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Abstract 

Cooperative 3D printing is an emerging technology that aims to increase the 3D printing speed 

and to overcome the size limit of the printable object by having multiple mobile 3D printers 

(printhead-carrying mobile robots) work together on a single print job on a factory floor. It differs 

from traditional layer-by-layer 3D printing due to requiring multiple mobile printers to work 

simultaneously without interfering with each other. Therefore, a new approach for slicing a digital 

model and generating commands for the mobile printers is needed, which has not been discussed 

in literature before. We propose a chunk-by-chunk based slicer that divides an object into chunks 

so that different mobile printers can print different chunks simultaneously without interfering with 

each other. In this paper, we first developed a slicer for cooperative 3D printing with two mobile 

fused deposition modelling (FDM) printers. To enable many more mobile printers working 

together, we then developed a framework for scaling to many mobile printers with high parallel 

efficiency. To validate our slicer for the cooperative 3D printing process, we have also developed 

a simulator environment, which can be a valuable tool in visualizing and optimizing a cooperative 

3D printing strategy. This simulation environment was also developed to export the visualization 

in a generic format for use elsewhere. Results show that the developed slicer and simulator are 

working effectively. 
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1 Introduction 

1.1 Background 

Additive manufacturing (AM) is a rapidly developing field of technology that encompasses 

any processes and mechanisms by which 3D objects are produced layer-by-layer based on 

digital models. In general, additive manufacturing processes involve two components: a 

printhead for delivering energy, materials or both, which operates with three axial degrees of 

freedom and a chamber in which to “print” an object. Additive manufacturing machines are 

often referred to as “3D printers”. Numerous developments in the AM world have given 3D 

printers the capability of printing materials like plastics, metals, and even foods.  

Theoretically, we should be able to 3D print most objects with full automation, but 3D 

printers as they exist face severe limitations that hinder the mass-market adoption the 

technology foretells. Some important problems are related to lack of scalability and a lack of 

manufacturing automation involving 3D printers. 

In this paper, we are focused primarily on the 3D printer scalability problem. Firstly, 

examining the current state of 3D printers reveals an obvious, fundamental problem to 

traditional 3D printing processes. 
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Figure 1-1. Traditional 3D printer machines, both consumer-grade and industrial-grade. (a) MakrBot 
Replicator+ . (b) ProdWays ProMaker P2000 

 

Taking a glance at the two printers in Figure 1-1, we can see that the size of a print job is 

limited to the size of the printer. More specifically, an object cannot be printed if it is wider 

than the full horizontal movement range of an extrusion nozzle or if it is taller than the 

maximum height of the extrusion nozzle above the printing surface (i.e., the “print bed”). In 

this case, the size limitation to print jobs limits the long-term goal of fully dynamic technology. 

A large body of research has developed workarounds to the lack of physical scalability. 

Some of the workarounds involve printing multiple parts to be attached with adhesives or with 

creative joints, which requires additional assembly process and forces changes in design and 

increases the manufacturing cost. 

Secondly, 3D printing technology lacks time scalability. Most 3D printers have a single 

printhead. This means the length of time needed to print an object is limited by the movement 

speed of that printhead. There are two potential fixes to this: 1) speed up the printhead, and 2) 

add additional printheads. 

(a) (b) 
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There are no easy implementations of the fixes mentioned in the previous paragraph. 

Speeding up a 3D print head is limited by other physical processes (e.g., heat transfer, 

vibriation, inertia, accuracy, etc.). Adding printheads to an existing machine is also a difficult 

mechanical challenge, introducing problems such as complex extruder tracks, printhead 

collision avoidance, printable area overlaps, and the need for a cooperation process between 

print heads. 

In conclusion, the 3D printing scalability problem arises from two limitations: the print bed 

size, and the single printhead mechanism. The purpose of this paper is to propose solutions to 

these two problems. 

 

1.2 Cooperative 3D Printing 

In this paper, we propose a solution called “Cooperative 3D Printing” to address the 

limitations of classical 3D printing. By this proposed mechanism, large print jobs that were not 

previously possible to complete without human interaction can be autonomously produced in 

a single piece without interruptions, as depicted in Figure 1-2. 
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Figure 1-2. Large scale cooperative 3D printing. Many robots cooperate to produce a single object that does 
not require assembly upon completion. The final product in this figure is a topographical map of the state of 
Arkansas. 

 

To summarize the mechanism, cooperative 3D printing is composed of any number of 

independent, autonomous, free-roaming 3D printers which are given directions to print part of 

a whole object. These parts are printed on top of each other such that they are joined during 

the printing process, as opposed to afterwards. 

Cooperative 3D printing solves physical scalability with the premise that multiple 

independent 3D printers can be used to produce a single object. These printers need to 

“cooperate” to produce objects that would normally exceed the size limitation of a traditional 

3D printer. They must have the freedom to navigate a large area, such that their print range is 

limited only by the size of the print surface, as opposed to a fixed range imposed by the 

extrusion nozzle’s mechanism. To summarize, assuming the print surface is easy to scale, the 

potential print size will also be highly scalable. 
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This new mechanism also solves time scalability assuming new 3D printers that enter the 

fray can decrease the overall print time. Given that the number of printers is dynamic, we can 

quantify the time scalability as a function of the parallel efficiency from using any number of 

robots.  

 

1.3 Problem Formulation 

The advent of cooperative 3D printing presents many engineering challenges and it is 

important to highlight the specific problems that will be addressed. In this section, we will 

summarize the high-level components of a cooperative 3D printing ecosystem and specify 

which of those components are implemented in this thesis. 

 

 

Figure 1-3. Cooperative 3D printing high-level process overview. This thesis is concerned with the processes 
labelled with an orange color. 

 

Figure 1-3 shows a process overview for Cooperative 3D printing. This thesis is concerned 

with adressing the orange processes. These processes involve various algorithms and 

subprocesses that allow real-world robots to print the original input CAD model.  

The chunker’s design purpose is to properly subdivide a model into “chunks” that are 

distributed amongst the robots to print.  
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The slicer is designed to convert the distinct “chunks” into print commands so that the 

robots know how to print their chunks. The slicer must also figure out the appropriate 

commands for each robot to enable inter-robot communication.  

The simulator uses the commands generated by the slicer to create a visual that will 

accurately display how the commands would be carried out by real robots. An accurate visual 

shows the user if the print will be carried out properly or not. It is also used as a validation step 

to our algorithms for the chunker and slicer. As a result, the simulator must be carefully 

designed, as the accuracy of the rest of the process depends on the accuracy of the simulator. 

To summarize, the Chunker, Slicer, and Simulator present the following questions: 

• Chunker: What is a realistic, optimal way to subdivide a model given the physical 

constraints of a 3D printing robot? How can this subdivision scale to multiple robots? 

What’s the proper way to assign an individual chunk to a robot? How does one chunk’s 

printing depend on the presence of the other chunks? 

• Slicer: As the chunks are converted to printer commands, how should the commands 

differ from classical 3D printing to accommodate multiple robots printing distinct 

chunks? Will new routines need to be developed, and if so, what are they? What new 

commands needed to enable robot coordination, e.g. collision avoidance? 

• Simulator: What visualization elements are necessary to validate the real-world 

feasibility of a print? How should the actions of multiple robots be visualized on a 

single visual timeline? What important conclusions can the simulation allow us to make 

about a single cooperative 3D print? Once a simulation is generated, what is the best 

way to ensure its utility and portability? 
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1.4 Summary 

Having examined the problem and having described the requirements for its solution, we 

will describe the cooperative 3D printing solution as a useful candidate to the scalability 

problems of classical 3D printing. 

Chapter 2 describes the chunk-based slicer that forms the cornerstone of the technology. 

This unique slicing process enables the subdivision of 3D printed models such that multiple 

chunks can be printed in parallel, while eliminating robot-material collisions. The concept 

presented in this chapter avoids robot-robot collisions by demonstrating the process with only 

two robots. 

Chapter 3 demonstrates a method for scaling the chunk-based slicer two more than two 

robots. By examining more specific physical constraints, the chunking process can scale with 

two degrees of spatial freedom, as opposed to just one as presented in chapter 2. This chapter 

provides an evaluation framework that aids in determining the effectiveness of the scaling 

strategy. Finally, the simulation and corresponding results for the scaling strategy are shown. 

Chapter 4 takes a closer look at the implementation of chunk-based 3D printing. This 

chapter focuses on the simulation environment we developed and addresses the 

implementation requirements of a useful cooperative 3D printing system.  

Chapter 5 summarizes the contribution of this paper to the new field of cooperative 3D 

printing. By examining the findings, we take a look at the significance and implications of this 

work as it relates to rapid development, evaluation, and implementation of cooperative 3D 

printing systems. This chapter also explains future opportunities within this field and areas of 

research interest that can serve as next steps to enhancing cooperative 3D printing. 
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2 Chunk-based Slicer 

Although additive manufacturing has become increasingly popular in recent years, it has been 

significantly limited by its slow printing speed and the size of the object it can print. Cooperative 

3D printing is an emerging technology that aims to address these limitations by having multiple 

printhead-carrying mobile robots (or mobile 3D printers) work together on the same print job on a 

factory floor. With the traditional layer-by-layer 3D printing approach as defined by the ASTM 

F42 committee [1], it would be difficult for the mobile 3D printers to cooperate without interfering 

with the already printed part and with each other, which calls for a different approach of 3D 

printing.  

 

2.1 3D Printing and Slicing 

In traditional 3D printing, a CAD model needs to be sliced into layers and the path of the 

printhead movement needs to be planned to deposit materials for each layer. A slicer usually works 

by intersecting a plane at different Z-heights with the CAD model and calculating the boundary 

segments on each layer. The movement path of the printhead is then determined to infill the region 

within the boundary at each layer. Many different slicers have been developed, such as Slic3r [2], 

Cura [3], Kisslicer [4], and Skeinforge [5]. C Kirschman et al. has developed a parallel slicing 

algorithm to improve the slicing speed [1, 6]. E Sabourin et al. presented an adaptive slicing 

algorithm for layer-based 3D printing that can slice with different layer thickness [7]. S. Lefebvre 

et al. reported a GPU accelerated slicer [8]. However, slicing for the emerging cooperative 3D 

printing technology has not been investigated before. 
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A slicer is usually accompanied by a visualizer for the user to see the slicing results. A G-code 

viewer is one of the most common visualizers, such as the built-in viewer in Repetier Host [9]. 

Because cooperative 3D printing involves multiple robots, a simulator that can visualize the 

dynamic path of each mobile robots and how the materials are deposited over time will be 

beneficial for validating the printing path and optimizing the printing strategy for cooperative 3D 

printing. Many different simulators have been developed for mobile robots, such as Gazebo [10], 

EyeSim [11], UberSim [12], and Simbad [13]. These robot simulators can effectively simulate the 

interaction of multiple robots in 2D or 3D for evaluation of the design and the behavior of the 

robots.  However, simulators for visualizing the dynamic 3D printing process of mobile 3D printers 

have not been reported.  

