcomings of our own environments. We learned if there is “a hack” in our game

(a shortcut that the designers did not plan), the agent will find it, and exploit it to get to

the end-game reward faster. The dinosaur agent task is as follows:

• Set-up: Jump, duck, or do nothing.

• Goal: Accumulate points and beat the high score.

• Agents: The environment consists of 1 agent linked to a single brain.

• Agent reward function:

o +0.1 for every action.

o -1 for dying.

• Brains: One brain

23

• State space: Continuous – 15 variables corresponding to horizontal and vertical

raycasts, and the speed at which the obstacles approach the dinosaur.

• Action space: Discrete – 3 possible actions (jump, duck, and do nothing).

• Observations: Local ray-cast perception.

• Reset parameters: none.

We had several approaches to training the dinosaur agent. First, we used the main

camera to capture the screen and train over the pixels. We added the level’s speed as a

state. One error on this approach was that we were not normalizing the reward (which

was based on the score). Using this implementation, we had an agent that reached a

maximum score of 159. There was no significant improvement with more training time,

so we acknowledged that it was a shortcoming of our reward and state system. We

refactored the way the agent perceived the environment. We got rid of the observations

(we no longer used the camera), and added horizontal and vertical raycasts. We kept

the level’s speed, and normalized the reward system. With this new approach, after 20

minutes of training we reached a high-score of 330. We kept training for over 12 hours,

24

and we saw that the mean reward would fluctuate from 4 (which is very low for our

reward system) to 600. After analyzing the agent’s behavior, we realized that at higher

level speeds, the agent did not have time to react. We then realized that the length of

the horizontal raycasts were not long enough. Unfortunately, training the agent with the

extended raycast lengths did not improve the agent’s highest score.

4. Conclusions

Unity’s effort of facilitating the training of agents in a 3D environment is

promising. They have been constant in their iterations, fixing bugs rapidly and

responding to the community’s inquiries. The version this project is based is deprecated

and I would advise waiting for the end of the tool’s beta phase to invest time in

development. Most of the main issues were solved in later versions of the tool, and

those that remain are going to be addressed in future versions. Unity made a contest to

incentivize developers to use their tools, for which they just announced a winner. The

project, “Pancake bot,” consists of an agent that balances a pancake in a pan, throws it

to a plate, and a robot takes butter to the pancake. The winners used the same concept

as we did for moving the agent through obstacles (using raycasts to detect obstacles).

For the balancing and throwing of the pancake, they used Curriculum Learning [2]. It is

exciting to see that Unity is investing resources in improving these tools, and I look

forward to seeing agents trained within Unity and used in games. I believe that in order

to develop agents that are feasible in games, agents need a mix between machine

learned behavior (throw some imitation learning [1] in there, too), heuristics, and hard

coded behavior that is too hard to train.

25

5. References

[1] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. 2017.
Imitation Learning: A Survey of Learning Methods. ACM Comput. Surv. 50, 2, Article 21
(April 2017), 35 pages. DOI: https://doi.org/10.1145/3054912/. [Accessed: 15-Apr-2018]

[2] Alex, Bellemare, M. G., Menick, Jacob, Munos, Remi, and Koray, “Automated
Curriculum Learning for Neural Networks,” [1704.03003] Automated Curriculum
Learning for Neural Networks, 10-Apr-2017. [Online]. Available:
https://arxiv.org/abs/1704.03003. [Accessed: 15-Apr-2018].

[3] “Deep Reinforcement Learning,” DeepMind. [Online]. Available:
https://deepmind.com/blog/deep-reinforcement-learning/. [Accessed: 15-Apr-2018].

[4] “Designing safer cities through simulations – Unity Blog,” Unity Technologies Blog.
[Online]. Available: https://blogs.unity3d.com/2018/01/23/designing-safer-cities-through-
simulations. [Accessed: 16-Apr-2018].

[5] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical
learning: with applications in R. New York: Springer, 2013.

[6] Karpathy, Andrej. Deep Reinforcement Learning: Pong from Pixels. [Online].
Available: http://karpathy.github.io/2016/05/31/rl/. [Accessed: 15-Apr-2018].

[7] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press, (2015).

[8] Mutha, Nitish, “Install TensorFlow with GPU for Windows 10.” [Online]. Available:
http://blog.nitishmutha.com/tensorflow/2017/01/22/TensorFlow-with-gpu-for-
windows.html. [Accessed: 15-Apr-2018].

[9] “OpenAI,” OpenAI. [Online]. Available: https://openai.com/. [Accessed: 18-Apr-2018].

[10] Schulman, John, Wolski, Filip, Prafulla, Radford, Alec, Klimov, and Oleg, “Proximal
Policy Optimization Algorithms,” [1707.06347] Proximal Policy Optimization Algorithms,
28-Aug-2017. [Online]. Available: https://arxiv.org/abs/1707.06347. [Accessed: 18-Apr-
2018].

[11] Reinforcement Learning Repository at University of Massachusetts, Amherst.
[Online]. Available: http://www-all.cs.umass.edu/rlr/. [Accessed: 15-Apr-2018].

[12] T-Rex Google game Unity project, “saiichihashimoto/dinosaur-game,” GitHub.
[Online]. Available: https://github.com/saiichihashimoto/dinosaur-game. [Accessed: 16-
Apr-2018].

[13] “TensorFlow,” TensorFlow. [Online]. Available: https://www.tensorflow.org/.
[Accessed: 16-Apr-2018].

https://doi.org/10.1145/3054912/
http://blog.nitishmutha.com/tensorflow/2017/01/22/TensorFlow-with-gpu-for-windows.html
http://blog.nitishmutha.com/tensorflow/2017/01/22/TensorFlow-with-gpu-for-windows.html
http://blog.nitishmutha.com/tensorflow/2017/01/22/TensorFlow-with-gpu-for-windows.html

26

[14] Unity-Technologies, “Unity-Technologies/ml-agents,” GitHub. [Online]. Available:
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Background-
Unity.md. [Accessed: 15-Apr-2018].

[15] Volodymyr, Koray, David, Alex, Ioannis, Daan, Riedmiller, and Martin, “Playing Atari
with Deep Reinforcement Learning,” [1312.5602] Playing Atari with Deep Reinforcement
Learning, 19-Dec-2013. [Online]. Available: https://arxiv.org/abs/1312.5602. [Accessed:
15-Apr-2018].

	Training Machine Learning Agents in a 3D Game Engine
	Citation

	tmp.1524864881.pdf.PHsB4

