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Abstract 

The proliferation of modern smartphone camera use in the past decade has resulted in 

unprecedented numbers of personal photos being taken and stored on popular devices. However, 

it has also caused privacy concerns. These photos sometimes contain potentially harmful 

information if they were to be leaked such as the personally identifiable information found on ID 

cards or in legal documents.  With current security measures on iOS and Android phones, it is 

possible for 3rd party apps downloaded from official app stores or other locations to access the 

photo libraries on these devices without user knowledge or consent.  Additionally, the prevalence 

of smartphone cameras in public has reduced personal privacy, as strangers are commonly 

photographed without permission.  To mitigate the privacy risk posed by apps and unwanted 

public photos, this research project explores 3 main topics: developing a two-step method 

including permission analysis and system call analysis to identify the possibility of 3rd party 

applications accessing sensitive photos without user knowledge, developing an automated 

classifier to identify and protect private photos in smartphone media storage, and creating an 

accurate computer vision model for identifying bystanders in photos, so that their faces might be 

later blurred or otherwise obfuscated to protect their privacy.  The resulting data from the system 

call analysis will hopefully improve public awareness on the vulnerabilities created by 

downloading untrustworthy apps.  The private photo classifier and bystander detection model are 

able to achieve acceptable accuracy on the test datasets and can be used in future works to 

implement working systems to protect individual privacy in the aforementioned threat cases. 
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I. Introduction 

A. Problem 

With the advent of smartphone cameras, personal photography has exploded with 

millions of iOS and Android cell phone users purchasing devices each year.  While this relatively 

recent development has brought the previously professional realm of photography to the 

everyday user, it has also presented an all new set of challenges towards protecting personal 

information.  Some of the largest vulnerabilities that currently exist for privacy protection are the 

current app permissions protocols for iOS and Android devices.  Under the existing scheme, 

users who download and install 3rd party apps are asked once to grant an app permission to 

access media storage and/or the phone’s network connection.  This permission, once granted, 

will then allow that app access to the internet and phone media essentially in perpetuity.  This 

approach certainly makes security settings easy to manage for the user but fails to address 

specific cases where users might not want particular photo files read by apps which might then 

transmit them over a network.  Because 3rd party apps are almost never fully transparent in their 

behavior, users must currently rely on automated screening procedures implemented by Apple 

and Google to protect them from potentially malicious behavior from apps on the App Store and 

Google Play Store respectively.  These screening processes have already been shown to be 

ineffective in alarming security breaches such as the discovery of 145 malware-infected Google 

Play apps [1], or the recent trend of researchers finding unauthorized data exfiltration in multiple 

App Store apps [2].  Beyond official app stores, users who wish to download apps from other 

sources often have no protection whatsoever from hidden malicious behavior in apps.  The 

failure of these screening processes coupled with the lack of individual file access control clearly 

presents opportunities for attackers to access and transmit private photos along with any 

information contained within. 
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In addition to the dangers of unauthorized photo accesses, the privacy of individuals in 

public has also been adversely affected by the onset of smartphone photography.  A large 

number of photos taken in public locations tend to contain random bystanders.  With recent 

estimates of roughly 1.2 trillion digital photos being taken worldwide in 2017 [3], the number of 

bystanders being captured unawares is likely extremely high.  There is currently no common 

system of ensuring the privacy of strangers in public photos although companies such as Google 

have implemented systems for automatically blurring faces on photos captured for Google Street 

View.  Many individuals may want their faces obfuscated or otherwise removed from other 

peoples’ photos especially when these photos might be uploaded to social media or some other 

publicly accessible location.  This desire for privacy creates a demand for an automated system 

of detecting and removing faces which are not the targets of photos which could possibly be 

included in social media platforms to give users the option of removing strangers from their 

photos. 

B. Proposed Solutions 

A new method for monitoring the behavior of Android applications has been developed 

to determine whether a given app is making photo read accesses without user knowledge.  To 

demonstrate the efficacy of this method, the 15 top, free apps on the Google Play Store have 

been analyzed to track their file accesses.  This behavior tracking is achieved by recording all file 

read system calls within the photo media directory on an emulated Android device.  Any app 

which is found to read from the media directory and possesses internet access should be 

considered to be able to leak user photo data to unauthorized entities.  However, this information 

on app behavior is not meant to definitively identify actual malicious behavior, but rather 

demonstrate how common the potential for information leaks are in modern app stores. 
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Potential threats posed by untrustworthy apps towards private photos can be mitigated 

with a system consisting of an automated photo classifier to identify photos which need to be 

protected.  This system would need to be implemented into future Android and iOS releases as 

an integral part of the operating systems similar to how current app permissions schemes are 

implemented in order to be effective.  The photo classifier maintains responsibility for 

identifying images which contain potentially sensitive information such as legal documents, id 

cards, or even some selfies which a user might not want leaked or viewed by anyone else.  This 

identification would occur upon saving any photo file to the device media directory.  Upon 

identifying a private photo, the file’s name and path would be saved to a cache.  A device’s OS 

would then need to perform a single additional security check anytime a read request is made for 

the photo directory from an installed app; accessing the cache to ensure the photo is not listed.  If 

the photo is listed, the read request could be terminated at the user’s discretion. Several 

prototypes of the classifier described above have been developed for and tested to measure 

classifier accuracy across different models and learning algorithms.  On either iOS or Android, 

the changes will result in strengthened photo privacy for users, as read requests could be reliably 

managed. 