In this chapter, to address the possible geometric interference arising from the layer-by-layer 

based approach with multiple mobile 3D printers, we present a chunk-based slicing approach so 

that each mobile 3D printer only needs to print a small chunk at a time, which can effectively 

separate the mobile 3D printers. The chunk-based printing can also keep 3D printing localized and 

therefore potentially avoid the large temperature gradient and internal stresses that are common 

with 3D printing of large objects. With proper scheduling of each individual mobile printer, this 

approach can be scaled to a very large number of mobile printers without interference. To simplify 

the problem, the slicing algorithm in this chapter will be limited to the cooperative 3D printing 

between two mobile 3D printers that carry a fused deposition modelling (FDM) extruder. This 

chunk-based slicing algorithm ensures good bonding between the chunks and smooth transitioning 

when a mobile robot moves from one chunk to another. 
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It is worth noting that the positioning and alignment of multiple mobile printers in the physical 

world is a non-trivial problem, which deserves separate research. Therefore, instead of validating 

the chunk-based slicing algorithm on the physical mobile printers, we created a simulator 

environment to simulate the dynamic printing process over time and the communication between 

mobile printers using the sliced results as an input. This simulator environment makes it much 

easier, faster, and less expensive than actually executing a print job when validating the slicing 

results, which provides a valuable tool to understand and optimize the printing strategies before 

submitting a print job. In addition, the simulator environment takes similar inputs as the physical 

mobile printers, which would make it effortless to submit the printing job to the physical mobile 

printers after validation in the simulator environment. Our results show that our chunk-based slicer 

works effectively for the two-robot printing strategy, as validated by the simulator. This new 

chunk-based slicer and the new simulator environment presented in this thesis represent a 

significant step towards cooperative 3D printing where multiple independent 3D printers can work 

together. The implementation of this simulator is detailed in Chapter 3. 

 

2.2 Cooperative 3D Printing 

At the core of the cooperative 3D printing platform is a mobile 3D printer as shown in Figure 

2-1, which replaces the 𝑋𝑋𝑋𝑋 stage on a regular 3D printer with a set of omnidirectional wheels to 

translate the printhead in 𝑋𝑋𝑋𝑋 plane. This design enables unlimited printing in the 𝑋𝑋 direction, but 

the 𝑌𝑌 direction is limited by the distance between the printhead and the front wheels (termed as 

“build depth” in this thesis) if a layer-by-layer based approach is used because the printed material 

in the previous layers will block the path of the wheels in 𝑌𝑌 direction.  
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Figure 2-1. Illustration of a mobile 3D printer, which can print indefinitely in the X direction, but is limited 
in the Y direction 

 

In this thesis, we present a chunk-based printing strategy, where the mobile printer finishes all 

the layers of one chunk before it moves to print another chunk, effectively solving the problem of 

the blocked path by the printed materials to enable the mobile printer printing unlimited in both 𝑋𝑋 

and 𝑌𝑌 directions. Similar partition-based printing strategies already exist, mainly for printing parts 

that can be assembled into a single model in post-processing. Examples include Chopper [14], 

curvature-based partitioning methods [15], and skeletonization [16]. While these methods are 

efficient at dividing model meshes for post-assembly, the chunking method for cooperative 3D 

printing requires that all chunks be printed such that they are bonded during the printing process 

without post-assembly, requiring a new, different process. One issue that arises is the bonding 

between the chunks. Our solution to this issue is to use a sloped interface (and/or an angled 

printhead) to allow more bonding surface between the chunks. A general slicing strategy for 

cooperative 3D printing is illustrated in Figure 2-2: 
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The following provides overviews of the behavior of the “Chunker”, “Slicer”, and 

“Simulator” processes, shown using black arrows in Figure 2-2: 

• Chunker: A CAD model of the print job will be first input into a “chunker”, which 

splits the CAD model into chunks based on a set of criteria to ensure feasible 

printing of each chunk and good bonding between chunks. 

• Slicer: The chunks will then be sliced into layers using a slicer, which generates 

commands for printing the chunks (e.g., tool paths, material extrusion, temperature 

control, etc.), schedules the sequence of printing the chunks among multiple robots, 

Chunker 

Slicer 

Simulator 

Input CAD Model Split into Chunks 

Sliced Chunks Simulate Printing Tasks 

Figure 2-2. Illustration of the slicing strategy for cooperative 3D printing: (1) The chunker splits the printing 
job into chunks and ensures feasible printing of each chunk and good bonding between chunks; (2) The slicer 
slices the chunks into layers, generates commands for printing the chunks, schedules the sequence of printing 
the chunks among multiple robots, and inserts communication commands to enable necessary communication 
among multiple robots; (3) The simulator visualizes the dynamic printing process using the commands generated 
by the slicer. 
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and insert communication commands to enable necessary communication among 

multiple robots. 

• Simulator: The commands generated by the slicer is interpreted by a simulator, 

which visualizes and animates the dynamic printing process over time to provide a 

tool for evaluating the chunking and slicing parameters and results. 

 

2.2.1 Chunking 

The objective of chunking is to divide the printing job into chunks such that they can be 

assigned to as many robots as possible to increase the printing speed. Therefore, the overall 

chunking strategy is highly dependent on the geometry of the print, the number of available robots, 

and how the robots will be scheduled. To simplify the problem, we will begin by considering the 

chunking problem for exactly two robots, then by covering the methodology for scaling in chapter 

3. The method by which we split a print job between two robots will later be applicable for many 

robots using a “divide and conquer” strategy. 

To chunk for two robots, we will split the object into multiple chunks along one direction (the 

𝑌𝑌 direction in Figure 2-1) with sloped planes to ensure good bonding between chunks. Two robots 

start from the center chunk and print along the +𝑌𝑌 and −𝑌𝑌 directions, respectively, to finish each 

chunk. To calculate the geometries of these chunks, we simple bisect the original geometry 

multiple times around multiple planes. Because we have constrained the problem to chunking in 

the +𝑌𝑌 and −𝑌𝑌 directions, each plane can be defined by two things: its slope and 𝑌𝑌 position. 
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2.2.3 Slope Determination 

A sloped interface between chunks is needed for this chunk-by-chunk 3D printing strategy. 

The angle of the sloped plane needs to be carefully determined due to conflicting objectives: 

1. A maximum slope angle will maximize the volume of each chunk and increase printing 
efficiency; 

2. A minimum slop angle will maximize the area of the bonding interface and increase the 
bond strength. 

 

Figure 2-3. Illustration of robot build limits: (a) The smallest slop angle of a chunk depends on the ratio of 
the object height, 𝒉𝒉, and the robot build depth, 𝒃𝒃𝒃𝒃; (b) The largest slope angle of a chunk is limited by the 
ratio of the nozzle height, 𝒏𝒏𝒏𝒏, and the nozzle depth, 𝒏𝒏𝒏𝒏. 

 

In addition, the range of the slope angle is limited by the robot parameters as illustrated in 

Figure 2-3, which should be determined by: 

𝜃𝜃max = tan−1 �
𝑛𝑛ℎ
𝑛𝑛𝑛𝑛
� (1) 

𝜃𝜃min = tan−1 �
ℎ
𝑏𝑏𝑏𝑏
� (2) 
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Here, 𝜃𝜃max and 𝜃𝜃min are the limits of the slop angle, 𝑛𝑛ℎ and 𝑛𝑛𝑛𝑛 are the nozzle height and nozzle 

diameter, ℎ is the height of the object to be printed, and 𝑏𝑏𝑏𝑏 is the build depth of the printer, as 

illustrated in Figure 2-3. 

If the angle is too large or too small, either the front wheels of the robot or the nozzle will 

interfere with the printed material. It should be noted that the range of the angle is dependent on 

the printer design and the limits can be easily changed with a tilted nozzle or a printer with a 

variable build depth. Tests should be performed to choose an appropriate slope angle. In this paper, 

we use the calculated 𝜃𝜃max for our subsequent calculations. 

 

2.2.4 Chunking Plane Determination 

With a determined slope, we will also need to know where we want to split the object. For the 

chunking strategy with two robots, we first need a center chunk, which can only be printed by one 

robot. After the center chunk is completed, the two robots will finish the chunks on the left and the 

right sides, respectively. The center chunk’s chunking planes can both be represented as tuples in 

the form (𝑛𝑛�, 𝑝̅𝑝), where 𝑛𝑛� is the plane’s normal vector and 𝑝̅𝑝 is any point on the plane. This is the 

most convenient representation because the bisecting algorithm we used (specifically, the bisecting 

algorithm in Blender [17]) required only these two values to bisect a 3D geometry around the 

plane. The left and right chunking planes for the center chunk can be determined by: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑳𝑳𝟎𝟎 = �𝑛𝑛�𝐿𝐿0 ,𝑝𝑝𝐿𝐿0���� � = ��𝑐𝑐̅ × �(0,0,ℎ) +
ℎ

tan𝜃𝜃
 ∙ ⊥ (𝑐𝑐̅)�� , �𝑝𝑝𝑐𝑐� +

ℎ
tan𝜃𝜃

 ∙ ⊥ 𝑐𝑐̅�� (3) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑹𝑹𝟎𝟎 = �𝑛𝑛𝑅𝑅0�����,𝑝𝑝𝑅𝑅0����� = ��𝑐𝑐̅ × �(0,0,ℎ) −
ℎ

tan𝜃𝜃
 ∙ ⊥ (𝑐𝑐̅)�� , �𝑝𝑝𝑐𝑐� −

ℎ
tan𝜃𝜃

 ∙ ⊥ 𝑐𝑐̅�� (4) 
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where 𝑐𝑐̅ is the vector representing the center line of the object (in our case, a line that varies only 

in the 𝑋𝑋 direction), 𝑝𝑝𝑐𝑐�  is a point on the center line, 𝜃𝜃 is the angle of the chunking plane (see 

equations (1) and (2)), and 

⊥ (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≔ (−𝑦𝑦, 𝑥𝑥, 𝑧𝑧) (5) 

After calculating these two planes, we can iteratively shift those planes outward by some shift 

amount, 𝑠𝑠, from the center chunk by iterating 𝑝𝑝𝑅𝑅𝚤𝚤+1������ ← 𝑝𝑝𝑅𝑅𝚤𝚤����+ 𝑠𝑠 ∙ 𝑐𝑐̅;  𝑖𝑖 ≥ 0. We can use these planes 

to slice the model into subsequent “left” and “right” chunks. Figure 2-4 demonstrates the iterative 

chunking process, starting with the center chunk, then shifting the chunking planes 𝑳𝑳𝟎𝟎 and 𝑹𝑹𝟎𝟎 to 

the left and right, respectively. 

 

 

 

 

 

We have applied this chunking algorithm to two different geometries using different chunking 

settings to demonstrate its effectiveness, including a cylinder and a car model, as shown in Figure 

2-5. The yellow chunk is the center chunk. As we can see, the chunker works effectively with 

complex geometries and different settings. 

