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Abstract 

Context: There is an inverse relationship between baseline arterial stiffness and the change in 

arterial stiffness with passive heating. However, it is unknown whether this relationship is 

affected by dehydration. Objective: To investigate the effect of acute dehydration on arterial 

stiffness during passive heat stress. Design: Two randomized counter-balanced trials. Setting: 

Laboratory. Patients or Other Participants: Eleven healthy males (age=24.5 ± 2.8 years, body 

mass=76.6 ± 9.1 kg, body fat=16.8 ± 6.4%). Interventions: In one trial subjects were dehydrated 

(DE) and in another euhydration (EU) was maintained during passive heating to a 1.5°C increase 

in body temperature. Subjects were euhydrated prior to each trial confirmed via urine specific 

gravity (USG) <1.021. During the EU trial, water (15 ml/kg body mass) was given during 

passive heating, but no water was given during the DE trial so that the subjects became 

dehydrated. At baseline, 0.5, 1.0, and 1.5°C core temperature increases, arterial stiffness was 

measured by calculating central (cPWV) and peripheral (pPWV) pulse wave velocity by using a 

Doppler ultrasound at the radial, carotid and femoral arteries. Main Outcome Measures: 

Primary measures were cPWV, pPWV, Tc, and body mass (BM) pre- and post-trial. A two-way 

repeated measures ANOVA (hydration status x core temperature increase) was used to assess the 

effect of acute dehydration on arterial stiffness during passive heating. Regression analyses were 

used to assess the relationship between baseline PWV and the change with heating (both 

centrally and peripherally). An alpha <0.05 defined significance for all tests. Results: As 

designed, BM was maintained in the EU trial (BM loss= 0.08 ± 0.74 %, p=0.54) and decreased 

in the DE trial (BM loss= 1.58 ± 0.63%, p <0.001). Hydration differences between trials did not 

affect cPWV (p = 0.634) or pPWV (p = 0.189). Independent of hydration status, heat stress 

decreased pPWV (711.3 ± 76.4 to 652.0 ± 54.3 cm/s; p = 0.003), but not cPWV (494.3 ± 87.9 to 
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488.2 ± 71.9 cm/s; p = 0.651). The effect of heat stress on cPWV and pPWV was not further 

affected by hydration status (non-significant interaction p >0.05). A significant negative 

relationship (p < 0.01) was observed between baseline arterial stiffness and changes during 

heating in EU cPWV (r = -0.61), pPWV (r = -0.70), and DE pPWV (r = -0.55), but not DE 

cPWV (r = -0.09; p = .61). The relationships between baseline stiffness and changes in heating 

were not significantly different between EU and DE trials (p > 0.05). Conclusions: Passive heat 

stress decreases peripheral, but not central arterial stiffness independent of hydration status. 

Acute dehydration that occurs with passive heating does not affect arterial stiffness in young, 

healthy males. 

Introduction 

Increased arterial stiffness (i.e., decreased compliance) alters arterial pressure and flow 

dynamics and impacts cardiac performance and coronary perfusion (Zieman el al. 2005). This 

can increase one’s risk for a cardiovascular event (e.g., heart attack) and premature death. 

Arterial stiffening develops from complex interactions between stable and dynamic changes 

within structural and cellular elements of the vessel wall (Zieman el al. 2005). Diseases such as 

hypertension, diabetes, and aging lead to increased arterial stiffness. It is important to investigate 

factors that might affect arterial stiffness in order to gain knowledge that may help decrease the 

number of preventable cardiovascular deaths in the United States. 

Chronic exercise training reduces resting arterial stiffness. This is likely a result of an 

accumulation of the arterial benefits reaped from each acute exercise bout. For example, exercise 

at 65% of maximal oxygen uptake elevates aortic flow and carotid pressure for about 30 min 

post-exercise with a return to baseline one hour after exercise (Kingwell et al. 1997). This leads 

to parallel changes in the arteries such that arterial stiffness is acutely reduced with moderate 
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intensity exercise. Overall it is well established that decreased arterial stiffness during exercise 

(and immediately after) reduces cardiovascular risk in the immediate post exercise period and 

chronically with regular exercise (Kingwell el at. 1997).  