Addressing the problem of bystander privacy in public photos also involves an 

automated system of bystander detection.  Computer vision techniques can be applied to 

recognize and distinguish the targets of photos from strangers in photos with an acceptable 

degree of accuracy.  These models require the use of several distinguishing facial features such 

as width, height, blurriness, and eye direction to be effective.  In some cases, different machine 

learning algorithms offered improved accuracy over others or improved performance, so a 

detailed comparison of various algorithms is presented to demonstrate the benefits and 
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drawbacks of each system.  By recognizing bystanders’ faces in photos, it should then be 

possible to implement some type of obfuscation technique such as face blurring to ensure 

strangers’ privacy is maintained, although implementation of such techniques is not the focus of 

this project. 

C. Contributions 

The contributions of this thesis are summarized as follows: 

• A new methodology is devised for monitoring Android applications to determine if 

image read operations are occurring without user knowledge.  This process uses 

system call tracing to monitor real-time behavior which is a marked improvement 

over just performing permission extraction and analysis. 

• Several private photo classifiers are implemented and evaluated using state of the art 

neural networks and extracted histogram of oriented gradients (HOG) features with 

a support vector machine (SVM) classifier. 

• An extended and improved feature-based model for automatic identification of 

target and bystander faces in photos is designed. Compared with the state-of-the-art 

model developed by Ang Li [7], our model adds a new gaze-tracking feature and 

redesigns the facial position and size features.  These changes are intended to 

increase the overall accuracy of the model. 

 

D. Thesis Organization 

The remainder of the thesis is organized into four chapters.  Chapter 2 provides an 

overview of the topics presented in later chapters along with the relevant information necessary 
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to understanding Android OS architecture, Android application security permissions, machine 

learning based photo classification, and computer vision techniques surrounding facial 

recognition.  Chapter 3 details the methods and results of analyzing the system calls of various 

3rd party apps along with their security manifests.  The information gained from the dynamic 

analyses of these apps is compiled into a single table in the second section.  Chapter 4 contains 

the procedures involved in creating the public/private photo classifier.  Performance 

considerations are also discussed in this chapter.  Chapter 5 pertains to the target/bystander 

acquisition models, with the first section detailing the selection of features and methods of 

capturing them.  The second section compares the accuracy and results from the learning 

algorithms chosen for this approach.  Chapter 6 offers a conclusion to the topics presented in 

prior chapters along with considerations for future work to improve the solutions presented. 
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II. Background 

A. Android Architecture and System Calls 

The Android operating system is an open source collection of software components 

primarily intended for mobile devices.  At its core, the OS is based upon the Linux kernel and 

makes use of the core features provided by the kernel such as memory management and security 

[4].  The main components of the software stack are outlined in figure 1: 

 

Figure 1: The Android software stack taken from https://developer.android.com/guide/platform/ 

https://developer.android.com/guide/platform/
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The system calls of processes running on Android are requests made to the kernel for 

some hardware level operations to be performed.  For example, to read some file, a running 

application would call the Linux read function with the following signature: ssize_t read(int fd, 

void *buf, size_t count). Generally, when developing an application, the developer makes use of 

libraries or APIs rather than directly writing system calls, but all higher-level calls are eventually 

translated to basic functions carried out by the OS.  In this way, tracing the lowest level activity 

of a process allows a completely transparent look at what sort of activity is taking place.  

Because Android makes use of Linux at its core, all of the system calls made by processes are 

Linux calls.  This similarity makes it possible to use Linux command line utilities.  Of these 

utilities, Strace allows the tracing and recording of nearly any process’ system calls by using the 

ptrace feature of the kernel [5].  By using Strace, the system call activity of any installed app can 

be recorded from the moment of its launch to the time the process is terminated including while 

the application is running in the background. 

B. Android Application Security Permissions 

All android apps must specify the permissions they require in their app manifest file.  