Figure 2-4. Iterative chunking results. Planes 𝑳𝑳𝟎𝟎 and 𝑹𝑹𝟎𝟎 are reused and shifted to split further chunks on the 
left and right of the center chunk: (a) center chunk; (b) shifted plane 𝑹𝑹𝟎𝟎 to the right by one chunk; (c) shifted 
plane 𝑹𝑹𝟎𝟎 to all the right chunks; (d) shifted plane 𝑳𝑳𝟎𝟎 to all the left chunks. 

(a) (b) (c) (d) 
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Figure 2-5. Chunker results with two different objects, a cylinder and a car model: (a) Cylinder with short 
build depth and steep chunking slope; (b) Cylinder with deep build depth and moderate slope; (c) Car with 
short build depth and steep chunking slope; (d) Car with deep build depth and moderate slope. 

 

2.3 Efficiency Concerns 

To determine the speedup gains of cooperative 3D printing, we can adapt the Amdahl’s law 

used for parallel computing. The print job can be split up into two parts: 

1. A part that can only be printed by one robot (i.e., the center chunk); and 

2. A part that can be printed simultaneously by multiple robots (i.e., the rest of the 

chunks). 

Assuming the average build speed is 𝑏𝑏 cm3/hour, the total volume of the print is 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 

the volume of the center chunk is 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, the total printing time with one single printer would be: 

𝑇𝑇1 =
𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑏𝑏

=
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑏𝑏

+
𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑏𝑏
(6) 

As a general discussion, assuming the printing job of the non-center chunks can be split among 

𝑁𝑁 printers, the total printing time would become: 

𝑇𝑇𝑁𝑁 =
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑏𝑏

+
𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑏𝑏 ⋅ 𝑁𝑁
(7) 
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So, the printing time reduction, 𝑟𝑟, with 𝑁𝑁 printers is: 

𝑟𝑟 =
𝑇𝑇𝑁𝑁
𝑇𝑇1

=
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+
1
𝑁𝑁
�1 −

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� (8) 

And the speedup gain is 𝑠𝑠 = 1 / 𝑟𝑟. It is clear that the 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 / 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 needs to be minimized to 

maximize the speedup gain. In our current two-robot printing scenario (𝑁𝑁 = 2), if we assume 

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 / 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.05, for example, the speedup gain would be: 

𝑠𝑠 =
1

0.05 + 1
2 (1 − 0.05)

= 1.905 (9) 

To maximize speedup, we have already set up the calculations of the center chunk to minimize 

the center chunk volume by using the maximum slope angle possible for the chunk faces, 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 . 

 

2.4 Slicing for Cooperative 3D Printing 

The objective of the slicer is to make sure the robots can work together to finish printing 

according to the printing strategy. Unlike a regular slicer that only generates a tool path for a single 

print head, the slicer for cooperative printing need to accomplish three functions: 

1. Assign chunks to each robot and determine their printing sequence; 

2. Generate tool paths for each chunk and the tool paths for transitions between chunks; 

3. Generate commands based on the tool path for the robots to execute and provide a 

mechanism for the robots to communicate with each other in case one robot’s printing 

task is dependent on the status of the printing task of another robot. 
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2.4.1 Printing Sequence 

To determine the path for a robot to follow, the robot must first know the chunks it will print 

and their sequence. As we only consider two robots in this chapter, we can use the following simple 

strategy to assign the chunks to the robots, where 𝐶𝐶𝐴𝐴 represents Robot 𝐴𝐴’s chunks, and 𝐶𝐶𝐵𝐵 

represents Robot 𝐵𝐵’s chunks: 

𝐶𝐶𝐴𝐴 = [center chunk, left chunk 1, left chunk 2, … ] (10) 

𝐶𝐶𝐵𝐵 = [right chunk 1, right chunk 2, … ] (11) 

Where Robot 𝐴𝐴 is assigned the center chunk and all the chunks on the left, and Robot 𝐵𝐵 is assigned 

all the chunks on the right. The chunks then need to be ordered based on the scheduling strategy 

for the print job. Because the chunks were generated in order by the chunker, there is no need to 

order the chunks for the simplified two-robot printing in this section. 

 

2.4.2 Tool Path Generation and Transition Between Chunks 

With the ordered chunks assigned to each robot, we need to generate a sequential tool path for 

each robot to finish its assigned chunks. This task can be accomplished in steps as illustrated in 

Figure 2-6: (1) Generate the tool path for each chunk; (2) Generate the tool path between chunks 

(transition); (3) Combine the tool paths in sequence. 
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Figure 2-6. Path generation for each robot: generate tool path for each chunk and generate path to transition 
between chunks. 

 

The tool path generation for a chunk is essentially the same process a normal CAD slicer uses 

for printing an object. The general process is illustrated in Figure 2-7. Instead of starting from an 

STL file (or other 3D file format), the tool path generation algorithm starts with triangular meshes 

generated by our chunker. Based on the specified layer thickness, a list of horizontal planes is 

generated to split the model into multiple layers. The horizontal planes are generated to split the 

model into multiple layers. The horizontal planes are then intersected with the triangular mesh to 

calculate the intersection line segments at each layer. Figure 2-8 shows an algorithm we used to 

calculate the line segments at each layer. The line segments are then ordered into a ring to form a 

perimeter for each layer. Infill paths are then generated for the parameters at each layer. Because 

this process has been well-establish in current slicers, we are omitting most of the details here, 

although the slicing process is by no means a trivial task. Building a general-purpose slicer 

involves accounting for oddities in models such as multiple isolated meshes, non-closed 

geometries, holes in closed geometries, and more. The development of a proprietary slicer 

consumed much of the work of this research. 
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Figure 2-7. Illustration of the tool path generation process: (a) Original model; (b) Model split into horizontal 
layers; (c) Perimeters calculated for each layer by intersecting the triangular mesh with a plane at each layer; 
(d) Generate infill path for the perimeter at each layer; (e) Combine all the tool path generated at each layer. 

 

 

Figure 2-8. Process for calculating the line segments for the perimeter path of a layer. 

 

The results of the tool path generation can be seen in Figure 2-9, which shows the slicing and 

infill algorithms are working correctly.  
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Figure 2-9. Tool path generation from the slicer algorithm (thick filament was used for better visualization): 
(a) without chunking; (b) with chunking first. 

 

In addition to the print path for each chunk, the robot must have a way of moving from one 

chunk to the next. A simple direct line would not work, as the robot could knock against previously 

printed materials. Instead, we generate a separate path from the endpoint of the current chunk to 

the starting point of the next chunk. There are possible ways to optimize this path to save printing 

time, but we are using a simple approach that is not optimized but always works. Figure 2-10 

visually demonstrates how we generate this transition path. Four points comprise the path: the 

endpoint of the current chunk 𝑝𝑝1, the start point of the next chunk 𝑝𝑝4, and two points in between. 

For 𝑝𝑝2, we simply shift the printhead upwards a small amount. For 𝑝𝑝3, we move the extruder to 

the boundary of the chunk (i.e. to the same x and y position as 𝑝𝑝4). The path generation process is 

detailed in Figure 2-11. 
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Figure 2-10. Transition path between chunks (𝑝𝑝1 → 𝑝𝑝2 → 𝑝𝑝3 → 𝑝𝑝4): the printhead moves slightly upward 
from previously printed materials and navigates to the start of the next chunk. The endpoint of the current 
chunk is 𝑝𝑝1 and the start point of the next chunk is 𝑝𝑝4. 𝑝𝑝2 and 𝑝𝑝3 are points used to generate the transition 
path. 

 

 
Figure 2-11. Process of generating transition path between two chunks 

 

2.4.3 Command Generation and Communication 

Until this point, we have generated the entire tool path for each robot, which are organized in 

a multi-level hierarchical data structure as illustrated in Figure 2-12. 
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Figure 2-12. Data structure of the tool paths for the robots. 

 

With the entire tool path generated, the slicer needs to generate commands that can be 

interpreted by the robots to execute the movements.  One of the most common type of commands 

used in a regular 3D printer is G-code commands. In this paper, we use similar commands for our 

simulator to interpret. For example, we use a “MOVE X Y Z” command, which moves the robot 

from its current position to the specified position (𝑋𝑋,𝑌𝑌,𝑍𝑍). It is equivalent to a G1 command in G-

code and thus make it easy to output the commands to a real robot. Since the tool path is just a list 

of points, this one command will be sufficient to instruct the robot to move along its tool path. 

Now that the robots know where to move based on the generated commands, they also need to 

know when to move. In the situation when one robot’s next move is dependent on another robot’s 

printing status, it is necessary to provide a mechanism for the robots to communicate. For example, 

in our two-robot situation, the second robot must wait until the first robot finishes printing the 

center chunk to start printing and thus has to know when the first robot finishes printing the center 

chunk. One direct way is for the robots to have real-time constant communication with each other, 

but it would significantly increase the complexity when many robots are involved. Luckily, the 

interdependence of the printing tasks can usually be pre-determined in the chunking or slicing 

stage. Therefore, we can pre-implant a communication command at the stage when communication 
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is needed. In this thesis, we implemented a “NOTIFY” command, which is inserted behind a MOVE 

command to notify the other robot that a certain movement has been finished. Because our situation 

only involves the center-chunk waiting period, only one NOTIFY command is needed for the entire 

print. The second robot will not begin along its toolpath until it receives the NOTIFY command 

from the first robot. Before receiving the NOTIFY command, the waiting robot must be executing 

a simple WAIT command that forces the robot to stall until the other robot sends a NOTIFY 

command. The hardware implementation of these commands isn’t important, as long as they 

coordinate as described. 

In addition to the MOVE, NOTIFY and WAIT commands, the robot also needs to know when the 

materials should be deposited. This is because the robot does not print materials along all the tool 

paths. For example, when the robot is transitioning for one chunk to another, no materials need to 

be printed. Therefore, we implemented a “TOOL ON/OFF” command to indicate whether the robot 

should print materials. When “TOOL ON” command is issued, materials will be printed along all 

the following tool path until a “TOOL OFF” command is issued. Based on the tool path data and 

how we want to robot to communicate and print materials, we can translate the tool paths into 

commands for the robots to execute the printing process using the three commands we have 

implemented. This process is shown in Figure 2-13. 
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Figure 2-13. Conversion from the tool paths to robot commands. 

 

After the tool path that was generated by the slicer has been converted to a sequence of 

“commands”, these can be used in two ways: (1) To be converted directly to G-code for real-

world robots to execute, or (2) to be simulated to visualize the behavior of the commands.  
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3 Scalable Cooperative 3D Printing 

The motivation of this chapter is to take the findings of chapter 2 and expand the 

possibilities of the technology. Chapter 2 describes the chunking and slicing process for 

printing a model in parallel with two robots. In theory, we should be able to amend the two-

robot process to facilitate the use of many more printers. This chapter introduces such a 

strategy, named the Scalable Parallel Array of Robots for 3D Printing (SPAR3). 

The biggest problem this chapter will address is the need for a generalized framework for 

describing the chunking and slicing process. This framework will include a generalized 

definition of a “printing strategy” and a method for evaluating printing strategies. This 

framework will lay the foundation for the development of SPAR3. Finally, section 3.3  

will provide SPAR3 simulation results with a brief discussion. 

