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1 EXECUTIVE SUMMARY 

 

Leverett Elementary School is located in Fayetteville, AR. The school needs significant 

upgrades to its infrastructure. The Fayetteville Public School District has voted to pursue an 

Energy Services Performance Contract (ESPC) in order to finance the desired upgrades to 

Leverett Elementary, among other schools in the district. 

 

The scope of this thesis was to perform an energy audit on the existing heating, ventilation, 

and air conditioning (HVAC) system. By using an energy modeling software, eQuest, the 

building and the existing base system were modeled to determine utility consumption. Three 

different HVAC system alternatives were analyzed against the base system by inputting them 

into eQuest. Alternative 1 is a plant system with secondary fan coil units. Alternative 2 is a 

decentralized packaged system. Alternative 3 is a plant system with a secondary air handler 

that serves terminal variable air volume (VAV) boxes.  

 

The three alternatives were compared against each other within three criteria: economic, 

environmental, and social benefits. For the economic analysis, capital and operating costs 

were analyzed to determine the net present value and internal rate of return for each 

alternative. For the environmental analysis, the utility consumption output from the eQuest 

models was input into an online tool, CometFarm, to calculate total energy consumption and 

CO2 equivalent emissions. For the social analysis, knowledge from extensive systems 

research and industry experience guided the consideration and assessment of potential 

impacts. 
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The Plant System with Secondary Fan Coil Units, i.e., Alternative 1, was determined to be 

the optimal system recommendation for the client. It had the lowest CO2 equivalent 

greenhouse gas emissions and the greatest net present value and rate of return. 
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2 PROJECT OVERVIEW  

 

2.1 Client Profile 

Leverett Elementary School is located at the corner of Garland Avenue and Cleveland 

Street in Fayetteville, AR. The school was originally constructed in 1939 as a part of the 

Fayetteville Public School District (FPSD). Renovations and additions were completed 

in 1985 and 2012. The current structure has a gross floor area of 49,530 square feet. The 

current enrollment stands at 301 students. The facility is in dire need of infrastructure 

improvements due to the aging of the equipment and some level of deferred maintenance 

due to budgetary restrictions. The renovations in 2012 only addressed immediate 

problems without tackling significant overarching system issues. 

 

2.2 Problem Statement 

Currently, Leverett and several other schools in the FPSD are suffering from poor 

facility conditions, high maintenance costs, and utility costs due to inefficient 

mechanical (HVAC) and lighting equipment. The Fayetteville Public School Board and 

Fayetteville taxpayers want to improve the learning environment for their teachers and 

students, while also reducing their operating costs, fossil fuel consumption and carbon 

footprint on the natural environment. The Board has voted to pursue an Energy Services 

Performance Contract (ESPC) with a local energy services company, Entegrity Partners.  
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2.3 Goals and Scope 

The goals of this project are to reduce energy usage and greenhouse gas emissions for 

Leverett Elementary School while achieving a rate of return of at least 10%. 

 

While Entegrity’s ESPC project encompasses the entire school district, the scope of this 

report (an undergraduate honors thesis) was concentrated solely on Leverett Elementary 

School. The full ESPC project consists of HVAC, lighting and building envelope 

upgrades (insulation, doors and windows); however, this honors thesis project and report 

focused on improving the HVAC system for the school. A report was produced with full 

replacement recommendations. These recommendations were based on energy modeling 

analysis and information gathered from onsite equipment audits and data logging. The 

report includes multiple alternatives for the client to consider. For each alternative, 

economic, environmental, and social factors were considered and analyzed. 

 

3 INTRODUCTION 

 

3.1 Energy Savings Performance Contracts 

An ESPC can broadly be defined as a contracting framework for an energy services 

company to make efficiency-based improvements to a facility while guaranteeing the 

subsequent operational expenses will be sufficient to cover the capital cost of the project. 

Building owners can, therefore, make substantial upgrades to their facilities with little, or 

no, out of pocket expenses. 
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An ESPC generally consists of three stages. First, a feasibility study is used to identify 

savings opportunities by analyzing utility data, interviewing key personnel, and touring 

the facility. If there is determined to be significant potential for improvement, a project 

agreement is written up. This document defines the project’s cost, benefit, and scope. A 

signed project agreement allows for the project development stage to begin. During this 

stage is when an in-depth facility audit is conducted with more detail into the building’s 

systems. The goal of the project development stage is to identify specific energy and 

operational saving measures. Various tools such as energy modeling, building testing, 

and data logging can be used to identify opportunities. Once the project development 

stage has been completed, the facility owner can move to implementation. They have the 

option of seeking an outside financer and contractor for the project, but generally, these 

next steps are handled by another department within the same energy services company. 

 

3.2 ESPC Legislation in Arkansas 

The Arkansas legislature passed the “Guaranteed Energy Cost Savings Act,” legalizing 

energy savings performance contracts in 2005 (Arkansas  Code Annotated, 2005). These 

laws have been amended by successive bills in 2013, 2015 and 2019, expanding the 

entities that qualify for ESPC projects (Arkansas Code, 2013a, 2013b, 2015, 2019). 

Under current Arkansas law, an energy cost savings measure can be financed with future 

savings, therefore covering all project costs. The Arkansas Energy Performance 

Contracting program states that public entities may count guaranteed savings from 

avoided utility costs, avoided maintenance costs, and avoided capital costs as revenue. 