Permissions are classified based on their perceived threat to end users’ privacy.  The various 

classifications for Android permissions are normal, signature permissions, and dangerous 

permissions.  In this scheme, only dangerous permissions require express user authorization upon 

app installation to be granted.  These are permissions which could be extremely harmful with 

untrustworthy apps such as sending SMS messages, having access to the device camera, and 

recording audio with the device microphone [6].  Normal permissions, on the other hand, can be 

listed as a group in the app manifest and are always granted upon installation by the OS.  Internet 

access is included in normal app permissions.  For apps to be able to read from a device’s media 
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gallery, they need to request the READ_EXTERNAL_STORAGE permission which is included 

in the dangerous class.  The combination of these permissions theoretically grants any app the 

ability to read from a user’s media gallery and transmit any data over the device internet 

connection.  This topic has been covered in greater detail by Dr. Ang Li, who performed 

permission extraction of hundreds of Android applications to determine the number of popular 

applications which possess both external storage and internet permissions [7]. 

C. Photo Classification and Machine Learning 

Photo classification using machine learning algorithms is a well-researched topic with 

many large companies devoting resources towards developing accurate models for general 

classification.  State of the art photo classifiers are generally implemented as deep convolutional 

neural networks able to extract millions of features from images for training and often can 

require many GPU hours to reach acceptable accuracy.  Additionally, in order to train a general 

classifier from scratch, an enormous number of images would be required to correctly train the 

model to be able to extract useful features in the general case.  This firmly places developing 

new, modern photo classifiers in the realm of major companies such as Google’s TensorFlow 

division which has released several general image classifiers for public use.  General photo 

classifiers are often tested on the ImageNet Large Visual Recognition Challenge to benchmark 

their performance against other competitors. Error rates are measured as top-5 results which 

means a guess is counted as incorrect if the top 5 most confident guesses by the model are all 

incorrect.  The most recent TensorFlow model dubbed Inception-v3 was able to achieve a top-5 

accuracy of 96.54% [8]. 

In order to adapt these excellent classifiers to specific tasks such as recognizing ID 

cards or selfies in images to flag them, it would normally be required to expend large amounts of 
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time and resources to achieve acceptable accuracy.  However, a technique known as transfer 

learning has been developed in recent research which enables a fraction of the normal 

computation time required to develop a useful classification model.  Transfer learning on image 

classifying neural networks uses the fact that the network has been trained to be able to identify 

and extract useful features from photos for identification in the general case.  This ability to 

extract useful features can then be transferred to new types of images by training only the top 

layer of the neural net.  Training just the top layer takes significantly less time, as there are 

orders of magnitude fewer propagations and computations.  The figure below shows the 

architecture of the Inception-v3 model along with the specific layers affected by transfer 

learning. 

 

 

 

 

 

 

 

Figure 2: High level architecture of the Inception-v3 model taken from 

https://cloud.google.com/tpu/docs/inception-v3-advanced. Edited to show layers affected by 

transfer learning. 

 

https://cloud.google.com/tpu/docs/inception-v3-advanced
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This figure illustrates how complex modern classifier networks can be.  In this case, the 

final feature vector extraction layers can be seen on the far right of the image.  The classification 

layers are the final 3 dropout, fully connected, and softmax layers seen surrounded by the red 

box.  These are the only portions of the model that are affected during the training process. 

Transfer learning allows for excellent accuracy with minimal spent computation time, 

but there are other methods of image feature extraction besides using neural networks that could 

be useful.  There are many sets of image features which have been developed for gleaning 

information out of visual patterns.  These include things such as blobs, edges, corners, and ridges 

all of which can be detected with various algorithms to describe something useful in an image. 

Scale-invariant feature transform (SIFT) is one such algorithm which calculates key points in 

images which can then be used for object recognition or a variety of applications. Speeded up 

robust features (SURF) is an algorithm inspired by SIFT which greatly speeds up the feature 

extraction process and offers robustness against image transformations as the name suggests.  

The histogram of oriented gradients (HOG) feature descriptor is a departure from the other two 

algorithms, as it functions by dividing an image into small sections and computing the histogram 

of gradient directions for each cell which gives edge directions [9].  An example visualization of 

HOG descriptors can be seen in figure 3 below. 
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Figure 3: Visualization of HOG descriptors computed on a sample image taken from 

http://www.vlfeat.org  

These feature extraction algorithms can be used in lieu of the more complex and 

modern neural networks to recognize objects in images.  Any sort of supervised learning 

algorithm could be trained using these extracted features to learn the correct image classes.  

Some common supervised learning algorithms other than neural networks include support vector 

machines, linear regression, and decision trees.  Each algorithm offers various benefits in 

supervised learning problems.  