During exercise, or increased physical activity, the human body’s core internal 

temperature will increase. In an attempt to maintain homeostasis, the body thermoregulates to 

maintain the body’s internal body temperature. During thermoregulation, heat is released through 

the evaporation of sweat and increased skin blood flow. Blood flow to the skin helps remove the 

heat from the body via convection while the evaporation of sweat removes heat from the body. 

However the loss of sweat without adequate replacement via fluid ingestion leads to dehydration. 

Dehydration reduces aerobic endurance performance and creates an independent increase in 

body temperature, heart rate, and perceived exertion (Barr et al. 1999).  

Previously we have shown that passive heat can acutely decrease arterial stiffness (Ganio 

et al. 2011). Subjects with the greatest normothermic arterial stiffness had the greatest decreases 

in stiffness when heat-stressed (Ganio et al. 2011). In, other words those with poor stiffness at 

baseline had greater improvements in stiffness with heating. In fact, because we have found 

differences, we need to know if these are in part due to dehydration that occurs during heat stress 

(see above). Changes in arterial stiffness during heat stress are likely because of increased blood 

flow (shear stress) during heat stress. Shear stress releases nitric oxide, which leads to 

vasodilation and subsequent reductions in arterial stiffness. So with dehydration, it is possible 

there is not as much blood flow and thus not as much shear stress and consequently not as much 

improvement in arterial stiffness occurs with heating. However this hypothesis needs to be 

tested. Therefore, the purpose of this study was to test the hypothesis that dehydration leads to 

less improvement in arterial stiffness compared to when euhydrated during passive heating. 
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Materials and Methods 

Subjects. 

 This study involved 11 (n=11), non-obese, healthy, moderate activity males (ages 18-39). 

Subjects’ mean ± SD age, mass and body fat percentage were 24.5 ± 2.8 years, 76.6 ± 9.1 kg, 

16.8 ± 6.4%. Females were excluded because of the effects of the menstrual cycle on body water 

balance and arterial stiffness; however future studies need to investigate them. Individuals with 

previous heat illness, serious medical conditions, or taking medications altering cardiovascular or 

thermoregulatory function also were excluded. 

Experimental Controls. 

 To evaluate how changes in arterial stiffness with passive heating are affected by 

dehydration, subjects completed two trials: one dehydrated and one euhydrated. Each trial was 

separated by at least 72 hours. Prior to each trial, each subject did not exercise or drink alcohol 

for 24 hours and consume caffeine for eight hours. For the both trials, subjects were asked to 

drink 1000 mL of extra water the night before the trial and 500 mL of water the morning of the 

trial. Fluid was provided during the passive heating of the euhydrated trial to offset sweat losses 

and maintain hydration. The amount of fluid given was 15 ml/kg body mass. This fluid was 

provided after recording the baseline, 0.5°C, and 1.0°C measurements. During the dehydrated 

trial, subjects were not provided fluid during passive heating in order for the subject to become 

dehydrated. Through pilot testing, we have found this will lead to a dehydration of 

approximately 1.5 % body mass loss; a magnitude of dehydration that is safe and often 

experienced by individuals during daily activities. 
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Experimental Procedures. 

 Upon arrival for each trial, body weight was measured (Health-o-meter digital scale, 

model 349KLX, Pelster LLC, Alsip, IL, USA) and a urine sample was provided in which urine 

specific gravity was measured to assess hydration status (clinical refractometer 30005, SPER 

Scientific, Scottsdale, AZ, USA).  At that time, subjects inserted a rectal thermistor 16 cm past 

the anal sphincter. This was used to validly monitor and measure core body temperature during 

passive heating. 