The energy services company is required to provide a guarantee on the energy savings, 



 

 
 

6 
 

and, if this is not met, must pay the cost difference for their client. All savings must be 

verified through measurement or mutual, written agreement. The term of these contracts 

may not exceed 20 years or the weighted useful life of the installed equipment. These 

policies have allowed for thousands of ESPC projects to be completed, saving energy, 

the environment, and money across the state and the region. 

 

3.3 HVAC Systems 

Heating, Ventilation, and Air Conditioning (HVAC) Systems are incorporated into most 

modern occupied spaces to control temperature, humidity, pressure, air quality, and, 

thus, comfortability. These systems must be designed considering heat gain (solar 

radiation through windows, internal heat from lighting and occupants, heat gain through 

the building envelope) and heat loss (infiltration, heat loss through the building 

envelope) from the building to the environment (Hart, 2016). A wide variety of system 

types have been developed and are implemented to solve a range of building 

management issues. The most common system types used for educational spaces similar 

to Leverett Elementary can be divided into two main categories: decentralized systems 

and centralized systems (Brandemuehl, 2019). 

 

Refrigeration Cycle.  The refrigeration cycle is the driving mechanism behind many 

pieces of HVAC equipment that aim to cool a space. Equipment controls the phase 

change of refrigerant to achieve heat exchange from a cooler  indoor space to a warmer 

outdoor space.  Four main components drive the refrigeration cycle: condenser, 

expansion valve, evaporator, and compressor. The condenser receives refrigerant as a 
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high-pressure gas and forces it through a phase change to a high-pressure liquid. This 

phase change expels heat from the refrigerant to the outside air. The expansion valve 

receives refrigerant as a high-pressure liquid and reduces the pressure in the liquid 

refrigerant. The evaporator receives refrigerant as a low-pressure liquid. It then forces 

the refrigerant through a phase change from liquid to gas. This phase change causes the 

refrigerant to absorb heat energy from the interior space. The compressor receives 

refrigerant as a low-pressure gas and increases the pressure of the gas. The cycle then 

begins again with high-pressure gas reaching the condenser. This process can also be 

reversed to add heat to a warmer interior space from a cooler exterior space. This is 

called a heat pump (Hoffman, 2006).  The primary system energy consumption is 

typically associated with an electric motor that drives the compressor, and the two fans 

associated with the two heat exchangers (one heat exchanger is inside the conditioned 

space, and the other is located in the outside ambient air). 

 

Decentralized Systems 

A decentralized system has heating and cooling infrastructure located adjacent to each 

occupied space. There are two primary sub-categories within the decentralized system 

categories: 

 

 Split systems. Split systems are considered to be the most basic HVAC system 

and typically consist of an outdoor condenser and an indoor cabinet with the condenser, 

evaporator and a dedicated air handler. They are preferred for residential buildings. The 

indoor unit can either provide heat from electric resistance heating coils, natural gas 
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combustion, or heat pump heating (a reversal of the cooling mode). For cooling, an 

outdoor compressor cycles refrigerant through and uses a fan to expel heat to the outside 

air. The cooled refrigerant is then sent inside to the indoor unit, which houses the air 

handler with a cooling coil to condition the air before it enters the space. Split systems 

usually serve a single room/space in a commercial scenario. While this makes it 

convenient and simple to control a space, the indoor unit of the split system will take up 

valuable room inside, unless there is a nearby utility closet or adequate space in the attic. 

Generally, these systems require a lower capital investment compared to central systems 

(Split, 2019).  

 

 Packaged Units.  Packaged units house the heating, cooling, and air handling 

mechanisms in a single enclosure on the exterior of the building. They consist of a 

heating coil, cooling coil, air filters, return fan, and supply fan. Cooling coils circulate 

refrigerant and cool air as the fans pass air over it. Heating can either be accomplished 

by reversing the refrigerant cycle (i.e., heat pump mode), electric resistance heating, or 

natural gas heating. Packaged units can be installed either on the roof or on the ground 

outside of the building. Insulated ducts are installed to transport conditioned air into the 

building. They can serve single or multiple zones. Packaged systems are a popular 

choice for buildings with limited space as they provide more flexibility when it comes to 

installation compared to split systems. However, they do tend to be less energy efficient. 

Generally, these systems require lower capital investment compared to central systems 

(Kuntz, 2019).  
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Centralized Plant Systems.   

Plant systems consist of a centralized boiler and chiller with terminal units to serve 

individual spaces. Boilers are units that heat water to a set temperature for space heating. 

They can either use electric resistance or natural gas combustion for heating. Chillers are 

units that cool water to a set temperature. There are multiple types of chillers: air, water, 

and evaporative condensed (Oza, 2015). Chillers lower the temperature of the 

condensing water by forcing a heat exchange between one of the three medias listed 

above, while utilizing the refrigerant cycle. From the plant equipment, hot water and 

cold water pumps transport the heated and chilled water separately throughout the 

building to terminal units. Centralized systems such as these typically demand larger and 

subsequently more expensive equipment that has higher quality, efficiency and life span. 

The complex nature of these systems does require concentrated and consistent 

maintenance (Hart, 2016). 