D. Facial Detection and Identifying Targets/Bystanders 

Facial recognition is another rapidly developing sector of computer vision which 

involves automated detection and recognition of people based on extracted facial features.  There 

are many different useful features which can be used to uniquely identify faces, but this thesis 

focuses on simple facial detection which only requires that a model be able to recognize the 

existence of a human face in a picture.  This more general task can be accomplished with varying 

http://www.vlfeat.org/
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accuracy using any of the feature extraction algorithms described in the previous section, as 

object detection can be easily applied to human faces.  The algorithms work just as they would 

on any other object needing to be recognized but using such a basic model does not allow for 

extracting facial-specific information.  This information such as face height, width, rotation, and 

many other descriptors can be extremely useful when attempting to make distinctions between 

detected faces. 

In this portion of the research, the main goal is being able to develop a machine learning 

model which can make distinctions between people who are the focus of a photo and random 

strangers who happen to be captured in the same picture.  This specific application of facial 

detection is far less researched than a topic such as unique face identification, but a prototype 

model has been developed by researcher Ang Li and is described in a section of his doctoral 

dissertation [7].  Ang was able to develop a method of extracting several relevant facial features 

which were believed to be important in distinguishing between the two types of faces.  These 

facial features were blurriness, pitch, roll, yaw, smiling, face size, and face position.  Using all of 

these in combination, he was able to produce several facial classifiers with varying learning 

algorithms to compare their accuracy.  Ang was able to achieve 93.27% classification accuracy 

using a gradient boosted decision trees algorithm on his dataset which demonstrates the 

developed model was effective at distinguishing targets from bystanders.  This thesis will focus 

on improving this model by making a series of changes to the ways several parameters are 

calculated such as face size and position.  Additionally, a new parameter will be added which 

measures the relative gaze direction of a person’s eyes with respect to the camera lens.  These 

changes are outlined in detail in chapter 5. 
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 To give a visual demonstration of the problem being tackled by these models, Figure 4 

demonstrates an example image which could be included in a dataset and contains several 

bystanders behind the two targets Prince Harry and Meghan Markle.  An effective model would 

be able to distinguish the strangers’ faces from the actual target faces so that the bystander faces 

might be obfuscated if needed to improve privacy.  In the example image, the targets are located 

in the foreground and are completely in focus.  The bystanders are much less focused, and their 

faces are relatively smaller than the targets. 

 

Figure 4: An example picture containing two targets and multiple strangers.  Original photo 

by Chris Jackson | Getty Images. 
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III. Permissions and Behavior Analysis of Android Applications 

A. Overview 

A method for analyzing any given Android application’s behavior has been devised to 

look for media directory accesses and the potential for user data leakage.  This process should 

provide a means for revealing the exact image read operations performed by 3rd party apps and 

should identify any applications which warrant a more detailed examination to identify any 

potentially malicious behavior.  In order to demonstrate the effectiveness of this methodology for 

detecting media accessing behavior, the top 15 free apps from the Google Play Store were 

selected for permission testing and behavior analysis.  This two-step process is an enhancement 

and further development over Ang Li’s permission extraction analysis [7] by incorporating 

running behavior analysis.  In this procedure, the permission testing portion is meant to search 

for any vulnerability posed by an app’s permission settings which are determined when the user 

runs the app for the first time and allows permissions based on the app’s requests.  Once an app 

has been confirmed to be able to leak user data, the next portion of the test can be carried out by 

dynamically analyzing its behavior through system calls. 

 Application system calls are recorded using the Strace process monitoring utility.  This 

involved filtering all the system calls made by the main processes of the apps to record just the 

ones requesting read operations on the test device’s media directory.  This allows the activity of 

the app to be monitored so that any suspicious read operations can be detected such as reading 

while the phone is locked or while an app is running in the background.  Although detecting such 

operations does not necessarily indicate malicious behavior, it does demonstrate the fact that 

applications may be accessing user photos without the user being aware. 
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B. Two-Step Analysis 

The first step is permission analysis. To gain access to each app’s manifest file, the 

APK file for each app is first downloaded.  This can be achieved by finding each desired app on 

an APK repository site.  The specific one used was APKMirror.com which is widely regarded as 

a secure and monitored service (https://www.apkmirror.com/).  This additional step is required 

because official repositories such as the Google Play Store do not allow easy access to the actual 

APK files.  To be absolutely sure the mirror downloads of the apps were the same as the Google 

Play downloads, they can be compared using checksums with the most recent official versions of 

the apps.  Once the APK credentials have been confirmed, extracting the AndroidManifest.xml 

file is a straightforward process consisting of using Android Studio’s analyze APK tool [10].  

The extraction process outputs the Android manifest file closely to the original, pre-build version 

so that the exact permissions the app uses are listed in plain text within.  Any app which uses 

normal permissions has internet access according to the Android permissions standards, and any 

app which uses the external storage read permission must explicitly list it in the manifest.  Of the 

applications tested and listed in Table 1, only the Weather Channel App does not have a 

combination of INTERNET and READ_EXTERNAL_STORAGE permissions which is required 

to be able to leak image data. 

