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Abstract 

Arkansas produces approximately one billion broilers each year. Phosphorous (P) runoff from 

fields receiving poultry litter is believed to be one of the primary factors affecting water quality 

in Northwest Arkansas. Poultry litter contains approximately 20 g P kg-1
, of which about 2 g 

P kg-1 is water soluble. Soils that have received repeated heavy applications of litter may have 

water soluble P contents of as high as 10 mg P Kg-1 soil. The objective of this study was to 

determine if soluble P levels could be reduced in poultry litter and litter-amended soils with Al, 

Ca, and/or Fe amendments. Poultry litter was amended with alum, sodium aluminate, quick 

lime, slaked lime, calcitic limestone, dolomitic limestone, gypsum, ferrous chloride, ferric 

chloride, ferrous sulfate and ferric sulfate, and incubated in the dark at 25°C for one week. 

Three soils which had been excessively fertilized with poultry litter were amended with alum, 

ferrous sulfate, calcitic limestone, gypsum and slaked lime and incubated for 4 weeks at 25 °C. 

In the litter studies, the Ca treatments were tested with and without CaF2 additions in an attempt 

to precipitate fluorapatite. At the end of the incubation period, the litter and soils were 

extracted with deionized water and soluble reactive P (SRP) was determined. SRP levels in the 

poultry litter were reduced from over 2,000 mg P kg-1 litter to less than 1 mg P kg-1 litter with 

the addition of alum, quick lime, slaked lime, ferrous chloride, ferric chloride, ferrous sulfate 

and ferric sulfate under favorable pH conditions. S.RP levels in the soils were reduced from 

approximately 5 mg P Kg-1 soil to less than 0.05 mg P Kg-1 soil with the addition of alum and 

ferrous sulfate under favorable pH conditions. Gypsum and sodium aluminate reduced SRP 

levels in litter by 50 to 60 percent while calcitic and dolomitic limestone were even less 

effective. In soils, the Ca amendments were less effective than the Al and Fe amendments, 

although slaked lime was effective at high pH. The results of these studies suggest that treating 

litter and excessively fertilized soils with some of these compounds, particularly alum, could 
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significantly reduce the amount of SRP in runoff from littered pastures. Therefore, chemical 

additions to reduce SRP in litter and soil may be a best management practice in situations where 

eutrophication of adjacent water bodies due to P runoff has been identified. Preliminary 

calculations indicate that this practice may be economically feasible. However, more research . 
is needed to determine any beneficial and/or detrimental aspects of this practice. 
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INTRODUCTION 

Phosphorus is generally considered the limiting nutrient responsible for eutrophication 

in lakes and reservoirs, since certain algal species can obtain N from atmospheric sources. 

Tighter controls of point sources of P, such as municipal wastewater treatment plants, has 

resulted in decreased P loading from point sources into the aquatic environment in the last few 

decades. However, improvement of water quality has not always been observed when point 

source P loads were reduced. Therefore, attention is currently being focused on non-point 

sources of P, such as agricultural runoff. One of the major sources of P runoff from agricultural 

lands is animal waste. 

Several investigators have characterized P runoff from fields receiving poultry manure 

(Edwards and Daniel, 1993a, b; McLeod and Hegg, 1984; Westerman and Overcash, 1980; 

Westerman et al., 1983). These studies have all shown that P runoff increases as the manure 

or litter application rate increases and as rainfall intensity increases. Drying time has also been 

shown to be an important parameter with respect to P runoff, with longer periods between 

application and rainfall resulting in greatly reduced runoff of P (Westerman and Overcash, 1980; 

Westerman et al., 1983). Recent studies have shown high concentrations of P (14 - 76 mg P 

L-1
) in runoff from pastures receiving poultry litter, most of which is dissolved inorganic P 

( z 85 % ), with only small amounts of particulate P (Edwards and Daniel, 1993a). Sonzogni et 

al. (1982) indicated that dissolved inorganic P is directly available to algae and concluded that 

best management practices used to decrease P runoff should consider the bioavailable-P load, 

rather than focusing on the total-P load. 