 

3.1 Scaling Strategy 

A printing strategy is composed of two distinct stages: chunking and scheduling. As it 

relates to the two-robot printing process, these two stages take the place of the previous, trivial 

chunking stage. The new chunking stage achieves a similar goal: divide a large model into 

“printing tasks” (i.e. “chunks”). The scheduling stage assigns the chunks to individual robots, 

along with a schedule (i.e., a printing sequence) for the printing of those chunks, such that the 

robots print the chunks in an order that does not lead to collisions. In this section, we will first 

discuss the chunking and scheduling strategies, and then present a mathematical framework 

describe the strategies using a directed dependency tree (DDT).  
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3.1.1 Chunking 

 An object to be printed needs to be divided into smaller chunks so that the printing work 

can be distributed to multiple robots. The chunking process used in this paper chunks only 

along a horizontal plane, with sloped interfaces, much like the method used in chapter 2.  

The key difference that separates scaled chunking from two-robot chunking is that the 

chunking process happens along more than one axis. In this case, we will study the 

characteristics of chunking in a grid pattern. The chunker separates the main model into pieces 

lengthwise, then separate each of those pieces width-wise. For example, Figure 3-1 provides 

visualizations of the SPAR3 chunking pattern. 

 

Figure 3-1. (a) Top exploded view of a part showing individual chunks (both rows and columns are 
numbered). Chunks are reference by row-first ordered pair notation (e.g. (4, 2) refers to the chunk in the 4th 
row and the 2nd column. (b) Dimetric view of the part showing chunk’s boundary. (c) Dimetric exploded view. 
(d) Dimension of a center chunk. 

 

Notably, the sloped interface along each “slice” (i.e. each row or column) is the same for 

every chunk in that slice. In addition, along a particular slice, a chunk with a positive-sloped 
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face is produced, as well as a chunk with a negative-sloped face. This results in every chunk 

having at least one sloped interface (in this example, every chunk has at least two). 

In order for each chunk to be feasibly printed on its own, the chunk’s dimensions must 

satisfy the following constraints: 

1. As shown in Figure 3-2(a), given the angle of the sloped interface between chunks, 𝜃𝜃𝑐𝑐, 

the angle of the exterior of the extruder nozzle from the horizontal, 𝜃𝜃𝑒𝑒, the maximum 

height of the chunks, ℎ, and the absolute depth of each chunk, 𝐷𝐷𝑐𝑐, then 𝜃𝜃𝑐𝑐 must satisfy 

the following inequalities. 

𝜃𝜃𝑐𝑐 ≤ 90 − 𝜃𝜃𝑒𝑒 (12) 

𝜃𝜃𝑐𝑐 ≥ tan−1 �
2ℎ
𝐷𝐷𝑐𝑐
� (13) 

Equation (12) must be satisfied, otherwise the nozzle will interfere with the printed 

part of the chunk, introducing an upper bound on 𝜃𝜃𝑐𝑐. Equation (13) must be satisfied 

because the shallowness of the angle disrectly affects how deep the chunk will be, 𝐷𝐷𝑐𝑐. 

If 𝐷𝐷𝑐𝑐 is too large, then the printer will not be able to reach the entire depth of the chunk, 

and eventually collide with printed material. Thus, 𝐷𝐷𝑐𝑐 and ℎ determine the minimum 

angle allowed for the sloped interface. 
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Figure 3-2. (a) Illustration of chunk's dimensions and printing limitations on the slope, and (b) Comparison 
of chunk width with the width of the robot. 

 

2. Given the reach of the printhead arm 𝐷𝐷𝑒𝑒, defined by the lateral distance between the 

point of extrusion and nearest of the robot’s wheels and/or chassis, and given the depth 

of the chunk 𝐷𝐷𝑐𝑐, the following equation must also be satisfied. 

𝐷𝐷𝑐𝑐 ≤ 𝐷𝐷𝑒𝑒 (14)  

This ensures that the printing nozzle can reach the full width of the chunk without 

collisions with the wheels or chassis. 

3. Given the width of the robot, 𝑊𝑊𝑟𝑟, and the width of the chunk, 𝑊𝑊𝑐𝑐, as illustrated in Figure 

3-2(b), the following must be true to avoid collisions between robots that are printing 

adjacent chunks in the same row. This constraint only matters for SPAR3 printing. 

𝑊𝑊𝑐𝑐 ≥ 𝑊𝑊𝑟𝑟 (15) 
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3.1.2 Scheduling 

Scheduling consists of two processes: chunk assignment and chunk scheduling 

1. Chunk assignment: An example of a fully chunked model is shown in Figure 3-1(a). 

Each chunk is assigned to an individual robot. Each row-wise pair of chunks is assigned 

to the same robot, such that there is a gap between the active robots (robots that are 

printing) at any given time to prevent collisions during printing. For example, as 

illustrated in Figure 3-3(a) and (b), chunks (3, 1) and (3, 2) (as represented in Figure 

3-1(a)) are assigned to one robot, while chunks (3, 3) and (3, 4) are assigned to the 

second robot. Additionally, each row of chunks is assigned to the most appropriate row 

of robots, i.e. the row of robots that is closer. This prevents inter-row collisions. For 

example, the chunks of row 5 are only assigned to robots on a single side of the print: 

the bottom side. 
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Figure 3-3. Illustration of a rectangular prism being printed using the SPAR3 strategy with four robots. 
Printing starts with the center chunks seed chunks. Chunks that are being worked on at each step are 
represented in red color whereas the completed ones are represented in blue. 

 

2. Chunk scheduling: After the completion of chunk division and chunk assignment, a 

print sequence is generated based on the dependency relationship between chunks. 

Based on the dependency, the chunks can be labeled by three overlapping types: 

a. Seed Chunk: Seed chunks are the chunks that are printed first in a print job 

and have a positive bonding slope on all sides unless they are the end chunk. 

In Figure 3-1, the chunks at (3, 1) and (3, 3) are seed chunks. 

b. Parent Chunk: Parent chunks are chunks that need to be printed prior to 
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printing some set of other chunks. In Figure 3-1, the seed chunks at (3, 1) and 

(3, 3) are parent chunks of chunks (3, 2) and (3, 4). 

c. Child Chunk: Child chunks are those that cannot be printed until after their 

respective parent chunks are completed. Child chunks can either be a gap 

chunk or a dependent end chunk. Chunks that are physically located between 

two parent chunks are called “gap chunks”, such as chunk (3, 2). Chunks that 

are at the end of a row but are dependent on the completion of their parent are 

called “dependent end chunks”, such as chunk (3, 4). In this case, chunks 

(3, 2) and (3, 4) are child chunks. Chunk (3, 2) has parents {(3,1), (3,3)}, 

while chunk (3,4) has a single parent, (3, 3). 

Using the printing object from Figure 3-1 as an example, the printing scenario as a result 

of the scheduling in conjunction with the sloped surface chunking method is depicted in Figure 

3-3. Chunks are assigned to four 3D printing robots and printing begins at the center of the 

printing area and then expands into two opposing rows of robots. The following describes the 

execution order of printing for the SPAR3 process. 

• Firstly, one row of robots prints the seed chunks, while the other stand by at a safe 

distance to avoid collisions with the active robots.  

• After both seed chunks are fully printed, the active robots move over 

simultaneously by one chunk to print the gap chunks and dependent end chunks on 

the same row.  
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• The active robots retreat slightly to begin printing an adjacent row of chunks. At 

the same time, the previously inactive robots become active and begin printing the 

other row adjacent to the center row.   

• The parallel sets of active robots independently and iteratively print rows of chunks 

by (1) printing the parent chunks for that row, then (2) printing the gap/dependent 

end chunks for that row. 

 

3.1.3 Encoding a Printing Strategy 

With a proper description of a single, scalable printing strategy from sections 3.1.1 and 

3.1.2, we are now well-equipped to encode this information in a computationally useful way. 

This encoding allows the performance and correctness of a strategy to be evaluated with ease. 

The encoding for a printing strategy uses a directed dependency tree (DDT), a graph that 

represents the dependency of objects towards each other, specifically in a strictly hierarchical 

structure. In this tree graph, a node (or vertex) will represent a chunk to be printed, and edges 

will be directed at a parent that is strictly above the source node in order of execution priority. 

Every chunk is assigned one node, and every parent-child relationship is assigned one edge. 

Finally, the DDT must be in transitive reduced form; this means that there are no redundant 

dependencies encoded in the tree. For example, if chunk A depends on chunks B and C, and 

chunk B depends on chunk C, only two edges are needed to encode these relationships, namely 

the relationships 𝐴𝐴 → 𝐵𝐵 and 𝐵𝐵 → 𝐶𝐶. 
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Figure 3-4. Visualization of a simple transitive reduction. Edge 3 is redundant since it is implied that node 𝐴𝐴 
depends on node 𝐶𝐶 via 𝐴𝐴’s dependency on node 𝐵𝐵. 

 

The formal description of this model isn’t necessarily visually intuitive, so it is useful to 

examine a few examples. The simplest cooperative 3D printing example involves only two 

robots operating in parallel, as shown in Figure 3-5. 

 

Figure 3-5. Simple two-robot chunking (a) and dependency tree (b) 

 

The DDT of Figure 3-5(b) encodes the following information for the chunk layout from 

Figure 3-5(a): 

(a)                                                 (b) 
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• Seed Chunk: The root node of the tree represents the seed chunk. Since seed chunks 

do not depend on the completion of other chunks, the node representing a seed 

chunk should only have inbound edges. 

• Parent-Child Relationships: Any instance of an edge encodes a child-parent 

relationship from the source node to the destination node. That is to say, the chunk 

represented by the source node is dependent on the completion of the chunk 

represented by the destination node. 

From this information, not only is it clear what the execution order of the chunks should 

be, it is also computable. In section 3.2, we dive deeper into the utility of the dependency tree. 

Similarly, the SPAR3 process can also be encoded by a dependency tree. 

  

Figure 3-6. Four-robot SPAR3 chunking (a) and its corresponding dependency tree (b) 

The DDT in Figure 3-6(b) encodes the same type of information as the DDT in Figure 

3-5(b), albeit with a bit more complexity. Captured in this DDT is the following information: 

(a)                                                                (b) 
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• Seed Chunks: The root nodes represent the two seed chunks, 0 and 1 (i.e. chunks 

(3, 1) and (3, 3) from Figure 3-1(a)). 

• Parent-Child Relationships: Edges represent dependencies from source nodes to 

destination nodes. In this case, we can see a couple of chunks, for example chunk 

2, which depend directly on the completion of multiple chunks before they can be 

printed. 

• Row Dependencies: Examining chunk 5, for example, we can tell from the chunk 

layout that chunk 5 doesn’t physically depend on chunks 2 and 3, however this 

dependency is necessary to encode collision avoidance between rows. Printing 

chunk 5 simultaneously to chunks 2 or 3 would result in a robot collision. Thus, we 

introduce additional dependencies to force robots to work on a single row at a time. 