 Next, blood pressure was measured with an automated sphygmomanometer blood 

pressure cuff (Tango+; SunTech Medical, Inc., Morrisville, NC, USA). Subjects were fitted with 

a heart rate monitor (Polar Electro Inc., Lake Success, NY, USA). Skin thermistors were placed 

on the right anterior thigh, chest, lateral calf, and triceps to record and calculate mean skin 

temperature (Omega Engineering, Stamford, CT, USA). Subjects dressed in a water-perfused 

suit (Allen Vanguard, Ottawa, ON, Canada) that covered the whole body except for hands, head, 

and feet. After this, subjects were asked to put on rain pants and a blanket over the water-

perfused suit; this helped facilitate heating. After the subject was dressed, they laid supine for 30 

minutes. As the subject was lying down, water at 34°C ran through the suit. After 30 minutes, the 

baseline measurements were recorded. Next, the heating phase began by running hot water 

(49°C) through the suit. Measurements were recorded at each 0.5° C core temperature increase 

until core temperature increased 1.5 °C from baseline. After heating, cold water was run through 

the suit. 

The main dependent variable, arterial stiffness, was measured at each 0.5°C core 

temperature increase using pulse wave velocity (PWV). Pulse wave velocity is the preferred 

method to evaluate arterial stiffness (Laurent el al. 2006). It was done using Doppler ultrasound 



	   7	  

combined with a 3-lead ECG [LOGIQ e; GE Healthcare, Milwaukee, WI, USA (Laurent et al. 

2006)]. PWV was measured on the carotid, radial, and femoral arteries on the right side of the 

body. For the reference point, the peak R wave on the ECG to the foot of the pulse wave for each 

site was used. At least ten cardiac cycles was used at each site and time point (Laurent et al. 

2006). From these measurements central (carotid-femoral) and peripheral (carotid-radial) arterial 

stiffness were calculated using standard techniques (Ganio et al. 2011). 

Statistical Analysis. 

Arterial stiffness was compared at each time point (i.e., each 0.5° C core temperature 

increase) between the dehydrated and euhydrated trials. SPSS v. 20.0 was used to analyze the 

mean ± standard deviation (SD) data (IBM Corporation, Somers, NY). A 2-way repeated analysis 

of variance (ANOVA) was utilized to evaluate the change in arterial stiffness between trials 

(dehydrated vs. euhydrated) during heating. Bonferroni alpha corrections were made when 

appropriate. Alpha was set at 0.05. 

 

Results 

Subjects started all trials euhydrated and remained euhydrated in the euhydrated (EU) 

trial (urine specific gravity; USG = 1.008 ± 0.007). As designed, body mass (BM) was 

maintained in the euhydrated (EU) trial (BM loss= 0.08 ± 0.74 %, p=0.54) and decreased in the 

dehydrated (DE) trial (BM loss=1.58 ± 0.63%, p <0.001). 

For the euhydrated trial, core temperature increased by 0.54 ± 0.09, 1.01 ± 0.07, 1.51 ± 

0.09°C from baseline to each measurement (p<0.05). For the dehydrated trial, core temperature 

increased by 0.51 ± 0.09, 0.97 ± 0.09, 1.49 ± 0.08°C from baseline to each measurement 

(p<0.05). For both euhydrated and dehydrated trials, skin temperature and heart rate increased 
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over time (p<0.05; Table 1). The only significant change in mean arterial pressure was from 

baseline to 0.5°C (p=0.175). 

Hydration differences between trials did not affect central pulse wave velocity (cPWV) 

(p=0.634) or peripheral pulse wave velocity (pPWV) (p=0.189). Independent of hydration status, 

heat stress decreased pPWV (711.3 ± 76.4 to 652.0 ± 54.3 cm/s; p=0.003), but not cPWV (494.3 

± 87.9 to 488.2 ± 71.9 cm/s; p=0.651). The effect of heat stress on cPWV and pPWV was not 

further affected by hydration status (non-significant interaction p >0.05). A significant negative 

relationship (p < 0.01) was observed between baseline arterial stiffness and changes during 

heating in EU cPWV (r = -0.61), pPWV (r = -0.70), and DE pPWV (r = -0.55), but not DE 

cPWV (r = -0.09; p = 0.61). The relationships between baseline stiffness and changes in heating 

were not significantly different between EU and DE trials (p > 0.05). 