 

Plant systems rely on the use of terminal equipment to heat and cool spaces. There are 

two main options for terminal equipment, namely fan coils and air handling: 

 

 Fan Coils. Fan coil units are terminal to plant systems. These units receive heated 

and chilled water directly from the boiler and chiller in a plant system through a network 

of insulated pipes. At these units, the conditioned water is sent through coils (a small 

heat exchanger). A fan circulates the space’s air through the coils to achieve the desired 

temperature. Fan coil units can easily be added and removed from a plant system, which 

makes them desirable for commercial spaces with varying sizes and load requirements. 
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When paired with the plant system, these units consistently provide the highest 

efficiency across varying building loads. A factor to consider with fan coils is that they 

do not usually include the circulation of any outdoor air or ventilation or make-up air. A 

lack of outside air can cause several issues, including high humidity and carbon dioxide 

levels. While a central plant with fan coils system requires a higher capital cost than the 

decentralized systems, it is not quite as expensive as a secondary air handling system. 

(Hart, 2016) 

 

 Air Handling.  Air handling units (AHU) are centralized fan and duct systems 

that provide heating, cooling, and ventilation for multiple spaces within a medium to 

large industrial or commercial building. These units serve as secondary HVAC 

equipment to a plant system. They begin with air dampers which control the air flow into 

the AHU. Dampers also manage the mixture of air between outside air and return air. 

Next, the air will pass through air filters to clean out debris. The air will then hit a 

cooling coil and a heating coil. Finally, a supply fan pushes air into a duct and 

throughout the building. Return and exhaust fans are also included in some systems to 

control ventilation and recycling. Additional components, such as an energy recovery 

wheel, humidifier, and pre-heat coil, can also be included in these units (Evans, 2018). 

Air handler ducts, usually insulated, lead throughout the building to terminal VAV 

(variable air volume) units. These control the temperature and air flow to specific rooms. 

Return air will be recirculated and mixed with new outside air to reduce energy usage. 

These setups typically provide better air quality compared to plant systems with fan coil 

units. Just like plant systems, air handling systems allow for larger, higher quality, more 
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efficient and longer lasting equipment to be installed. Additions, like an energy recovery 

wheel, provide the opportunity for more energy efficient systems to be constructed. The 

added complexity does require regular maintenance and in-depth system knowledge. 

These systems achieve their highest efficiencies with larger buildings, where a single 

plant system can serve multiple air handlers. 

 

A summary of the characteristics of the four HVAC systems is shown in Table 1. 

 

Table 1: Comparison of various HVAC system types across multiple categories, with 

ratings from 1 (low) to 4 (high). 

System 

Type 

Capital 

Cost 

Maintenance 

Costs 

Energy 

Efficiency Installation Complexity Comfort 

Split 2 1 2 3 1 4 

Packaged 2 2 1 4 1 4 

Plant with 

Fan Coils 
3 3 4 1 4 3 

Plant with 

Air 

Handler 

4 4 3 1 4 2 

 

 

3.4 Energy Modeling Software 

Energy modeling software is a tool for engineers to create models of residential or 

commercial buildings that simulate HVAC, lighting, water, and envelope design 

alternatives to estimate energy usage and resource consumption. eQuest is a free, online, 

energy modeling software package that was developed with funding mostly from the 
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United States Department of Energy. This software is one of the best on the market, and 

the only one that is available for free. An accurate building model can be created in the 

schematic creation wizard with the help of construction documents and detailed building 

knowledge. Specifying the building location allows for yearly weather patterns to be 

estimated from a proximate weather station. With the input data, building energy loss 

can be calculated. eQuest allows for various building zones to be defined and HVAC 

equipment to be assigned to each zone within the design creation wizard. By modifying 

the HVAC equipment, different alternatives can be compared directly using the output 

data provided. eQuest and other energy modeling software serve as powerful tools for 

comparing energy consumption between various design options (Hirsch, 2016). 

 

3.5 Sustainability Opportunities 

HVAC systems account for 39% of commercial building energy usage across the United 

States. Replacing outdated mechanical equipment has the potential to decrease energy 

usage by anywhere from 10% to 40% depending on the building. Energy savings 

performance contracts offer a path to decrease energy usage and associated emissions 

from a large portion of the energy consumption of the United States (Graham, 2016). 

Sustainability balances the needs of society, the economy and the environment. An 

ESPC project embodies these goals. New mechanical equipment will achieve an 

improved level of comfort and health for the occupants. The project financing allows for 

the installation of new equipment, which will generate a profit within the lifespan of the 

system. A decreased utility bill means a decreased carbon footprint for the facility.  
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Energy savings performance contracts are a proven way to decrease society’s impact on 

the environment, while creating a prosperous, sustainable, and comfortable future. 

 

4 EXISTING CONDITIONS 

 

4.1 Facility Overview 

Leverett Elementary School is located in Fayetteville, Arkansas at the corner of Garland 

Avenue and Cleveland Street. A photograph of the front of the school is shown in Figure 

1. Fayetteville lies in the hills of the Ozarks. The city is located in a deciduous forest 

climate. Drake Field Weather Station is the nearest one to Leverett and was used for the 

weather inputs within the energy modeling software. 

 

   

Figure 1: Image of the Front of Leverett Elementary School, Fayetteville, Arkansas. 

 

The school was originally constructed in 1939. Two expansions and renovations were 

completed in 1985 and 2012. The expansions continued the architectural style used for 

the initial construction, using the same red brick for the entire exterior. Construction 
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documents are typically used to ascertain the specific materials that were used for 

construction. The remaining plans from the 1939 construction were limited to simple 

architectural layout drawings. For both the 1985 and 2012 projects, only the mechanical 

sections (heating and cooling equipment) of the construction documents were made 

available from the school district. The 1985 plans showed that the original section of the 

school went under renovation while the additions were being completed. The entire 

HVAC system was upgraded and installed during this project. Therefore, the existing 

HVAC system, insulation, roofing, and fenestration originates from the 1985 project. 