Rapid and concentrated growth of poultry industry, fueled by the demand for low-fat 

meat, has caused concerns to be voiced in several states with respect to water quality. Arkansas 

is the number one poultry producing state in the U.S., with approximately one billion broilers 
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produced per year (Wooley, 1991). Each broiler produces approximately 1.5 kg of poultry litter 

over a 10-week growing cycle (Perkins et al., 1964). This litter contains 8-25.8 g Pkg·•, with 

soluble reactive P levels up to 4.9 g P kg·1 (Edwards and Daniel, 1992). Runoff of P from 

fields receiving poultry litter has been speculated to be one of the primary factors affecting water 

quality in Northwest Arkansas. High bacterial counts and high biochemical oxygen demands 

have also been attributed to litter. Proposals to decrease the amount of litter applied to pastures 

have the greatest support at present. However, transporting materials greater distances and/or 

building litter storage facilities will increase the cost of disposal. An alternative solution to this 

problem may be chemical fixation (precipitation with metals and/or adsorption onto metal oxides 

or hydroxides). Compounds such as slaked lime (Ca(OH)2 or alum (Al2(S04) 3.14H20) could be 

added to the litter before field application, resulting in P fixation. To determine if P fixation 

using chemical amendments is feasible, information is needed to determine its potential impact 

on poultry production and the environment. 

The best information on P fixation has been provided by researchers studying wastewater 

treatment. In a review of Swedish wastewater treatment plants, Ulmgren (1975) found that when 

alum was used to precipitate P, the pH had to be lower than 6.4 to result in P concentrations 

of 0.8 mg P L·1
, whereas the pH needed to reach this concentration with lime was 11.5. He 

indicated that at a pH of 6.0, AlP04 solubility reaches a minimum (0.01 mg P L·1
). The Al/P 

mole ratios generally found in the precipitates were 1.5 to 2.5. Of the plants studied in Sweden, 

33 used alum, 9 used quicklime (CaO), and 1 used ferric chloride. Treatment with these 

substances not only reduced P content in effluent water, but also decreased suspended solids, 

BOD, heavy metals, worm eggs and parasites (Ulmgren, 1975). 
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Precipitation reactions for aluminum, calcium, and iron phosphates are: 

Al2(S04) 3.14H20 + 2POl- --> 2A1P04 + 3SO/- + 14H20 
alum 

Fei(S04) 3.14H20 + 2POl- --> 2FeP04 + 3SOl- + 14 H20 
ferric sulfate 

5Ca(OH)2 + 3H2PQ4- + 3H+ -- > Ca5{P04) 30H + 9H20 
slaked lime 

(Ripley, 1974). Lime can be added as Cao or Ca(OH)i. Similarly, ferric chloride or ferric 

sulfate appear to be equally effective. Sodium aluminate (Na2Al20 4) has been used in the place 

of alum. Hsu (1976) indicated that the optimum pH for P removal with Al and Fe was 

dependent on the metal/P mole ratio. At metal/P ratios of two to five, the optimum pH range 

for P removal by Al was 5.5 to 8.0, whereas for Fe the optimum pH range was 4. 7 to 7.1. 

Very little work has been done on the chemical speciation of phosphorus in poultry litter. 

Sharpley et al. (1984) reported that 78% of the total Pin cattle feedlot waste was inorganic, and 

that the major proportion of both organic and inorganic P was in labile forms. McCoy et al. 

(1986) concluded that the municipal sewage sludge composts they studied were very poor 

sources of plant avialable P because Fe and Al treatments were used to precipitate P in the 

sludge at the sewage treatment plant. These researchers also found that less than 5 % of the P 

in these sludge composts was in an organic form. Similarly, Soon and Bates (1982) found that 

amending soils with Ca, Al or Fe-treated sludges increased the Al- and Fe-bound P fraction in 

the soils but had little effect on the content of organic Pin the soils. Miller et al. (1993) found 

that air-drying increased the SRP level of a heavily littered Linker soil to values appoaching 7.5 

mg P Kg-1 soil. 