 

Discussion 

There is an inverse relationship between baseline arterial stiffness and the change in 

arterial stiffness with passive heating. Individual changes in central and peripheral arterial 

stiffness are negatively correlated with baseline normothermic arterial stiffness (Ganio et al. 

2011). However, it is unknown whether this relationship is affected by dehydration, which is 

what this study examined. The primary findings of this study were that hydration status had no 

significant effect on changes in cPWV and pPWV during heating. Independent of hydration 

status, heat stress decreased pPWV but not cPWV. Overall, these results suggest that hydration 

status from baseline to 1.5°C core temperature increase has similar affects while being passively 

heated. 
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 Studies have shown that dehydration does impair muscle blood flow in athletes during 

prolonged exercise in hot conditions (González-Alonso et al. 2004). In the aforementioned study, 

subjects cycled for a long period of time and had one euhydrated and one dehydrated trial. 

During the dehydrated trial, blood flow to the legs declined significantly during the 20 minute to 

exhaustion period of exercise. Forearm blood flow was also significantly lower during the 

dehydrated trial (González-Alonso et al. 2004). With exercise, studies have shown that blood 

flow is reduced. This could imply that less shear stress is also occurring.  This is important 

because increases in shear stress is hypothesized as the reason for why heat stress reduces arterial 

stiffness. Although cardiac output was elevated during heat stress in the present study, the 

magnitude of dehydration was probably not great enough to result in cardiac output differences 

between the euhydrated and dehydrated trials. If the cardiac output stayed the same between the 

trials, it would mean that shear stress was probably similar between trials. Therefore it is not too 

surprising that arterial stiffness was not different between the euhydrated and dehydrated trials.  

A study found that skin blood flow and nitric oxide concentrations both increased at 

similar internal temperatures during body heating (Kellogg et al. 2003). It is possible that during 

heat stress, release of neurotransmitters from the cholinergic cotransmitter system increases skin 

blood flow. The increase in skin blood flow could then increase shear stress on the endothelial 

cells that in turn generate more nitric oxide (Kellogg et al. 2003). Due to homeostasis, the body 

thermoregulates in response to heat stress and thus increases skin blood flow. Nitric oxide is a 

major vasodilator, which causes the blood vessels to relax and decrease arterial stiffness. 

Regardless of hydration status, there is a large release of nitric oxide from passive heating, 

which, along with the other reasons described above, may be the reason for similar PWV during 

the euhydrated and dehydrated trials. 
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 Changes in the stiffness of the large arteries, such as the aorta and its major branches, 

largely account for the changes in SBP, DBP, and PP that occur from 50 years of age onward 

(Oliver et al. 2003). Since this research only had young, healthy male subjects, it is very unlikely 

that any of them showed signs of significant changes of arterial stiffness. For most, showing 

signs of arterial disease or damage is a chronic and long process. It is plausible that the subjects 

in this experiment are simply too healthy to show signs of increased arterial stiffness from the 

dehydrated trial. Studies have shown, in older people, large artery stiffness, has emerged as an 

even stronger predictor of chronic heart disease (Oliver et al. 2003). It would be wise to do future 

studies on older subjects to see if hydration status may have an effect on arterial stiffness with 

passive heating. 

 The increase in arterial stiffness that occurs with age is largely the result of progressive 

elastic fiber degeneration (Oliver et al. 2003). Elasticity is a major indicator of arterial stiffness. 