Unfortunately, the school district no longer possessed the materials lists, so the exact 

equipment and materials used must be assumed or determined based on-site visits. The 

2012 project mainly involved interior renovations and some simple HVAC maintenance, 

so they were not essential to the energy modeling process. Floorplans were provided 

showing dimensions and layouts for the entire school. 

 

The author made multiple site visits to the school as part of the energy audit process 

performed by Entegrity, an energy services company.  From direct observations, it was 

found that Leverett Elementary School’s HVAC system was a mixture of two systems: a 

plant system and multiple packaged single zone rooftop units. Most of the building 

zones were served by fan coil units that receive chilled water from a rooftop chiller and 

heated water from a boiler in one of the mechanical rooms. Only 6 zones were served by 

packaged units located on the roof. 
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Leverett Elementary had a total 2018 enrollment of 301 students. There are additionally 

35 full-time employees, including teachers, administration, maintenance, cafeteria 

workers, and a nurse. The majority of the spaces in the building are classrooms with a 

student occupancy of 10 to 20 students.  Other spaces included a cafeteria, kitchen, 

library, gymnasium and offices. 

 

4.2 Base Year Utility Expenses 

The annual utility data for Leverett Elementary School was compiled from 2016 to 2019. 

Benchmark values have been calculated to serve as typical yearly values for comparison 

against alternatives. 

 Electricity Usage:     306,000kWh/year 

 Electricity Unit Cost:     $0.0966/kWh 

 Electricity Cost:     $29,500/year 

 Natural Gas Usage:     872 MMBtu/year 

 Natural Gas Unit Cost:    $8.37/MMBtu 

 Natural Gas Cost:     $7,300/year 

 

4.2.1. Base CO2 Equivalent Emissions 

The utility data from Leverett Elementary was provided by the Fayetteville Public 

School District, and then was input into CometFarm (Colorado State University, 

2019) to determine the current building’s environmental impact, see Table 2. 
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Table 2: Measured annual utility consumption data and the output from CometFarm for the 

estimated annual carbon dioxide equivalent emissions of global warming potential gases.  

 

 

4.3 Base Maintenance Costs 

Leverett Elementary School lacks detailed accounts of historic maintenance costs. 

Therefore, maintenance cost was assumed to be 15% of utility cost based on industry 

experience from employees within Entegrity Partners. The maintenance costs associated 

with the above electricity and natural gas consumption are shown below. 

 Maintenance (Electric Usage)  $4,430/year 

 Maintenance (Natural Gas Usage) $1,090/year 

 Total Maintenance Costs:  $5,520/year 

 

4.4 Base Operating Costs 

The operating costs for the base system consists of the reported electricity cost, reported 

natural gas cost, and estimated maintenance costs associated with those consumptions. 

 Electricity Cost:   $29,500/year 

 Natural Gas Cost:   $7,300/year 

 Total Maintenance Cost:  $5,520/year 

 Total Operating Cost:  $42,320/year 

 

System 

Electric 

Consumption  

(kWh/y) 

Natural Gas 

Consumption  

(CCF/y) 

 

Total Energy 

Consumption 

(MMBtu/y) 

Tot CO2 Eq 

(tons/y) 

Base 311,000 8,250 1910 296 
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5 Energy Modeling 

With knowledge of the existing building’s condition, a representative model of the building 

and its systems was created in eQuest. This model was then used to model the base system 

using the given utility consumption as a guide. Once the base system was modeled, various 

alternative HVAC systems were inputted into the model to compare systems. 

 

5.1 Model Inputs  

eQuest has specific requirements to create and run a successful and representative 

model. These inputs are outlined in the following sections. 

 

5.1.1. Building Shell 

The first step when building an energy model in eQuest is to create the building 

shell. The software allows for multiple options to complete this process. Most recent 

construction projects will have a 3D AutoCAD drawing. eQuest can import 

AutoCAD files and render the shell from the structure in AutoCAD. eQuest also can 

create the entire building shell model by manually inputting the configuration within 

the software, using the layout information gathered from construction documents 

and floorplans.  Since AutoCAD drawings were not available for Leverett School, 

the manual definition was the method that was used.  An image of the building shell 

from eQuest can be found in Appendix 1. 

 

5.1.2. Heating and Cooling Zones 

After the building shell is completed, heating and cooling zones must be defined 
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dividing up the interior space of the building. Zones determine the areas that 

individual HVAC units will serve. Since Leverett Elementary is a school, the 

majority of the zones are divided by classrooms so that each classroom will have an 

individual unit serving their zone. An image of the zone layouts for each section of 

the building can be found in Appendix 2. 

 

5.1.3. Equipment 

Assigning the correct equipment to each zone is essential to developing an accurate 

energy model. Equipment locations can be determined using complete mechanical 

construction documents. However, Leverett Elementary’s construction documents 

were lacking detailed equipment schedules. The equipment location was determined  

from the on-site audit portion of the project. The base system consists of a boiler, 

chiller, air handling unit, and 46 fan coil units, plus six individual packaged units. 

 

5.1.4. Location & Weather 

eQuest allows for weather data to be individually input by the user, however, the 

most efficient approach is to locate the nearest weather station to the project site. 