At pH values less than approximately 6, the most stable phosphate mineral in soils is 

AlP04•2H20 (variscite), followed by FeP04•2H20 (strengite) (Lindsay and Vlek, 1977). In 
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soils with pH values greater than 6 the calcium phosphate minerals fluorapatite and 

hydroxyapatite are the most stable phosphate minerals. Pierzynski et al. (1990) reported that 

an amorphous analog of variscite with a log K.0 = -27 to -29 controlled aqueous phase P 

activities in soils excessively fertilized with fertilizers, sewage sludges or manures. 

Poultry production provides an ideal setting for the use of chemical precipitants. At 

present, when broilers reach maturity and are removed from the houses, the litter (which is 

composed of a bedding material and manure) is collected and spread on adjacent pastures. This 

material has extremely high concentrations of water soluble P ( > 2000 mg P kg-1
). When the 

first heavy rainfall event occurs, P is transported with runoff water into nearby water bodies 

(Edwards and Daniel, 1993a). If alum or slaked lime were applied to the litter prior to removal 

from the houses, the water soluble P could be converted to an insoluble mineral form via 

precipitation or adsorption, making the P less susceptible to leaching or runoff. If conducted 

properly, P precipitation could result in the formation of minerals which are stable over geologic 

time periods, decreasing the threat of eutrophication of surface waters in poultry producing 

regions. 

This research will determine the rates of chemical amendments such as alum and slaked 

lime that are needed to precipitate P in poultry litter and litter-amended (high soil test P) soils. 

Laboratory and field studies will be conducted which test how efficiently various Al, Ca, and 

Fe amendments immobilize P. The objectives are: 1) determine the variability in the content 

of water soluble phosphorus in poultry litter, 2) evaluate the effectiveness of various Al, Ca and 

Fe amendments in precipitating Pin poultry litter and in soils excessively fertilized with poultry 

litter, 3) use rainfall simulators in small plot studies to determine if P runoff from pastures 

receiving chicken litter can be inhibited by alum and/or slaked lime additions, and 4) determine 

the stability of phosphate minerals formed when chicken litter is treated with various 
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amendments under a wide range of soil pH conditions. During the first year of this project the 

bulk of our effort has been directed at objective 2. Therefore, this report will focus on our 

accomplishments with regard to objective 2. 

METHODS AND MATERIALS 

Experiments with Poultry Litter 

Twenty six grams of fresh poultry litter (20 grams dry weight equivalent) were weighed 

into glass bottles. The litter had been forced through a 10 mesh sieve to break up large clumps 

and mixed in a portable cement mixer for two hours to insure homogeneity. The bedding of this 

litter was rice hulls. The litter had not been stacked or composted. The initial pH (1: 1) and 

electrical conductivity (1: 10, litter:water extract) was 8.2 and 8970 µS cm-1, respectively. Total 

N, P, and K were 42.8, 18.1, and 27.3 g kg-1
, respectively. Total Kjeldahl N was determined 

on the fresh poultry litter according to the method of Bremner and Mulvaney (1982). Total P 

and K were determined on fresh litter using the method of Huang and·Schulte (1985). 

The litter was amended with Al, Ca, and Fe compounds to reduce P solubility. Materials 

tested included alum, sodium aluminate, quick lime, slaked lime, calcitic limestone, dolomitic 

limestone, gypsum, ferrous chloride, ferric chloride, ferrous sulfate and ferric sulfate. All 

amendments were reagent grade materials. After the amendments had been added, the mixtures 

were stirred with a spatula for approximately one minute. The Ca treatments were tested with 

and without CaF2 additions as a secondary amendment in an attempt to precipitate fluorapatite. 

Calcium carbonate was added as a secondary amendment in cases where the primary amendment 

was believed to be an acid forming compound. There were twenty different chemical treatments 

tested, with five rates of each treatment (total number of treatments equalled 100 plus control) 

and three replications (Table 1). The lowest rate of the Fe and Al amendments was equal to the 
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amount needed to achieve a 1: 1 metal:P mole ratio, assuming the P content of the litter was 10 

mg kg·1
• The lowest rate of the calcium amendments was based on a Ca:P ratio of 1.5: 1. It 

should be noted that while the rates were based on the assumption that the P content of litter was 

10 mg P kg·1
, the actual P content was found to be 18.1 mg P kg·1 (therefore, the lowest rate 

of Al and Fe was equivalent to 1:1.8 mole ratio, etc.). 