The more elastic arteries are, the slower the PWV and vice versa. The elasticity of a given 

arterial segment is not constant but instead depends on its distending pressure. As distending 

pressure increases, there is greater recruitment of relatively inelastic collagen fibers and, 

consequently, a reduction in elasticity (Oliver et al. 2003). Distending pressure is determined by 

mean arterial pressure (MAP). The subjects in this study were young, healthy males and none of 

them had histories of hypertension or showed signs of elastic fiber degeneration. Once again, the 

fact these were young and healthy subjects with no prior heart or heat illness made it very 

unlikely to show differences in cPWV and pPWV between the euhydrated and dehydrated trials. 

 In conclusion, hydration status had no effect on cPWV and pPWV during passive 

heating. There was a similar effect on arterial stiffness during both trials. Independent of 

hydration status, heat stress decreased pPWV but not cPWV. The decreases and similarities 
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between the euhydrated and dehydrated trials in PWV are likely connected to increased 

production of nitric oxide due to passive heating. This study simulated only mild dehydration on 

the subjects. Since the dehydration was so mild, it would have made it less likely to see 

differences between the two trials. The subjects were in supine position, which also would have 

made it difficult to find differences in cPWV and pPWV between the euhydrated and dehydrated 

trials. Arterial stiffness increases with age, which leads to decreased elasticity and high PWV. 

The subjects in this study were all young and healthy with no prior heat or heart related illness. 

This might have been a factor why they did not show signs of arterial stiffness or increased PWV 

between the two trials. 
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Table 1.  Euhydrated (EU) and dehydrated (DE) thermal and hemodynamic responses at 
normothermia and after subjects’ core temperatures were increased by approximately 0.5, 1.0 
and 1.5°C 
 

  

  
Baseline 0.5°C 1.0°C 

  

  
1.5°C 

Mean skin temperature (°C) 
EU 33.0± 2.4 37.9± 2.8 38.2± 2.6 38.7± 2.5 
DE 33.2± 3.6 37.5± 4.2 37.8± 4.8 38.2± 4.8 

Core temperature (°C) 
EU 36.1± 1.2 37.2± 0.3 37.7± 0.4 38.2± 0.3 
DE 36.5± 0.9 37.2± 0.3 37.7± 0.3 38.2± 0.3 

Systolic blood pressure 
(mmHg) 

EU 125± 10 128±12 133±16 138±20 
DE 120± 11 129± 13 131±18  133± 15 

Diastolic blood pressure 
(mmHg) 

EU 66± 7 56 ±16 50± 8 52.3± 8 
DE 63± 8 58± 10 56± 14 52.0± 12 

Mean arterial pressure 
(mmHg) 

EU 85.5± 5.8 73.3± 25.8 77.4±5.9 81± 5.7 
DE 82.6± 6.4 78.0± 16.9 81.4±13.0 79± 9.2 

Heart rate (beats min−1) 
EU 59± 15 82± 16 92± 18.8 103± 17 
DE 60± 12 83± 18 94± 19.1 102± 19 

* Significant difference from the previous temperature stage (p < 0.05). 
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Figure 1. Dehydration (DE, red) did not affect central pulse wave velocity (cPWV) compared to 
euhydrated (EU, blue) (p=0.634) during passive heating (+1.5°C core temperature increase). 
 

 
 
Figure 2. Dehydration (DE, red) did not affect peripheral pulse wave velocity (pPWV) 
compared to euhydrated (EU, blue)(p=0.189) during passive heating (+1.5°C core temperature 
increase). 
 

 
 
 
 



	   16	  

Figure 3. Relationship of change between baseline central pulse wave velocity (cPWV) and 
cPWV at 1.5°C core temperature increase. A significant negative relationship was observed 
between baseline arterial stiffness and changes during heating in euhydrated (EU, blue) cPWV (r 
= -0.61) but not dehydrated (DE, red) cPWV (r = 0.09) 
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Figure 4. Relationship of change between baseline peripheral pulse wave velocity (pPWV) and 
pPWV at 1.5 °C core temperature increase. A significant negative relationship was observed 
between, euhydrated (EU, blue) pPWV (r = -0.70), and dehydrated (DE, red) pPWV (r = -0.55). 
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