Chunk 5 does not have a labelled dependency on chunk 1 because, as stated at the 

beginning of this subsection, a DDT encoding a printing strategy must be in 

transitive reduced form. 

 

3.2 Evaluation Framework 

An evaluation framework, in this thesis, refers to a set of equations and methods for 

deriving pre-print metrics and validation checks from a set of chunks and a corresponding 

DDT. Such a framework will prove to be very useful for future development of this field, as it 

provides an extensible library of well-defined functionality standards for cooperative 3D 

printing.  
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As part of the development of a strategy evaluation framework, it’s important to name the 

metrics we’re most concerned with. Most importantly, this framework should tell us, given a 

proper dependency tree, how long a print should take according to the schedule encoded by 

the tree, called the estimated execution time (EET). Without knowing the EET of a schedule, 

we can’t know if the print is going to be more efficient than using a single printer. In 

manufacturing environments, validating this technology’s promise of speedup is essential. 

The EET will be the metric of focus in this thesis, while further metrics and validation steps 

are left as topics for future work. For example, determining the maximum parallelizability of 

a DDT, validating that a DDT does not produce collisions, etc. 

 

3.2.1 Estimated Execution Time (EET) 

The EET of a DDT can be calculated according to the equations presented in this 

subsection, assuming the following is given: 

• 𝐷𝐷, a proper DDT. Refer to the beginning of section 3.1.3 for a full description of a 

proper DDT. 

• 𝐶𝐶, a set of unique, non-intersecting chunks. These chunks should correspond one-

to-one with the nodes of the DDT. Each chunk should carry enough information to 

determine the chunk’s printing time if it were to be printed by itself. 

For a given DDT, 𝐷𝐷, and set of chunks 𝐶𝐶, let 𝑐𝑐𝑖𝑖 be the chunk corresponding to node 𝑖𝑖. For 

chunk 𝑐𝑐𝑖𝑖, let 𝑡𝑡(𝑐𝑐𝑖𝑖) represent the amount of time a robot takes to print 𝑐𝑐𝑖𝑖. We will use the 

abbreviation 𝑡𝑡(𝑐𝑐𝑖𝑖) → 𝑡𝑡𝑖𝑖. Assuming the entire print begins at 𝑡𝑡 = 0, let 𝑇𝑇(𝐷𝐷, 𝑐𝑐𝑖𝑖) represent the 
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time after 𝑡𝑡 = 0 to complete printing chunk 𝑐𝑐𝑖𝑖. For example, if 𝑐𝑐0 is a seed chunk, then 

𝑇𝑇(𝐷𝐷, 𝑐𝑐0) = 𝑡𝑡0. If 𝑐𝑐1 depends on 𝑐𝑐0, then 𝑇𝑇(𝐷𝐷, 𝑐𝑐1) = 𝑇𝑇(𝐷𝐷, 𝑐𝑐0) + 𝑇𝑇(𝑐𝑐1) = 𝑡𝑡0 + 𝑡𝑡1.   

More formally, the definition of 𝑇𝑇(𝐷𝐷, 𝑐𝑐𝑖𝑖) is as follows: 

𝑇𝑇(𝐷𝐷, 𝑐𝑐𝑖𝑖) = max({𝑇𝑇(𝐷𝐷, 𝑐𝑐𝑚𝑚) | 𝑚𝑚 ∈ 𝑐𝑐𝑖𝑖. deps}, 0) + 𝑡𝑡𝑖𝑖 (16) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 ∈ 𝐷𝐷.nodes 

𝑐𝑐𝑖𝑖. deps = {𝑚𝑚 | (𝑖𝑖,𝑚𝑚) ∈ 𝐷𝐷.edges} 

 

For example, for the DDT shown in Figure 3-6(b), 𝐷𝐷, the time at which chunk 𝑐𝑐5, which 

has chunks 𝑐𝑐3 and 𝑐𝑐2 as dependencies, finishes printing is given by: 

 

𝑇𝑇(𝐷𝐷, 𝑐𝑐5) = max ({𝑇𝑇(𝐷𝐷, 𝑐𝑐2),𝑇𝑇(𝐷𝐷, 𝑐𝑐3)}, 0) + 𝑡𝑡5  

𝑇𝑇(𝐷𝐷, 𝑐𝑐5) = max({max({𝑇𝑇(𝐷𝐷, 𝑐𝑐0),𝑇𝑇(𝐷𝐷, 𝑐𝑐1)}, 0) + 𝑡𝑡2, max({𝑇𝑇(𝐷𝐷, 𝑐𝑐1)}, 0) + 𝑡𝑡3}, 0) + 𝑡𝑡5 

𝑇𝑇(𝐷𝐷, 𝑐𝑐5) = max{max{𝑡𝑡0, 𝑡𝑡1} + 𝑡𝑡2, 𝑡𝑡1 + 𝑡𝑡3} + 𝑡𝑡5 

𝑇𝑇(𝐷𝐷, 𝑐𝑐5) = max{(𝑡𝑡0 + 𝑡𝑡2), (𝑡𝑡1 + 𝑡𝑡2), (𝑡𝑡1 + 𝑡𝑡3)} + 𝑡𝑡5 

 

Given the definition of 𝑇𝑇(𝐷𝐷, 𝑐𝑐𝑖𝑖), we can express the total estimated execution time of the 

entire print represented by 𝐷𝐷 as the maximum of every possible value of 𝑇𝑇(𝐷𝐷, 𝑐𝑐𝑖𝑖). More 

formally: 

𝐸𝐸𝐸𝐸𝑇𝑇𝐷𝐷 = max{𝑇𝑇(𝐷𝐷, 𝑐𝑐𝑖𝑖) |  𝑖𝑖 ∈ 𝐷𝐷.nodes} (17) 
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3.3 Implementation Details 

The scaled chunking process follows the same overall process as the two robot chunker, 

however, simulating scaled cooperative 3D printing requires more complexity. Many robots 

simulated in the same environment need to behave similarly to how they would in real-life, 

meaning they need to robustly execute a respond to “wait” and “notify” commands. 

Generalizing the simulation process for many robots should maintain compatibility with 2-

robot slicing, such that any 2-robot or 𝑛𝑛-robot simulation can be simulated by the same process. 

At a very basic level, each robot is simply executing a linear set of G-code commands. 

Were we to simulate a single robot executing commands, the simulation process would take a 

very simplistic form, like that shown in Figure 3-7. 

 

Figure 3-7. Simple simulation example. The extruded cylinder resulting from the commands can be represented 
as a “Material” object in memory. 

 

Given that the only events that take place in a single-robot simulation are robot movements 

and material placement, it would be sufficient to represent a simulation over time with 
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“frames”, where each frame contains a robot state (i.e. the robot’s position) and a list of all 

“Material” objects that were newly extruded during the duration of that frame. 

A multi-robot simulation, however, requires more processing than a simple linear 

progression through a set of commands. Each robot needs to be responsive to the state of every 

other robot. The purpose of this section is to describe the mechanisms that were developed to 

simulated a cooperative 3D print. 

To thoroughly cover the implementation details from a language-agnostic standpoint, this 

section will cover high level processes and data structures, then procedurally expand the 

implementation details of the broad concepts. 

  
Figure 3-8. Scalable Cooperative 3D Printing process overview. New additions are highlighted red. The 
point of the process is to accept a list of robots and a 3D model and to return a fully calculated simulation in 
the form of “video frames”. 

  

Figure 3-8 shows the high-level overview of the scalable 3D printing process. The goal of 

this process is to accept a list of robots and a printable 3D model and return the “video frames” 

for the simulated printing of the input model using the input list of robots. These video frames 
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are not actual images made up of pixels, but rather descriptions of the state of the system at a 

specific point in time. Hence, a “frame” in this research is defined as the minimal 

representation of a new scene state given an older scene state. In our case, a scene state only 

corresponds to the positioning of robots and the structure of static material. 

Notably, the slicer and command generation processes will remain the same as the two-

robot printing process. Like with two-robot printing, every chunk must be sliced then converted 

to a collection of commands needed to print that chunk. Each robot knows which chunks it is 

responsible for and can therefore execute the commands for each of its chunks in order. 

Otherwise, the robot has predefined routines for printing movements that are not directly 

related to printing a chunk, e.g. transitioning the print head between two chunks. 

Before expanding the implementation details of the new components in follow-up 

flowcharts, it’s important to be aware of the data structures that will be used. In order to 

maintain chunk printing order, robot-chunk ownership, etc., the data will be stored and 

managed according to the UML diagrams in Figure 3-9. 
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Figure 3-9. Simplified UML Diagrams for the main data structures. Full diagram given in Appendix A. Robots 
know their current location (in a scene), and the chunks they’ve been assigned to print. Chunks know their 
dependencies, commands, and “chunk frames”. Simulations know the robots in the simulation and the frames 
that comprise the time-varied positions of robots and material. 

 

The description of Figure 3-9 briefly explains many of the important structural 

relationships for these classes. A final, important note relevant to this figure is related to the 

different types of frames. There are two ways to represent a frame – one that applies only to 

the position and material placement relevant to a single robot-chunk pair, and another that 

applies to the positions of all robots and the placement of all material within a given frame. 

The mechanism behind the formation of SimulationFrames will be explained later in this 

section. 

The ultimate product of the simulator is a single “Simulation” object, shown in Figure 3-9. 

This object can then be interpreted frame by frame by any renderer capable of producing 

visuals corresponding to the “Simulation” object – for example, a video file, a Blender scene 

filled with 3D objects, or a scene in any other 3D CAD program.  
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3.3.1 Scaled Chunker 

If more than two robots are present in the scene (specifically an even number of robots 

greater than two), then the scaled chunker is used to subdivide a model into chunks.  

 
Figure 3-10. SPAR3 chunking process overview. The chunker is responsible for (1) subdividing the main model, 
(2) assigning the newly created pieces to the appropriate robot, and (3) calculating the chunk dependencies.  

 

Referring to Figure 3-10, notice that the SPAR3 chunking process is simply an extension 

of the Two-Robot Chunking process. The Two-Robot process splits a model into parallel rows 

of chunks. The purpose of the Scaled process is to further divide these rows into adjacent 

chunks. The beginning of section 3 covers this similarity in more detail. 

The gray processes Subdivide and Assign refer to the processes in Figure 3-11 and Figure 

3-12. 
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Figure 3-11. Chunk subdivide process overview. Given an output chunk from a two-robot chunking process, 
this process subdivides it using the two arrays (a) and (b). 

 

The Chunk Subdivide process is responsible for splitting a single chunk row (produced by 

the Two-Robot Chunker) into smaller length-wise chunks. It makes use of two alternating 

planes, (𝑎𝑎) and (𝑏𝑏), that are iterated over the length of the chunk. As each plane is iterated, 

the row chunk is bisected using the current plane as the separator. More about bisection is 

discussed in section 2.2.4. 
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Figure 3-12. Chunk assignment process overview. The idea is that every robot will receive two subsequent 
chunks after the execution of this process and that the dependencies of each chunk include the previous row 
and any dependencies enforced by SPAR3. Refer to the Glossary for definitions of shortened terms in this 
flowchart. 