The weather station will provide a weather data file that eQuest is able to read and 

produce an accurate model of the typical conditions. Building orientation is also 

important when considering solar radiation. The cardinal orientation of the building 

can be determined using construction documents or an onsite visit. The main axis of 

the building, parallel to Cleveland St, was input as due east-west. The weather 

station nearest Leverett Elementary school is Drake Field Weather Station. eQuest 



 

 
 

19 
 

requires .bin weather files to run energy modeling calculations. The eQuest website 

provides links to various weather data sources. The most commonly used source is 

the Typical Meteorological Year (TMY3 being the most recently updated version). 

TMY3 compiles data from the National Solar Radiation Data Base and US 

Department of Energy to create a data set of hourly solar radiation values and 

meteorological events for a representative 1-year period. 

 

5.2 Assumptions 

When complete building information cannot be attained, certain assumptions must be 

made. Some assumptions were made when creating the heating and cooling zones. The 

majority of zones were easily identifiable (classrooms, offices, etc.), however, certain 

uniquely shaped spaces required intuition to determine zone layout. Additionally, the 

construction documents provided for Leverett lacked detailed materials lists within the 

construction documents. Therefore, exact R-values for building materials were assumed 

from the default building settings in eQuest. These ratings are based on standard values 

from AHRAE 90.1, which includes approximate insulation values of R-13 for the walls, 

R-19 for the roof, and U-0.6 for the windows. Assumptions may have the potential to 

skew the base system model results away from the utility data. The insulation 

assumptions could overestimate the actual envelope quality. Therefore, calibration was 

necessary to match the base system model output to the utility data. 
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5.3 Base System Output 

With the above inputs, the energy model was successfully run for the Base System. 

Figure 2 shows the eQuest output for the Base System from Leverett Elementary School, 

namely the monthly electricity (MWh) and natural gas (MMBtu) consumption data. 

 

Figure 2: Base System eQuest Output for Electric (MWh) and Gas (MMBtu) 

Consumption. 

 

5.3.1. Calibration 

The industry standard is to calibrate energy modeling outputs using the utility data 

gathered for the building. In eQuest, this is typically done by adding miscellaneous 

plug loads to the system. These loads mainly account for equipment efficiency 
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losses that might not be apparent based on analysis of the building documents and 

physical visits to the school. Since any of the proposed upgrades would include all 

new equipment with specific performance ratings, these added plug loads will only 

be included on the Base System. This factor is included in the total energy usage 

graphed above. The addition of plug loads to the Base System will allow for a more 

accurate comparison between the various alternatives. There is a possibility for the 

plug loads to encompass losses due to an overstated building envelope quality in the 

base model. This could lead to a slight overestimation in economic and 

environmental benefits of each system relative to the base system. However, this 

will not negatively affect any relative comparisons made between different 

alternatives.  Moreover, any existing envelope deficiencies will probably be 

upgraded as part of Entegrity Partners comprehensive plan.  Thus, the energy 

consumption predictions for the Alternatives will not include these biases. 

 

5.4 Equipment Sizing for Alternative Systems  

Three alternatives were modeled in eQuest to explore electricity and natural gas utility 

savings compared to the base. 

 Alternative 1 — Plant System with Secondary Fan Coil Units 

 Alternative 2 — Decentralized Packaged Systems 

 Alternative 3 —  Plant System with Secondary Air Handler 

Equipment was sized based on predicted heating and cooling loads for each space from 

the model outputs. Loads were given in heating or cooling (in Btu). These values were 

divided by 12,000 to convert from Btus to tons (of refrigeration), an industry preferred 
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unit of cooling capacity. Utilizing industry contacts, preferred equipment (manufacturer, 

series and models) were selected to meet the calculated load criteria for each space. The 

following sections contain descriptions equipment selected for each of the three 

alternatives. 

 

5.5 Alternative 1: Plant System with Secondary Fan Coil Units 

 

5.5.1. Scope of Work 

For Alternative 1, the base system will be replaced by a full plant system. The plant 

system will consist of an air-cooled chiller and hot water boiler. The chilled and 

heated water will then be pumped throughout the building to terminal 4-valve fan 

coil units within each control zone. A few zones lack the piping infrastructure for a 

fan coil unit to be installed, therefore, piping will need to be run to 6 spaces, where 

the base system previously had packaged units. 

 

5.5.2. HVAC Equipment Summary 

The system will consist of one replacement chiller, one replacement boiler, and 52 

replacement fan coil units. The equipment selected was based on the following 

energy modeling output. The chiller is a York YLAA0120 120 ton air cooled 

chiller. The boiler is a Lochinvar FBN1751 140 ton hot water boiler. The fan coil 

units are York FWXX-320 four-valve fan coil units. Six 1 ton units, thirty-two 2 ton 

units, eight 3 ton units, two 4 ton units, two 5 ton units and two 7 ton units will be 

installed based on eQuest loads calculated for each space. 



 

 
 

23 
 

5.6 Alternative 2: Decentralized Packaged Systems 

 

5.6.1. Scope of Work 

Alternative 2 involves removing all existing plant system equipment. Every space 

will be served by a single-zone rooftop or ground packaged unit. Therefore, the 

building will require 52 new packaged units to replace the base system. The current 

system only has 6 spaces served by package units. The remaining 46 spaces will 

require short stretches of ductwork be run from their respective units outside the 

building into the space. 

 

5.6.2. HVAC Equipment Summary 

The system will consist of 52 single-zone packaged units. These were sized based 

on the energy modeling output in Appendix 3. The packaged units are Goodman 

GPC14XXH ground and rooftop single zone packaged units. Six 1 ton units, thirty-

two 2 ton units, eight 3 ton units, two 4 ton units, two 5 ton units and two 7 ton units 

will be installed based on eQuest loads calculated for each space. 