 The second step is behavioral analysis. This portion of this research focuses on 

recording any system calls by the main application process which attempts to access the media 

directory on an emulated Android device. The Android emulator system images do not allow 

debugging tools to be run on phones with Google Play Store functionality, so applications on the 

test device have to be manually installed.  To do this, the emulated device is started, and a 

connection is then established to the emulated phone using the Android ADB shell utility 
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launched from the host computer’s command line.  The ADB shell is then capable of manually 

installing a downloaded APK file onto the connected device from the host computer.  The 

installed application can be launched from the phone just as an app downloaded from the Google 

Play Store would be. 

Once the desired applications are installed, they are launched, and their main processes 

can be located by running the top Linux utility on the ADB shell to list all running processes.  

Once the main processes are found, their pids are recorded to be used with Strace which is also 

launched from the ADB shell.  Any system calls accessing the phone’s media directory are set to 

be recorded into a log file for each application.   

C. Results 

In our experiment, the specific device being used is a virtual Google Pixel 2 with 

Android 9.0 installed.  Every tested app was then left to run in the foreground, background, and 

while the device was locked for 30 minutes in each state.  The results of these recordings are 

presented in Table 1 on the following page. 
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App Name Foreground 

Activity 

Background 

Activity  

Phone Locked 

Activity 

Facebook Messenger YES NO NO 

Instagram YES NO NO 

Snapchat YES NO NO 

WhatsApp YES NO NO 

Netflix NO NO NO 

YouTube YES NO NO 

Wish YES NO NO 

Spotify NO NO NO 

Cash App YES NO NO 

Walmart YES NO NO 

Amazon YES NO NO 

PayPal YES NO NO 

Venmo YES NO NO 

SoundCloud NO NO NO 

The Weather 

Channel 
NO NO NO 

 

Table 1: Recorded Photo Gallery Access Activity 
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These results demonstrate that none of the applications tested were performing media 

accesses while the apps were running in the background or while the phone was locked.  The 

majority of applications made accesses to the media folder while they were running in the 

foreground.  This most likely suggests that any accesses being made were to allow users to use 

their saved photos in the app for various services.  This behavior is not necessarily surprising, as 

most of the companies involved in this test have very well-defined reasons for accessing user 

data outlined in their privacy policies which generally do not allow for accesses other than to use 

photos with in-app features.  However, this testing method could be used on less trustworthy 

applications to ensure no strange activity is occurring while the apps are running.  Although 

media read request activity occurring in the background or while the phone is locked does not 

necessarily indicate malicious activity is occurring, it would certainly warrant a closer 

investigation into why such requests are being made.  The analysis method outlined in this thesis 

is easily reproducible and should prove very valuable for screening less well-known apps in the 

future. 
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IV. Private Photo Classifier 

A. Approach 

To provide advanced protection for private photos and prevent unauthorized accesses to 

them, it is necessary to identify private photos first. Manual identification of private photos is 

tedious and even infeasible when a user has many photos on his phone. This chapter describes 

the implementation and evaluation of an automated image classifier based on machine learning 

models which can offer highly accurate predictions about whether a given photo contains some 

sort of sensitive data.  The first step to producing such a classifier is obtaining a reasonably sized 

dataset to train models with.  Unfortunately, there are almost no publicly available datasets 

containing private photos, a fact which can be attributed to the nature of the contents of such 

photos.  Thus, a custom dataset was created with a total of 5 classes: public, selfie, ID card, 

document, and family portrait.  Example images from all five classes are shown in figure 5.  

Sample photos for each class were scraped from public sources such as Google Images to create 

a dataset of around 1000 photos with 200 photos in each class.   Although this dataset size is 

relatively small when compared with some modern, publicly-contributed training sets, it was 

sufficient for training several accurate models. 

In order to discover the learning algorithm and model which provides the highest 

accuracy, several different approaches are compared.  Several state of the art deep convolutional 

neural networks (DCNNs) are trained and tested.  Although these advanced models are expected 

to achieve excellent results, a more traditional approach is also used to provide a baseline 

accuracy measurement.  This makes use of a multiclass support vector machine which is trained 

on extracted histogram of oriented gradients (HOG) features.  HOG features are chosen for their 

reported utility in object recognition applications compared with other popular photo feature 
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extraction algorithms [9].  All of these methods’ accuracy and feasibility on mobile devices are 

compared to find the most accurate and performant model achievable. 
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Public Class     Selfie Class 

 

 

 

 

Document Class     ID Card Class 

 

 

 

 

Family Portrait Class 

Figure 5: Example images from each of the 5 classes.  The public class image is a landmark and 

does not contain any sensitive data.  The other images depict things users might not want leaked 

or accessed to protect their personal privacy.  All images taken from Google Images through 

bulk downloads. 
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B. Algorithm/Model Comparison 

The first model tested was the support vector machine (SVM) trained on HOG features 

extracted from the training portion of the image dataset.  Approximately 90% of the dataset was 

used for training with the remaining 10% of images being used for the test set.  The multiclass 

SVM algorithm used was provided by the OpenCV library along with the HOG implementation.  