 

The Chunk Assignment process is responsible for assigning each finalized SPAR3 chunk 

to the appropriate robot, as well as assigning each chunk the correct chunk dependencies, as 

defined by the SPAR3 strategy. This step is crucial for collision avoidance. The robot to which 

a chunk belongs can be determined simply by a chunk’s order in the row. The dependencies of 

a chunk are determined by the chunk assignment and chunk scheduling definitions described 

in detail in section 3.1.2. 
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3.3.2 Single-Chunk Simulation 

As mentioned in the beginning of section 3.3, a single robot in an isolated environment can 

be easily simulated in such a way that each frame of a hypothetical video of the simulation can 

be represented by a simple data object, as shown in Figure 3-13 below. 

 

Figure 3-13. Example of a single-robot simulation. The robot starts at position (0, 0). Commands are executed 
in order. The robot is assumed to move at a speed of 2 units per frame. Commands that are not completed 
within a single time frame generate multiple pieces of material for the same command. The differing colors in 
material are for visualization purposes only. Notice the small piece of material beneath the robot’s printhead 
in frame 2. The coordinates used by the MOVE commands are absolute coordinates.  

 

Following this example, a set of commands has supposedly been generated by the slicer. 

Any commands between consecutive “TOOL ON” and “TOOL OFF” commands should 

extrude material at the robot’s extruder following the robot’s “MOVE” commands. If a time 
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frame contains multiple such groups of “MOVE” commands, multiple “Material” objects are 

generated for that frame. In the event that a robot would not fully complete a command before 

the end of any given frame, the robot’s position at the end of the frame is linearly interpolated 

to the position where the robot is located at the end of the frame. In addition, the material that 

is extruded for any unfinishable commands is linearly interpolated to the robot’s position at 

the end of the frame. 

The commands generated by the slicer for each chunk can independently be converted to 

an array of frames, following the example from Figure 3-13. Each chunk keeps this array of 

“ChunkFrame” objects (see Figure 3-9) in its “frames” property, in preparation for further 

processing by the scaled simulator. 

 

3.3.3 Scaled Simulation 

The generalized simulation process is responsible for making sure all chunks are printed 

according to the commands generated by the slicer. The simulation process is also designed to 

ensure no robot begins printing its next chunk before the dependencies for that chunk are 

satisfied. The process generates a list of “simulation frames”, each of which contains the 

position of every robot for that particular video frame and a list of “material” objects that were 

generated (or “printed”) in the time interval represented by that frame. 

In order to achieve these goals, the process needs to keep track of various markers. The 

states of these markers will determine the actions that occur in the frame that is currently being 

evaluated. These markers include: 

• The finished state of each robot, 
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• the list of finished chunks, 

• the current chunk a robot is printing, or ready to print, and 

• the current progress a robot has made through its current chunk 

These markers are sufficient to create a state machine that accurately simulates the 

progression of the cooperative 3D print job. Figure 3-14 demonstrates the process overview 

for the simulation generation. 

 

Figure 3-14. Simulation generation process overview 

 

The point of this algorithm is to join the individual chunk frames into a single consecutive 

list of simulation frames in such a way that a video produced from the simulation frames would 

show no robot collisions and no floating material. Most of these safeguards are ensured by 

previous processes related to chunk dependency assignment and chunking. However, it is this 
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process’s responsibility to produce the final set of simulation frames cohesively. Figure 3-15 

and Figure 3-16 help visualize the function of this process. 

 
Figure 3-15. Visualization of chunk frames being joined into simulation frames. The gray vertical lines separate 
frames. The colored rectangles represent the data in each chunk frame. The joining of multiple chunk frames 
into a single simulation frame is not finely visualized here. 

 

Figure 3-16. Finer resolution of chunk frames being joined into simulation frames. The simulation frame 
possesses the position information from each chunk frame. All material from multiple chunk frames are joined 
into the resulting simulation frame.  
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The details of the process in Figure 3-14 are designed to achieve the results visualized in 

Figure 3-15 and Figure 3-16. The main branch, All robots finished?, is the main loop of this 

process. As long as this evaluates to false, then there are still machines that need to evaluate a 

new state for the upcoming frame. The following figure demonstrates the process for 

determining if all robots have finished printing based on the marker object “finished_r”.  

 

Figure 3-17. Detect all robots finished process overview. “finished_r” (short for “finished robots”) is an 
array with the same length as the number of robots. The boolean values in the array indicate whether the 
machine corresponding to that index is finished or not. 

 

In the generalized simulation process overview, the next important branch is a loop that 

iterates over every robot. For each robot, some logic needs to occur to determine what should 

happen for that robot in the current frame. For example, if a robot is marked as “finished”, it 

doesn’t need to be evaluated, so it is skipped. If a robot is not marked as finished, but it has 

completed all of its chunks already, it is appropriately marked as “finished”, then skipped. 

Finally, if a robot is determined to be “in progress” (i.e., the opposite of “finished”), then the 

final branch detects whether the robot’s current chunk has all of its dependencies satisfied. If 

not, the robot is skipped. However, if the current robot’s current chunk’s dependencies are 



58 
 

satisfied, then a different subroutine, Evaluate frame for current robot i, is called for that robot. 

The logic for detecting whether dependencies are satisfied is demonstrated in Figure 3-18. 

 

Figure 3-18. Dependency satisfaction process overview. 

 

The Evaluate frame subroutine, as shown in Figure 3-19, is responsible for manipulating 

the current scene (i.e. moving the robot and adding new material) according to the state markers 

mentioned above. 
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Figure 3-19. Evaluate frame process overview. “frame_idx” maintains the current chunk frame a robot needs 
to evaluate. If this index is larger than the actual number of frames for that chunk, then the process needs to 
set the robot’s current chunk to the next chunk. Otherwise, the simulation frame needs to be updated with the 
chunk frame’s data. 

The process in Figure 3-19 evaluates the new state of a machine if it is currently working 

on printing a chunk. If it is working on a chunk, the right branch is followed, and if not, the 

left branch is followed. The right branch relocates the robot to the position held by the current 

frame object and adds the material in the frame object to the global “new_material” object. 

The left branch sets the robot’s current chunk to its next chunk once it has finished all of the 

frames of a given chunk.  

Once every machine has had its state evaluated, a new simulation frame is generated and 

added to the end of the list of simulation frames (stored in the “simulation” object). Once all 

the machines are marked as finished, the simulation has completed. 
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3.3.4 Print Time Estimation 

Estimating the print time of a cooperative 3D print was formally defined in section 3.2.1. 

This section serves as the implementation details of the evaluation of 𝐸𝐸𝐸𝐸𝑇𝑇𝐷𝐷 in Equation (17). 

As stated previously, it is useful to know before executing a simulation roughly how long the 

print will take. Examples use cases include stopping the process early before an unsatisfactory 

print is evaluated any further, amongst other user-specific needs.  

The function 𝑡𝑡(𝑐𝑐𝑖𝑖) is evaluated based on the total length of time taken to execute all 

commands for chunk 𝑐𝑐𝑖𝑖. Therefore, estimating the print time requires the command-generation 

of all chunks. Because each robot’s speed is known, it is possible to calculate the time taken to 

print an individual chunk. In fact, the “per-chunk frame” generation process already calculates 

the length of time needed in time units of “frames”. In this sense, it is sufficient to describe the 

length of time needed to print a chunk as a multiple of the number of frames needed to simulate 

the chunk. Thus, the print time estimation function will very closely approximate both the 

simulated print time and the real-world print time. 

The implementation of this print time estimation function depends on augmenting the 

existing directed dependency tree (DDT) with an additional node value, the execution time. 

For each node in the graph, to estimate the time to finish printing that node and every one of 

its dependencies, each of its dependencies must be queried for their execution times, hinting at  

an intuitive recursive algorithm. 

The estimated execution time of the printing of a single chunk is directly proportional to 

the number of chunk frames that a chunk possesses, so the evaluation of 𝑡𝑡(𝑐𝑐) runs in constant 

time, 𝑂𝑂(1), since the number of frames for a chunk is assumed to be known at this point. The 
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estimation algorithm has the same time complexity of walking the dependencies of every node 

in a transitive reduced graph, 𝑂𝑂(𝑛𝑛2𝑘𝑘), where 𝑛𝑛 is the number of chunks and 𝑘𝑘 is a placeholder 

for the complexity of the operations at each visit to a node. Because each visit to a node only 

executes constant time operations – i.e. 𝑂𝑂(1) – the whole algorithm runs in 𝑂𝑂(𝑛𝑛2). Again, this 

is assuming the DDT is, indeed, in transitive reduced form. If not, then it must first be 

transitively reduced, which has a worst-case complexity of 𝑂𝑂(𝑛𝑛2.37) (i.e. the time complexity 

of matrix multiplication [18]). The transitive reduction step isn’t necessary, but it is the only 

way to guarantee a well-defined runtime complexity. Otherwise, a highly connected 

dependency tree could cause exponential runtime. It should be noted that there are rarely going 

to be enough chunks such that runtime will be prohibitively long. There are very few potential 

use cases involving chunks numbering in the thousands. 

The process diagrams for the estimated execution time algorithms are shown in Figure 3-20 

and Figure 3-21. Before these processes execute, it is assumed that a DDT has been constructed 

from the generated chunks. 
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Figure 3-20. Estimated execution time process overview. This is the main function. Each node's execution time 
is initialized to "-1", then the function 𝑇𝑇𝑐𝑐 is called 𝑛𝑛 times, once for each node. The maximum value of 𝑇𝑇𝑐𝑐 is 
returned as the estimated execution time of the print job represented by 𝐷𝐷𝐷𝐷𝐷𝐷. 
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Figure 3-21. Process overview for the function 𝑇𝑇𝑐𝑐. If “exec_time” has already been calculated (i.e. it is not    
-1), then return that value for 𝑇𝑇𝑐𝑐. Otherwise, calculate  𝑇𝑇𝑐𝑐(𝐷𝐷𝐷𝐷𝐷𝐷,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑇𝑇𝑐𝑐(𝐷𝐷𝐷𝐷𝐷𝐷, 𝑖𝑖) |  𝑖𝑖 ∈
𝐷𝐷𝐷𝐷𝐷𝐷[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛]}  + 𝑡𝑡𝑐𝑐. 
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3.4 Simulation Results 

The SPAR3 strategy was tested on two different 3D models, the first a simple rectangular 

prism and the second a complex topographical map of Arkansas. The results in this section 

compare the estimated time (as discussed in section 3.3.3) to the actual simulated time. The 

time value (in hours) is determined by multiplying the number of frames in the 

estimation/simulation by the amount of time represented by each frame.  