 

5.7 Alternative 3: Plant System with Air Handling Unit and Terminal VAV Boxes 

 

5.7.1. Scope of Work 

Alternative will replace the base system with new plant equipment and a secondary 

air handling system. A new air-cooled chiller and hot water boiler will be installed. 

Instead of being run to fan coil units throughout the building, the heated and chilled 
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water will be pumped to a centralized single duct rooftop air handler. This air 

handler will heat, cool, and filter the air before sending the treated air through 

ductwork throughout the building to terminal VAV boxes that serve each control 

zone. This system is furthest from the base system, so extensive ductwork 

installation will be required. 

 

5.7.2. HVAC Equipment Summary 

This system will consist of a new chiller, boiler, air handler, and 52 VAV terminal 

boxes. These units were sized based on the following energy modeling output. The 

chiller is a York YLAA0120 120 ton air cooled chiller. The boiler is a Lochinvar 

KBL801 70 ton hot water boiler. The air handler is a Daikin DCC300 300,000 CFM 

air handling unit. The VAV boxes are Trane VSWFXX variable air volume boxes.  

 

Six 1 ton units, thirty-two 2 ton units, eight 3 ton units, two 4 ton units, two 5 ton 

units and two 7 ton units will be installed based on loads calculated for each space. 
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5.8 eQuest Model Output for All Alternatives 

The following two graphs (Figure 3 and 4) display the monthly consumption data 

calculated by the eQuest models for each alternative. Figure 3 shows the electricity 

consumption for the alternative systems in terms of MWh. Figure 4 shows the natural 

gas consumption for the alternative systems in terms of MMBtu. 

 

 

Figure 3: eQuest Electricity Consumption Output for All Alternatives and Base 
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Figure 4: eQuest Natural Gas Consumption for All Alternatives and Base. 

 

6 Results & Discussions 

The following section will compare and analyze each alternative against the base system for 

economic, environmental, and social feasibility. 

 

6.1 Economic Comparison 

Capital costs, operating costs, and the useful life (25 years) were used to create a cash 

flow diagram to yield the net present value (at a 10% interest rate) and internal rate of 

return for implementing each alternative. 
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6.1.1. System Lifespans 

The life of the systems has been determined to be 25 years. This is the longest 

allowable financing term allowable by state law, unless the equipment is warrantied 

for a longer period. All the equipment selected has an estimated life span of 25 

years. 

 

6.1.2. Interest Rate 

For the purpose of calculating net present value, an interest rate of 10% was 

selected. Entegrity Partners has a minimum acceptable interest rate of 10% for all 

performance contracting projects they undertake. 

 

6.1.3. Capital Costs 

The capital costs for each alternative consists of equipment costs and installation 

costs, including labor and infrastructure upgrades. This is a one- time investment at 

the beginning of the life of the given system. 

 

6.1.4. Operating Costs 

The operating costs for each alternative consists of utility usage and maintenance 

costs associated with system upkeep. Maintenance costs will fluctuate depending on 

the integrity and complexity of the system. These costs are factored in as a 

percentage of utility usage. Based on research and industry knowledge, varying 

percentages were assigned to each alternative to represent their relative projected 

maintenance needs: Alternative 1 = 12.5%, Alternative 2 = 10%, and Alternative 3 
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= 15%. Alternative operating costs are compared against the operating cost of the 

base system to determine the annual savings for the cash flow diagram used for 

economic calculations.  

 

6.1.5. NPV and IRR 

Using Excel cost equivalent formulas, a uniform annual series (operating costs) can 

be added to an initial investment (capital costs) to determine the net present value 

and internal rate of return for each alternative.  

 

6.1.6. Economic Comparison of Alternatives 

From the modeling results, each of the three alternatives achieved significant 

operating cost savings compared to the base system, see Table 3. This is evidence 

that each alternative is more efficient than the base system. Alternative 1 and 

Alternative 2 have nearly identical capital costs of approximately $78,000. 

However, Alternative 1 has a significant economic edge due to a nearly $4,000 a 

year advantage in operating cost savings. Alternative 3 is inferior in every economic 

analysis category. Alternative 1 presents the best economic opportunity with the 

highest net present value and internal rate of return of $36,900 and 16%, 

respectively. 
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Table 3: Lifetime Economic Analysis including Capital Costs, Operating Costs, Operating Cost 

Savings, Net Present Value and Internal Rate of Return. 

a With 10% interest and useful life of 25 years. 

 

6.2 Environmental Comparison 

Environmental impact has been determined using CometFarm by inputting the electricity 

and natural gas consumption outputs from the eQuest models for each alternative. 

 

6.2.1. CO2 Equivalent Emissions 

The utility consumption outputs from eQuest that were input into CometFarm. 