To extract the HOG features, images were first resized to a standard of 500 x 500 pixels.  This is 

due to the inability of OpenCV’s implementation of HOG to deal with variable image sizes.  The 

interpolation method used for this was pixel area relation, but other interpolation algorithms 

should yield very similar results for the sizes of images dealt with in the dataset, as the resizing 

generally did not result in a significant difference in image size.  Once the processing was 

completed on all images, the HOG features were computed and used to train the multiclass 

SVM.  After tuning the SVM hyper parameters C and gamma, final test accuracy resulted in 

81.3%.  This result forms the baseline performance for the more modern image recognition 

algorithms. 

The DCNN models tested were used with Google’s TensorFlow library.  This is due to 

the library’s ease of use and compatibility with widely used image recognition models such as 

the famous Inception-v3 and Inception-v4 models.  A variety of models were selected to be 

compared for their performance requirements and their reported accuracy in large scale image 

recognition competitions.  The DCNN models can be split into two main categories: mobile 

targeted and computationally demanding.  Models such as Inception-v4 are generally designed 

for use on high-performing computer hardware which is not available on smaller mobile devices.  

These types of models are expected to result in extremely high-accuracy results, but they might 

not be suitable for use on a mobile device due to their size and computation demands for 
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prediction operations.  Mobile targeted models such as NASNet (mobile) make use of less 

computationally complex operations but might result in lower accuracy.  Table 2 describes the 

models tested and what category they fall into. 

DCNN Model Type Model Name 

Mobile Targeted MobileNet 

Mobile Targeted NASNet-A (mobile) 

Computationally Demanding Inception-v3 

Computationally Demanding Inception-v4 

Computationally Demanding NASNet-A (large) 

Table 2: Tested DCNN models and their performance classification 

A transfer learning approach was taken to train the models due to the limited dataset 

size.  This enables the models to make use of the previously learned classification process while 

teaching them to recognize the 5 custom classes of photos:  public, selfie, ID card, documents, 

family portrait.  Once the transfer learning process was completed for each model, they were 

each evaluated on a randomly selected test portion of the dataset.  The average results for 10 

evaluations per model are listed in Table 3. 
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Model Name 
Average Test Accuracy Over 10 

Evaluations 

NASNET-A (large) 94.1% 

Inception-v4 91.4% 

Inception-v3 91.3% 

NASNet-A (mobile) 89.7% 

MobileNet-v2 88.5% 

SVM + HOG Features 81.3% 

Table 3: Comparing the Classification accuracy of tested DCNN models and the SVM model 

Clearly, the computationally demanding models outperformed all of the mobile models 

by at least 1% or more.  NASNet-A (large) in this case was the single best classification model 

tested with an accuracy of over 94%.  However, this model requires the most computation 

operations per prediction out of all of the other tested models, and may not be suitable for the 

smaller, mobile ARM architecture processers.  NASNet-A (mobile), by comparison, experiences 

a 4.7% reduction in accuracy but requires only an average of 564 million multiply-add 

operations per image where NASNet-A (large) requires 23.4 billion such operations for a single 

image, a remarkable reduction in computation of 97.6% [11].  This makes the NASNet-A 

(mobile) model highly desirable for applications where larger hardware might not be available. 

 

 

 

 



25 

 

V. Target/Bystander Recognition 

A. Approach 

Improving the existing model [7] for identifying targets and strangers in photos requires 

careful selection of features to use and planning on how to improve the ways these features are 

computed.  The existing model includes the following features: smiling, face size, face position, 

facial pitch, facial roll, facial yaw, and facial blur [7].  The features which are most effective in 

predictions from that model are left unchanged such as the Gaussian blurriness feature which is a 

major contributor to accuracy in the existing model.  The features changed in the proposed 

approach are the face size and face location computation. Additionally, a new feature is added to 

the model which measures the eye gaze direction of each detected face relative to the camera’s 

point of view. 