Because the simulator executes commands as if they were real-world G-code commands, 

the simulated time to print is very close to the real printing time. In order to reduce the amount 

of time needed to render, each frame represents 140s of real-world print time. The testing 

methodology is to compare the number of frames needed to fully print a 3D object across three 

strategies: (1) Single robot printing, (2) Two robot printing, (3) the SPAR3 strategy with up to 

16 robots, while measuring both the estimated time (described in section 3.2.1) and simulated 

time. 

Table 3-1 shows the constant parameters for the simulation environment. 

Table 3-1. Parameter settings for the simulation 

Robot width 16cm 

Robot build depth 4cm 

Robot printhead slope 60° 

Slice thickness 1.6mm 

Infill type Solid 

Time per frame 140s 
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The first model to be tested is a low-height rectangular prism with dimensions 280cm × 

24cm × 2cm (total volume of 13,400 cm3). Periodic snapshots of the printing process are 

shown in Figure 3-22, numbered 1 through 6. The second model is a topographic map of the 

state of Arkansas, approximately 232cm × 87cm × 2.5cm (total volume of ~19,524 cm3). 

The printing process of this model is illustrated in Figure 3-23 and is numbered 1 through 6. 

 

Figure 3-22. The rectangular prism being printed from start to finish. 

 

 

Figure 3-23. The Arkansas topographic map being printed from start to finish. 
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Table 3-2 shows the estimated and simulated time in hours taken for both printing jobs. 

The estimated time is calculated based on Equation (17), whereas the simulated time is the 

total time the robots took to complete the print job in the simulation. 

Table 3-2. Estimated time vs simulated time of printing a rectangular prism model (left) and Arkansas model 
(right). The first column provides the number of printing robots. 

 Rectangular Prism Model Arkansas Model 

Robots Estimated 
Time (h) 

Simulated 
Time (h) Speedup Estimated 

Time (h) 
Simulated 
Time (h) Speedup 

1 188.46 190.63 N/A 257.02 258.00 N/A 
2 120.09 120.09 1.59 162.24 162.21 1.59 
4 61.41 60.98 3.13 101.81 101.7 2.54 
6 41.49 41.34 4.61 74.9 72.99 3.53 
8 31.34 31.31 6.09 60.16 58.14 4.44 
10 25.51 25.39 7.51 49.89 47.76 5.40 
12 21.39 21.39 8.91 42.93 40.13 6.43 
14 18.51 18.51 10.03 37.88 36.59 7.05 
16 16.57 16.53 11.53 37.68 35.58 7.25 

 

Table 3-2 reveals two important trends. First, the results indicate that the SPAR3 printing 

process significantly speeds up the time taken to print. For example, if 6 robots are used to 

print a rectangular prism instead of 1, the print time shortens from almost 191 hours (nearly 8 

days) to roughly 41 hours (less than 2 days). With only two robots, we already see a 60% 

speedup in print time. However, with the new SPAR3 scaling strategy, we are able to 

parallelize the workload to at least 16 robots, potentially more given a sufficiently large model 

to print.  
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The speedup grows linearly with the number of robots in the case of the rectangular prism, 

as shown in Figure 3-24. The same growth also shows linear growth for low numbers of robots 

for the Arkansas model, but the growth slowly decreases as the number of robots increases. 

We expect the rectangular model to drop off similarly as the number of robots increases past 

16. This is expected because there isn’t any added benefit in adding robots beyond a certain 

point for a model of a fixed size. Once the number of robots to fully parallelize is reached, 

adding more robots will not result in a reduction of print time as the additional robots will not 

be utilized for printing. The upper limit (number of robots) at which the speedup stops 

improving can be obtained using the modified Amdahl’s law from section 23. 

 

Figure 3-24. Graph showing the total number of robots used vs the speedup of execution of printing task 

 

The rectangular prism works very well with the SPAR3 strategy due to the fact that all the 

chunks have roughly the same volume and every robot has the same number of chunks to print. 
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This minimizes the amount of time that some robots spend waiting for their dependencies to 

be satisfied. The Arkansas model, however, has chunks of varying volume (some chunks being 

completely empty with 0 volume). This causes multiple robots to wait for long periods of time 

before they can begin new chunks. As a result, the Arkansas model sees worse speedup. This 

leads to the conclusion that if we want to minimize the total print time using the SPAR3 

strategy, it is ideal to have more uniform volumetric sizes of chunks, since a chunk’s printing 

time is linearly correlated with its volume. 

 

Figure 3-25. Graph showing the total number of robots used vs the error percentage. 

 

The second important trend revealed by Table 3-2 is the relationship between estimated 

print time and simulated print time. Figure 3-25 provides the graphical representation of the 

error percentage calculated using estimated time and the simulated time against the total 

number of robots used. The estimated time for the rectangular prism shows a much lower error 
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percentage (at most, 1.15%) and stays relatively steady as the number of robots increases. 

However, the Arkansas model fluctuates frequently, and is generally higher as the number of 

robots increases.  

The scaling discrepancy when evaluating the Arkansas model’s scalability is also related 

to the non-uniform volume of chunks. This is evident when we consider that any given chunk 

cannot be printed until its dependencies are fulfilled. If some chunks have a larger volume, 

then they will take longer to print than other chunks. This means that there are some chunks 

that cannot begin printing due to a single dependency with a high volume. This effect cascades 

through the entire dependency tree, extending the overall time of the print due to a few chunks 

with a disproportionate material volume. 

Finally, the error trend for the Arkansas model is not as obvious as that of the rectangular 

prism. Regardless, the print time estimation algorithm described in this chapter provides a 

faster approach to estimate the printing time with reasonable accuracy. 
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4 Implementation of Chunk-based 3D Printing 

As it stands, the processes and software outlined in the sections leading up to this chapter 

provide a solid theoretical foundation for real-world implementation, as well as an accurate 

evaluation framework for gathering pre-print metrics. However, there are questions and 

challenges that the research up to this point does not address. These questions and challenges 

serve as a principled guide to the topics of this chapter, with the goal to address them as 

reasonably as possible given the theoretical scope of this research. 

Firstly, the bridge between the Cooperative 3D Chunker and real-world robots is missing. 

At this point in the story, we are missing the crucial element that makes this research 

meaningful: it’s applicability to parallelized, cooperative, real-world printing. The following 

subsection addresses this issue with discussion of software that has been developed in 

conjunction with this research. 

Secondly, this research hasn’t addressed the usability of the simulation output. Specifically, 

no mention has been made about the exportability of a simulation calculation to other software 

formats. Without addressing this issue, the simulation’s usability is directed solely by the 

developer of the software, unless a user reverse-engineers their own simulation solution. In the 

final subsection of this chapter, we will discuss this issue further and offer a solution. 

The portability of the simulation results and the applicability of this research to the real 

world serve as the foci of this chapter. Notably, these two problems are deeply related, and this 

connection will be made clear as they are addressed in the coming sections. 
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4.1 Real-world Implementation  

It’s important to introduce the constraints of working with real-world robots as compared 

to our comfortable simulation environments. Challenges like periodic position calibration, 

consistent print head levelling, power delivery, etc. are monumental in their own right. Even 

so, these solutions are only related to this research to the extent that they are interested in 

maximizing the viability of the technology and deserve publications of their own (some of 

which currently have been published). 

The constraints we are interested in for the purposes of this research are related to the 

software behaviors of real-world 3D printing robots. The standard way to issue commands to 

extrusion-based 3D printers is with a simple programming language (or “numerical control 

language”) called G-code. G-code was briefly introduced in section 29 as a parallel to the basic 

movement command language developed in this research. It is this parallel that provides a 

direct mapping between the proprietary command language and usable G-code that can be 

interpreted by the microprocessor of a 3D printer. 

Recalling from chapter 3, each chunk is responsible for storing the commands related to 

the printing of that chunk, and all other extraneous commands are pre-programmable. 

However, in the real-world, robots will need to be given a single set of G-code commands and 

are expected to cooperate according to our wait-notify paradigm. This means that robots that 

were previously unaware of the concept of a “chunk”, let alone the concept of cooperating with 

other robots as they print their chunks, need to have an entirely new system for managing this 

cooperation. 
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The fundamental information needed by real-world robots to perform cooperative 3D 

printing is as follows: 

• The G-code files for each robot, one file per robot, 

• The dependency network, encoded in its own file or formatted in a custom G-code 

command, and 

• The chunk ownership of each robot, encoded in its own file or formatted in a custom 

G-code command. 

Alongside this research, a user-friendly web interface has been developed to ease the 

process of issuing a print job to cooperative robots. Every step of the process is automatable, 

from chunking to issuing G-code to the robots. As part of this automation, the following 

process is used: 



73 
 

 

Figure 4-1. The website automation process. (a) replaces the proprietary, simplistic slicer developed for this 
research. (b) is a nontrivial step requiring further explanation. (c) refers to the cooperative 3D printing 
simulation processes from chapter 3. 

Figure 4-1(a) is the first modification of the cooperative 3D printing process. As mentioned 

in chapter 2, a proprietary slicer was developed for the purposes of this research. The process 

was time-consuming and did not yield a particularly useful slicer in that it was incapable of 

handling most oddities present in 3D geometries (for example, holes in the middle of a vertical 

slice of a model). Cura [3] is a widely used, frequently updated slicer. It is extremely powerful 

with complex 3D geometries, accounting for hundreds of edge cases in models to make them 

printable. The chunker performs the chunking, then exports the chunked 3D pieces to STL 

files. These STL files are then passed through Cura’s slicer individually to produce a set of G-

code commands for each chunk. 

(a) 

(b) 

(c) 
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Figure 4-1(b) is a new step that receives the per-chunk G-code, the chunk dependencies, 

and the robot-chunk ownership information with the intent to produce a single set of custom 

G-code for each robot. For each robot, this G-code contains all the commands for printing each 

of a robot’s chunks, and also markers that signal the robot to either “notify” another robot that 

it has finished a chunk, or “wait” for a notification from another robot that a specific chunk has 

been finished. 

The result of this G-code will have a format similar to Figure 4-2, with embedded wait and 

notify commands in the form of “#” comments. 

 

Figure 4-2. Example of a G-code file for a single robot. The “#” comments are custom commands that the 
robot uses to communicate with other robots about the completion of chunks. In this small example, Chunk 0 
has no dependencies and Chunk 1 depends on Chunks 0 and 2. 

 

In this example, the unique addition to this G-code is with the “#” comments. “# N_C” is a 

notify command. The numbers after the command are the chunk numbers that are completed. 

This notification is broadcast to every other robot printing the model. “# W_C” is a wait 

command. The numbers following the wait command are the chunks that need to be notified 

by other robots before continuing with the G-code. The chunks for which to wait will always 

be the subsequent chunk’s dependencies minus any dependencies already taken care of by this 

robot. 

G0 X12.0 Y0.2 Z0.0 F3200 
... 
 
# N_C 0 
# W_C 2 
 
G0 X24.0 Y3.4 Z1.2 F3200 
... 
 