CometFarm is an online tool developed by Colorado State University in conjunction 

with the Natural Resources Conservation Service and the National Renewable 

Energy Lab (Colorado State University, 2019). The program calculates greenhouse 

gas emissions and air pollutants associated with energy consumption from 

electricity and liquid & gas fossil fuels. The values are calculated using data 

gathered by the U.S. Energy Information Administration and U.S. Environmental 

Protection Agency. The output from CometFarm for Total Energy Consumption and 

Total CO2 Equivalent Emissions are displayed in Table 4. The Total CO2 Equivalent 

Lifetime Economic Analysis 

System Capital Cost 

Annual 

Operating 

Cost 

Annual 

Operating 

Cost Savings 

Net Present 

Valuea 

Internal Rate 

of Return 

Alternative 1 $78,200 $29,300 $13,100 $36,900 16% 

Alternative 2 $78,600 $32,800 $9,600 $7,740 11% 

Alternative 3 $119,000 $32,900 $9,500 ($30,100) 6% 
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Emissions for each Alternative were compared against the base to determine the 

amount of emissions that could be avoided by implementing each alternative 

system. 

 

Table 4: Annual Greenhouse Gas Emissions, Avoided Greenhouse Gas Emissions 

and Total Energy Consumption from eQuest Consumption Outputs for Each 

Alternatives. 

 

 

6.2.2. Environmental Comparison of Alternatives 

Each of the three alternatives presents an improved environmental situation relative 

to the base system. Each alternative reduced both electric consumption and natural 

gas consumption. Alternative 2 reduced the Total Energy Consumption the most. 

However, due to the fact that the majority of the energy consumption is electricity, 

Alternative 2 reduced the Total CO2 Equivalent Emissions by the least amount. 

Alternative 1 reduced the Total CO2 Equivalent Emissions the most. While reducing 

energy consumption in and of itself prevents negative environmental practices such 

Annual System Fossil Fuel Consumption 
Annual Greenhouse Gas 

Emissions 

 

 

Electric  

(kWh) 

 

Natural Gas  

(MMBtu) 

Nat Gas  

(CCF) 

Total Energy  

(MMBtu) 

Total   

CO2 Eq 

(lbs) 

Total    

CO2 Eq 

AVOIDED 

(lbs) 

Base 311,000 855 8,250 1,910 592,000 - 

Alt 1 244,000 291 2,810 1,120 421,000 171,000 

Alt 2 302,000 69.6 672 1,100 488,000 104,000 

Alt 3 262,000 391 3,780 1,280 461,000 131,000 



 

 
 

31 
 

as fracking, mining, and shipping of fuel, more weight is typically given to reducing 

overall carbon emissions. Therefore, Alternative 1 achieved the most favorable 

environmental improvement compared to the base system. 

 

6.3 Social Comparison 

The social impacts to the building occupants and community were considered and a 

comparison of these effects are summarized below.  The main impacts that were 

considered were: comfort, space, noise, disruptions from construction, and air quality.  

 

6.3.1. Social Impacts from Alternative 1  

Compared to the base system, this system is an improvement on all impacts that 

were considered. The units currently in use at Leverett Elementary allow for 

minimal control over each spaces temperature, and when functioning properly, 

many of them can be loud and disruptive to the classroom environment.  

 

The plant system with secondary fan coils proposed for Alternative 1 will give more 

individualized control over each space. This will give teachers the ability to 

optimize the learning environment and comfort for their students. 

 

While this system will continue to take up minimal floor space in the classroom (the 

fan-coil units are installed as small cabinets with air discharge registers, located 

along one wall), the existence of much of the needed infrastructure will reduce the 

installation time. This reduces the probability that the construction process will 
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disrupt the school year. Additionally, new, high efficiency equipment should reduce 

noise compared to the old units. 

 

One downside this system presents is that outside air is not provided directly to the 

fan coil units. The spaces rely on outside air leaking into the building. Since 

Leverett Elementary is an old building, this does not present a large issue, but if the 

building envelope is upgraded substantially, then outside airflow may need to be 

addressed. If outside air is not circulated into the building properly, carbon dioxide 

and humidity can build up inside the building opening up the possibility for 

detrimental effects to the occupants’ health, as well as the potential for condensation 

on the windows. 

 

6.3.2. Social Impacts from Alternative 2 

Compared to the base system, Alternative 2 was an overall social improvement. 

The units currently in use at Leverett Elementary allow for minimal control over 

each spaces temperature, and when functioning properly, many of them can be 

loud and disruptive to the classroom environment.  

 

The packaged unit system proposed for Alternative 2 will give more 

individualized control over each space. This will give teachers the ability to 

optimize the learning environment for their students. 
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Due to the units being installed on the exterior of the building, no interior space 

will be taken up by equipment. While the existing units take up little space, their 

removal will open that area up to be used for a more functional learning purpose 

by the teachers. Also, the only noise associated with these units within the 

classrooms will be from air flowing into the rooms through ductwork. This 

system presents the lowest noise impact compared to the other alternatives. 

Alternative 2 requires a shorter distance for the treated air to travel from the 

equipment to the space. Therefore, a lower maximum air velocity is needed, 

leading to less duct noise. Also, due to the fan coil units being located within the 

space, fan operating will create more noise pollution than the exterior fans of the 

packaged units. 

 

Because only 6 of the 52 spaces have infrastructure to support the use packaged 

units, a fair amount construction will have to be done throughout the school. 

While this can be completed during the summer break, there is a possibility that 

construction could interfere with the school year. 

 

6.3.3. Social Impacts from Alternative 3 

Compared to the base system, Alternative 3 provided net social improvements for 

the client. The units currently in use at Leverett Elementary allow for minimal 

control over each spaces temperature, and when functioning properly, many of 

them can be loud and disruptive to the classroom environment.  
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The plant system with secondary air handling proposed for Alternative 3 will give 

more individualized control over each space. This will give teachers the ability to 

optimize the learning environment for their students. 