The original method for computing the face size in Li’s model [7] involves taking the 

area of the square region given by the Android SDK’s FaceDetector class.  This method is able 

to provide a useful metric for face size, but the square area can often be significantly larger than 

the detected face.  Additionally, some square detection areas will be more accurately fitting than 

others which can misrepresent the true face size in an image.  To create a more accurate 

measurement, a different framework, OpenFace, is used in this thesis for its state of the art facial 

detection algorithms and feature extraction modules [12].  OpenFace is able to extract multiple 

points around a face as shown in Figure 6.  These point coordinates can then be used to create a 

highly accurate measure of a person’s facial height and width.  The proposed new model makes 

use of this method to replace the original face size calculation with the square area computed 

from the face height and width coordinates. 
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Figure 6: A diagram of all output facial landmark points extracted by OpenFace. Taken from: 

https://github.com/TadasBaltrusaitis/OpenFace/wiki/Output-Format 

 

The computation of face location is also altered from the original model [7].  The original 

method splits an input image into 3 sections: left, middle, and right in the horizontal direction.  

This enables a binary classification system where a face located outside the middle section of an 

image is unlikely to be a target in an image.  To better adapt this method to a feature-based 

classification model, the parameter is changed to the distance the detected head deviates from the 

absolute center of the image in the x and y pixel coordinate directions.  This parameter change 

results in a spectrum of values so that the likelihood of the face being the target continuously 

increases the lower the measured deviation from the camera is and vice versa.  The idea behind 

this change is that strictly classifying facial position in a binary manner can lead to very rigid 

https://github.com/TadasBaltrusaitis/OpenFace/wiki/Output-Format
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prediction guidelines which could negatively impact a classifier’s accuracy.  By creating a 

distance-based parameter, the prediction should have much less heuristic rigidity. 

The final modification to the original classification model is the addition of an entirely 

new eye gaze measurement.  This measurement can be implemented using OpenFace’s gaze 

tracking module [13].  The module measures any detected face’s eye gaze direction with respect 

to the camera sensor.  The output is the gaze vector for each eye which can be traced to the camera 

origin.  A greater traced difference from the camera origin indicates a likelihood the person is 

looking away from the camera whereas a relatively small difference from the origin indicates the 

person is looking at or very nearly at the camera lens when the picture is taken.  Example processed 

images with gaze tracking and feature extraction are shown in Figures 7 and 8.  While this metric 

will not always correctly aid in identifying targets (strangers will sometimes be looking at the 

camera when a picture is taken, and targets will sometimes be looking away), it should be the case 

that the vast majority of targets in photos will also possess identifying attributes such as a focused 

face or centrally located face.  Strangers who are looking at the camera should often possess 

opposing features such as having their face turned away or being in the background of the image.  

This plethora of identifying features should mitigate the majority of cases where strangers are 

looking at the camera. 
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Figure 7: Example Processed Images using OpenFace with gaze detection shown by bright green 

vectors.  Most of the subjects are gazing at or near the camera sensor.  Top photo by Steve 

Granitz | WireImage.  Bottom photo taken from 

https://pbs.twimg.com/media/BhxWutnCEAAtEQ6.jpg  

https://pbs.twimg.com/media/BhxWutnCEAAtEQ6.jpg
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Figure 8: Example Processed Image using OpenFace where subjects are not looking at 

camera sensor.  Gaze detection is shown by bright green vectors.  Photo by Oliver Contreras | 

Washington Post. 
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The dataset used to train and validate the classifiers consisted of Ang Li’s original dataset 

which has around 200 photos [7] with an additional 100 photos added to increase the overall size 

for improved training.  The dataset is so small due to the very difficult nature of automating image 

scraping for this application.  For a photo to be useful for training, it should feature one or more 

targets along with one or more bystanders.  Photos must be handpicked from search results which 

is a very time-consuming process.  Additionally, each face in each photo must be labeled which 

increases the time to compile a useful dataset.  However, the final dataset consisting of 

approximately 300 photos was large enough for successful model training. 

 The selected learning algorithms for classifying faces are gradient boosted decision tree, 

support vector machine, random forest, and a simple neural network.  These algorithms were all 

featured in Ang Li’s work [7] and should provide meaningful comparisons to examine any 

improvement which occurred.  All algorithms were implemented and trained using Sci-kit Learn 

[14], a robust machine learning library for use with Python.  This library simplified the use of each 

algorithm and the training process, as Python was already being used for extracting and compiling 

the facial features from images. 

B. Classification Results 

Each algorithm was trained and evaluated on the dataset 10 times.  The evaluation 

accuracies were averaged together from each iteration.  Evaluation and training were carried out 

using Scikit Learn’s library functions.  The results from the evaluation are listed in Table 4.  The 

new models trained on the modified feature set are compared against the old models trained on 

the original feature set [7].  
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Learning Algorithm Classification Accuracy (Average of 10 

Evaluations) 

Gradient Boosted Decision Tree 

 (Original Feature Set) 

93.4% 

Gradient Boosted Decision Tree 93.8% 

Random Forest (Original Feature Set) 92.8% 

Random Forest  93.2% 

Support Vector Machine (Original Feature 

Set) 

91.7% 

Support Vector Machine 92.1% 

Multilayer Perceptron (Original Feature Set) 91.4% 

Multilayer Perceptron 95.3% 

 

Table 4: The classification accuracy of the evaluated learning algorithms using the new features 

compared with the accuracy of the algorithms trained on the original feature set. 