} 
} 
} 

Chunk 0 commands 

Notify/wait commands 

Chunk 1 commands 
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Figure 4-1(c) refers to the existing simulation process, but rather than performing the 

chunking and command generation steps as shown in Figure 3-7, the process can begin at the 

“Generate per-chunk Frames” step. Cura has already generated the per-chunk commands, so 

those can be parsed into the internal G-code representation with which the existing software is 

already familiar. In order to extract the chunk dependency and ownership information, the 

#N_C and #W_C commands (from Figure 4-2) must be leveraged. The following flow chart 

demonstrates how to parse the per-robot G-code into an array of chunks for each, complete 

with dependencies. 

 

Figure 4-3. Algorithm for converting per-robot G-code to Chunk objects for use in the Simulator.  

 

The process diagrammed in Figure 4-3 can be executed for every robot to convert its raw 

G-code commands into the data models used by the Simulator. This process ensures that the 
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simulation and the real-world robots are using the same information, which is necessary to 

properly validate the cooperative 3D printing algorithms. 

Once these commands have been parsed, they can then be simulated. To this end, a frontend 

tool has been developed, as shown in Figure 4-4, to make the cooperative 3D printing 

experience more manageable. The underlying infrastructure makes use of the software from 

this thesis to carry out the conversion of a 3D geometry to G-code files for multiple robots. 

The frontend also has the capability to communicate with any connected AMBOTS so that 

they can carry out the per-robot G-code commands. 

 
Figure 4-4. Screenshot of a prototype web frontend for cooperative 3D print management. (a) Robot setup. 
Four robots are initialized. (b) The resulting per-robot G-code files. (c) Upload STL file. STL models are 
automatically chunked, sliced, and simulated with the number of robots in (a). (d) A basic G-code visualizer 
(not a simulator). 

 

(a) 

(b) 

(c) 

(d) 
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4.2 Portable Simulation 

The next problem this software needs to address is the need for the simulation visualization 

to exist outside of our proprietary software, or, at the least, make the format generic enough 

that a visualizer is easy to build around the simulation format. 

A popular choice for open file formats (that is, formats with open-source descriptions 

without intent to obscure the format from users) is JavaScript Object Notation (JSON) [19]. 

JSON is a text format that is easy for machines and humans alike to parse and generate. Its 

format is based upon paradigms in object-oriented programming. Another benefit of this choice 

is that JSON parsing libraries exist for nearly every major programming language, including 

Python, Java, JavaScript, C++, and many more. 

In Figure 3-9, the only object needed to visualize a simulation is the Simulation object (and 

SimulationFrame, which shows up in the members list of Simulation). Because this 

information is both sufficient and all of it is necessary, it make sense to simply serialize the 

Simulation object in JSON format. Looking at the format description in Figure 4-5, that’s 

essentially how the format was derived, with a couple of minor modifications. 
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Figure 4-5. Portable simulation file format. Comments are meant as a description to aid with understanding 
the format in this paper. They should not be included in any legitimate portable simulation JSON file. 

{ 
    "init": {    // Contains all initialization data (in this case,  
                 // just robot positions) 
        "robots": [    // An array of all the robots in the scene 
            {    // Each robot has a number, rotation, and position 
                "n": 0,              // number 
                "r": 0.0,            // rotation (radians) 
                "v": [x1, y1, z1]    // position 
            }, 
            { 
                "n": 1, 
                "r": 3.14159, 
                "v": [x2, y2, z2] 
            }  
        ] 
    }, 
    "frames": [    // An array of all SimulationFrames 
        {  // frame 0 
            "robots": [   // An array of new states per-robot 
                ...    // Each robot format matches that of the 
                       // "init" 
   ], 
            "material": [    // An array of all placed material in 
                             // this frame 
                [   // Placed material is represented by a sequence 
                    // of coordinates. 
                    [x3, y3, z3], 
                    [x4, y4, z4] 
                ], 
                [ 
                    [x5, y5, z5], 
                    [x6, y6, z6], 
                    [x7, y7, z7], 
                    ... 
                ] 
            ] 
        }, 
 
        {  // frame 1 
            ... 
        }, 
        ... 
    ] 
} 
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This format includes all of the information held in the Simulation object, as mentioned, but 

is not necessarily a direct serialization of a Simulation object. For example, the variables 

representing a machine are “n”, “r”, and “v”. These are shortened variable names for the 

purpose of saving space when storing simulation files. On the topic of space-saving, it is always 

ideal to save simulation files without any whitespace (which is still valid JSON). The white 

space can frequently consume as much as 75% of the simulation file size, especially when the 

white space is comprised of space characters as opposed to tab characters. 

As a proof-of-concept for the utility of the simulation file, a standalone Javascript-based 

visualizer was developed as part of this research to demonstrate the simplicity of using the 

simulation file. Creating the software took 6 hours and 500 lines of JavaScript code to have a 

fully functional, interactive, frame-by-frame visualizer of a simulation file exported directly 

from the scaled simulation process. A few screenshots of the simulator are shown in Figure 

4-6. 

 
Figure 4-6. Screenshots of proof-of-concept visualization software. All robot movements and materials 
depicted are derived purely from the raw data encoded in a portable simulation JSON file. This simulation 
only used two robots and had a total of 289 frames. The simulated print time is roughly 2.7 hours. The whole 
simulation is viewable within ten seconds.  
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This simulator was written using a general-purpose, open-source 3D graphics library called 

Three.JS [20]. The robot models are predefined 3D models that can be modified at the whim 

of the developer. That is to say, the robot models are not related to the simulation JSON file. 

The material placed in the scene is all derived from the simulation JSON file, but stylistic 

choices like the coloring of the material are also at the developer’s discretion. 

Again, the purpose of this proof-of-concept software was to demonstrate the ease of 

development and flexibility of design afforded to a developer when the encoded simulation 

file is human-readable and highly accessible. The visualization software handles the job simply 

and quickly, with little development time and few hiccups. This bolsters our confidence that 

future visualizers will be similarly easy to develop. 

  



81 
 

5 Conclusions 

This project aimed to lay the foundation for scalable Cooperative 3D printing, a new 

research direction that hasn’t been addressed before in the literature. Cooperative 3D printing 

aims to solve the scalability issue with existing 3D printing technology. This thesis has 

presented, in detail, a feasible process for managing 𝑁𝑁 3D printing robots operating in parallel 

on a single print job, taking into account the geometric constraints, the communication 

requirements between robots, and the necessary pre-processing needed to properly subdivide 

a model for chunk-based printing.  

This thesis also presents validation for a scaled printing strategy with a simulator (ignoring 

hardware anomalies that could occur, which are not within the scope of this thesis). Not only 

were validation considerations made, but also those for the utility of the simulation algorithm; 

simulations generated by the algorithms in this thesis are highly portable using the open, 

readable JSON format for use in any environment, be it visual or computational. 

Beyond the simulation, the methods for producing executable G-code have also been 

developed alongside this work, solidifying the software suite as a fully-featured Cooperative 

3D Slicer, comparable to that of popular user-interface slicing softwares. 

It is our hope that this technology goes on to revolutionize the way manufacturing 

processes are structured, focusing on developing automated, independent robots that can, under 

a reliable mechanism, produce complete, finished products with minimal human post-

processing. In addition to printing robots, we envision this technology supporting a wide 

variety of manufacturing robots, including pick-and-place robots, circuit-printing robots, and 

more. 
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5.1 Future Work 

To further develop this work and enable real-world 3D printing, real-world testing is 

necessary. The logical continuation of this work is to take the G-code intended for real-world 

printers and test the printing results of many models, varying in geometric complexity. The 

results of such testing could yield a few important organizational problems. For example, the 

chunker used in this thesis subdivides models without consideration to the possibility for 

chunking at very thin parts of a model, which could make for a weak chunk boundary. If this 

comes to be an issue, it will be necessary to modify the chunking algorithm to maximize the 

surface area of chunk boundaries. This is just one example of a potential problem that can only 

arise from real-world testing. 

This thesis’s research can also be extended with the development of more scaling 

strategies, i.e. strategies besides SPAR3. As part of this research, many alternative strategies 

were considered, for example, strategies involving robots moving circularly around the 

centerpoint of a model, working their way outwards as more material gets placed. There is 

potential for many more methods of printing, but they were not explored in this research and 

will make great additions to this foundational piece. 
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6 Appendix 

Appendix A – UML Diagram of the Chunker, Slicer, and the Simulator 
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7 Glossary 

This section is used to document abbreviations used in flowcharts and code examples 

throughout this thesis. 

chunk_idx “Chunk index”. An integer value, representing the index of a Chunk in an 
array. 

current_c “Current chunks”. An array with one value for each robot. A value at 
position 𝑖𝑖 in the array specifies the Chunk number that robot 𝑖𝑖 is currently 
printing. 

current_f “Current frames”. An array with one value for each robot. A value at 
position 𝑖𝑖 in the array specifies the current index in a Chunk’s “frames” 
property that robot 𝑖𝑖 is currently simulating. 

DDT “Directed Dependency Tree”. This name is used to represent any graph-
like object whose purpose is to encode a DDT for chunk dependencies. 
Chunk objects themselves are graph-like, in that the “dependencies” 
property of Chunks points to the chunk numbers upon which a given Chunk 
is dependent. 

deps “Dependencies”. Used in flowcharts to save space. This property 
corresponds to the “dependencies” property of Chunks. 

EET “Estimated Execution Time”. Defined as the length of time needed to print 
a given Chunk or Cooperative 3D print. 

exec_time “Execution Time”. This nomenclature is used only as a property of Chunk 
objects to store the length of time taken to print that Chunk. 

finished_c “Finished Chunks”. A set of all the chunk numbers for chunks that have 
been printed at a given point in a simulation. 

finished_r “Finished Robots”. An array of boolean values with one value for each 
robot. A value at position 𝑖𝑖 indicates whether or not robot 𝑖𝑖 has finished 
printing. When every value in the array is “True”, the simulation has 
finished.  

frame_idx “Frame Index”. An integer value, representing the index of a ChunkFrame 
in a Chunk’s “frames” property. 
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N_C “Notify Command”. The token “N_C” is used in G-code files as a custom 
command. It is always followed by a single integer: the chunk number 
which the robot has just completed. 

pieces Synonym for “smaller chunks”, relative to some larger chunk. Used in the 
SPAR3 definition to refer to chunks that are produced from row-wise 
chunks, which are themselves produced by two-robot chunking. 

prevRow “Previous Row”. An array of all the chunk pieces from the row of chunks 
directly preceding a given “current row”. This is used so that the “current 
row” of chunks being produced can refer to the previous row’s chunks for 
the purposes of creating dependencies in the SPAR3 strategy. 

remChunk “Remaining Chunk”. Used to refer to one of the two chunks produced by a 
single bisection around a chunking plane. The “remaining chunk” is the 
chunk that must be further subdivided, while the other chunk produced by 
a bisection is considered a “finalized chunk”. 

W_C “Wait Command”. The token “W_C” is used in G-code files as a custom 
command. It is always followed by either a single integer or multiple 
comma-separated integers: the chunk numbers that musts be completed 
before the robot is allowed to continue executing commands. 
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