 

This system will not take up any floor space. Teachers will be able to use the 

space taken up by existing equipment for more functional purposes. The VAV 

boxes will be installed in the duct work above each room. Therefore, there is a 

possibility of slight disruptive noise from the units. Although, this is unlikely 

because they are new, high efficiency units. 

 

Unfortunately, this system will require the most construction because almost none 

of the infrastructure needed for this system currently exists within the building. 

Duct work will need to be run throughout the entirety of the school from the air 

handler to each of the VAV boxes. This long construction process may be able to 

be completed over the summer but presents the possibility of interfering with the 

school year. 

 

6.3.4. Social Comparison of Alternatives 

The social impacts associated with each alternative that were described above were 

rated so that they could compared.  The ratings are presented in Table 5.                             
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Table 5: Social Comparison Table; (best = *** to worst = *). 

Social Comparison 

 Installation Noise Air Quality Comfort Footprint Summary 

Alternative 1 
Plant System w/ Fan Coils *** ** * *** * * 
Alternative 2 
Packaged System ** *** *** *** *** *** 
Alternative 3 
Plant System w/ Air Handler * ** ** *** *** ** 

 

Based on the summary table above, Alternative 2: Packaged System provided the most 

social improvement from the base system. Alternative 1: Plant System with Fan Coil 

Units seemed to yield the least social benefits. However, all three alternatives created an 

overall increase in social capital compared to the base system. 

 

  



 

 
 

36 
 

7 Recommendation to Client 

Based on the economic, environmental, and social comparisons, Alternative 1 (Plant System 

with Secondary Fan Coil Units) is the most favorable replacement system. Alternative 1 is 

far more economically beneficial with a net present value of $36,900 and internal rate of 

return of 16%. While Alternative 2 yields the greatest energy consumption reduction, 

Alternative 1 reduces CO2 equivalent emissions by far more than the other two systems, 

indicating that Alternative 1 creates the most positive environmental impact. Alternative 1 

does present one significant social issue, namely the lack of an integrated fresh air input.  

This can be successfully mitigated by monitoring the natural infiltration and air quality after 

installation to determine if external air inlets (powered or passive) need to be installed. 

Overall, Alternative 1 is the optimal alternative system for Leverett Elementary School to 

implement for the replacement of their existing HVAC system. 

 

7.1 Deferred and Omitted Measures 

Several potential measures that were omitted due to the scope of the project and 

knowledge of the building. A decentralized split system was not included as a possible 

alternative. This is due to the need to have an indoor furnace and dedicated air handler 

within each heating and cooling zone. From onsite visits, it was determined that the 

majority of zones do not have a practical storage space for the indoor equipment 

associated with a split system. The impracticality of the system for this building 

removed it from the alternatives list. Additional energy savings upgrades could be 

included beyond HVAC system upgrades. For example, the building envelope could 

receive significant upgrades to the replace windows and fix drainage issues. Also, LED 
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lighting retrofits, lighting and HVAC controls, and a solar array could be included to 

increase the profitability of the project for the client. The limited scope of this project 

excluded these possibilities. 
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APPENDIX 

 

Appendix 1: Building Shell Definition Input to eQuest 

 

 

 
Building shell snapshot from eQuest from NE viewpoint. 

 

 

 
Building shell snapshot from eQuest from SW viewpoint. 
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Appendix 2: Building Heating and Cooling Zones 

 

 
Building heating and cooling zones from the bottom floor of the school. 

 

 

 
Building heating and cooling zone for the gym. 
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Building heating and cooling zones for the top floor addition. 

 

 

 
Building heating and cooling zones for the top floor original construction. 
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Appendix 3: Energy Consumption Predictions for the Alternative HVAC Systems 

 

Monthly and total electric consumption in MWh used to create Figure 2 and 3. Data output from 

eQuest. 

 

Monthly and total natural gas consumption in MMBtu used to create Figure 2 and 4. Data output 

from eQuest. 

Electric Consumption (MWh) 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Base 24.0 25.3 22.6 25.2 33.7 18.4 26.6 41.5 25.6 27.0 25.9 14.9 311.2 

Alternative 1 
Plant System 
with Fan 
Coils 

23.5 24.7 22.0 24.2 31.8 17.0 23.6 36.9 23.4 25.9 25.3 14.5 293.3 

Alternative 2 
Packaged 
System 

41.9 38.1 26.9 24.3 31.7 17.7 26.0 40.7 25.0 25.4 28.6 24.6 351.5 

Alternative 3 
Plant System 
with Air 
Handler 

24.5 26.2 22.7 25.5 33.7 18.4 26.0 40.5 25.4 26.7 25.9 15.1 311.0 

Monthly Natural Gas Consumption (MMBtu) 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Base 135 115 85.4 67.5 61.9 41.2 41.4 43.4 40.2 60.9 80.6 82.2 855 

Alternative 1 
Plant System 
with Fan 
Coils 

76.7 61.6 32.0 16.7 11.9 3.756 4.25 6.20 4.25 10.6 28.0 34.7 291 

Alternative 2 
Packaged 
System 

6.93 7.38 6.52 6.66 7.68 3.75 4.24 6.20 4.25 5.51 6.2 4.19 69.5 

Alternative 3 
Plant System 
with Air 
Handler 

95.3 80.2 43.1 23.7 20.2 6.17 4.25 6.21 4.59 17.1 39.4 50.7 391 


	HVAC System Energy Audit for Leverett Elementary School
	Citation

	tmp.1575402978.pdf.vpcRn