 

 The multilayer perceptron model (MLP) was the most effective classifier with an 

average accuracy of 95.3%.  This was able to significantly outperform the MLP model trained on 

the original feature set with an accuracy increase of 3.9%.  Additionally, it is clear that each of 

the other tested algorithms were able to achieve some performance gains using the new feature 

set over the original.  Although the other algorithms weren’t able to benefit as much from the 



32 

 

changes as the MLP, the fact that there was an accuracy boost in every evaluated algorithm 

indicates that the new feature set resulted in an improved model for supervised learning.  Ang 

Li’s highest performing algorithm, tested over the original, smaller dataset was a Gradient 

Boosted Decision Tree (GDBT) which achieved 93.3% overall accuracy [7].  Both the GDBT 

and MLP algorithms trained on the new dataset and new feature set were able to outperform this. 
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VI. Conclusion 

A. Review of Contributions 

The research outlined in the preceding chapters is focused around developing solutions 

to improve individual privacy with regards to smartphone photos.  Being able to analyze and 

monitor the behavior of any desired application on the Google Play Store is an important first 

step in identifying malicious activity.  The methods outlined in chapter 3 for manually installing 

an application’s APK file and using the ADB shell on a connected Android device is easily 

repeatable and greatly improves the transparency of 3rd party applications.  Strace enables the 

detection of any media directory access through system call recording.  This procedure should 

enable future researchers to quickly identify applications which should be more closely analyzed 

through methods such as decompilation. 

Chapter 4 introduced approaches towards automated detection of potentially sensitive 

information in photographs.  Extracted HOG features are effective at providing metrics for 

detecting specific objects such as ID’s or faces in selfies which users might not want accessed 

without their express permission.  Even more effective at identifying objects in images, the state 

of the art neural network models produced by Google such as Inception-v4 and NASNet-A were 

used to achieve excellent accuracy on the image dataset.  These approaches enable an automated 

system of labeling photos to notify users of sensitive data, so they might be aware of their 

increased risk in the event of a data leak. 

The improvements made to the existing target/bystander feature-based detection model 

[7] significantly improved the accuracy of the model.  This could enable an automated system 

which can identify individuals whose faces could be obfuscated through some blurring method 

or otherwise.  Being able to automate this process and suggest regions of a photo to blur will 
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greatly improve the privacy of individuals unintentionally captured in photos in public.  

However, it will still be ultimately up to the capturer of the image to responsibly obfuscate 

strangers’ faces. 

B. Future Work 

To expand the feasibility of the photo access detection methods outlined in Chapter 3, a 

means of analyzing iOS apps will also need to be devised.  The App Store does not enable easy 

access to the application install files like APK mirror sites do for Android devices.  Additionally, 

there is no current utility on iOS for hooking system calls from processes.  The closed source 

nature of the iOS operating system also makes it difficult to develop a utility such as Strace 

without knowledge of the underlying architecture.  In order to devise a similar method which 

works on iOS, these limitations will need to be bypassed.  Otherwise, users will have to continue 

to rely on App Store screening processes. Beyond expanding to iOS devices, the system call 

tracing analysis can be improved by adding the ability to detect accesses on specific photos.  

Therefore, if an application is being used by a user to perform some operation for a single photo, 

it is possible to detect if it then accesses some other photo that the user did not specify.  Fine-

grained system call filtering on an individual file level would catch this sort of behavior which 

the current method does not. 

 To continue to build upon the classifier presented in Chapter 4, a larger scale project 

will need to be undertaken to implement such a classifier into a mobile OS kernel.  Being able to 

incorporate such a classifier directly into the kernel would enable users to see requested photo 

library accesses and block them directly.  This could greatly reduce the threat posed by 3rd party 

applications which are able to access photo libraries on Android at any time once the user grants 

them external storage read permissions.  It is likely the classifier would need to be coupled with a 
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sort of sensitive photo database cache to ensure the labels on sensitive photos are stored on the 

device. 

 The next step in improving the usability of a target/bystander detection system would be 

to provide an automated method of obfuscating faces.  Several blurring methods will need to be 

analyzed to determine their security and the impact they will have on photos.  Additional 

methods such as replacing faces with some placeholder face might also be interesting to 

implement.  Being able to increase the automation of this process will undoubtedly make it more 

useful for everyday users.  Beyond adding to the system, implementing this detection mechanism 

in major social media apps perhaps before users upload photos would be a novel feature to help 

protect the faces of people before they are uploaded to publicly visible profiles. 
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