After amendments were added to the litter, deionized water was added to achieve a water 

content of 20 % by volume. The amended litter was then incubated in the dark at 25°C for one 

week. A one week equilibration time was utilized for this study because this is usually the time 

scale between the removal of broilers from the houses after the final growout before litter 

removal and land application of the litter. At the end of this period, the litter was transferred 

to polycarbonate centrifuge tubes, shaken for two hours with 200 mL of deionized water, and 

centrifuged at 4066 g for 20 min. Unfiltered samples were collected for measurement of pH, 

alkalinity, and electrical conductivity (EC). Alkalinity was determined by titration, according 

to APHA method 2320 B (APHA, 1992). Filtered samples (0.45 um millipore filters) were 

collected for measurement of soluble reactive P (SRP), water soluble metals (Al, B, Ca, Cu, Fe, 

K, Mg, Mn, Na, P, S, Zn), soluble organic carbon (SOC), S04 , and Cl. The metal and SRP 

samples were acidified to pH 2.0 with nitric acid to prevent precipitation. Chloride, SOC, and 

S04 samples were not acidified. Soluble reactive P was determined using an ascorbic acid 

technique, according to APHA method 424-G (APHA, 1992). Metals were analyzed using an 

inductively coupled argon plasma emission spectrometer (ICP), according to APHA method 3120 

B (APHA, 1992). Soluble organic C was determined as the difference between total organic C 

and inorganic C as measured on a Rosemont DC-190 organic C Analyzer, using the combustion

infrared method according to APHA method 5310 B (APHA, 1992). Sulfate was determined 

using the turbidimetric method, according to APHA method 4500-SO/· E (APHA, 1992). 
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Chloride was determined using the potentiometric method with a chloridometer, according to 

APHA method 4500-Cl- D (APHA, 1992). 

Experiments with Poultry Litter-Amended Soils 

Soils were sampled from three fields located near the town of Lincoln in Washington 

County, Arkansas during the second week of June, 1993. Each of the fields had a history of 

heavy poultry litter applications. At the time of sampling all three fields were in fescue and 

were being used to graze steers. The soils were sampled to a depth of 4 cm using spades. Soil 

samples taken from approximately 20 locations throughout each field were composited to provide 

a single bulk sample from each field. These bulk samples were air-dried, ground, sieved (2 

mm) and thoroughly mixed prior to use. The series names, taxonomic classifications and 

selected chemical properties of the soils are presented in Table 2. The pH was determined using 

a 1 :2.5 soil:water ratio, organic matter (OM) content was determined by the Walkley-Black 

method, total P was determined by HN03 digestion at 120 °C followed by anaysis of P in the 

diluted digest by inductively coupled argon plasma emission spectrophotometry (ICAPES), and 

soil test P (STP) was determined by extraction with Mehlich Ill solution (1:7 soil:solution ratio) 

followed by P analysis using ICAPES. 

Fifty grams (oven dry equivalent) of soil were placed in 250 mL capacity, screw top, 

brown glass bottles. Amendments were added to the soil in the bottles in solid form at the rates 

given in Table 3. The five primary amendments used in this study were alum 

(Al2(S04) 3• 18H20), ferrous sulfate (FeS04•7H20), calcitic limestone (CaC03), slaked lime 

(Ca(OH)2), and gypsum (CaS04•2H20). Rates of primary amendments were based on the total 

P content of the soil and on the metal:phosphate molar ratios in the compounds that were 

anticipated to form as a result of amendment additions, namely, AlP04 , FeP04 , and 

Ca5(P04) 30H. The lX rate of each of the primary amendments, then, corresponded to addition 
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of sufficient Al or Fe to provide a metal: total P molar ratio of 1: 1 or to addition of sufficient 

Ca to provide a Ca:total P molar ratio of 5:3. The O. lX rates corresponded to addition of one

tenth the amount of amendment as the lX rate, and similarly for the other indicated rates. 

Secondary amendments were added to some samples to adjust the pH to values which 

minimized the solubility of the anticipated reaction products. For AlP04 , FeP04 , and 

Ca5(P04) 30H these minimum solubility pH values were taken as 6.0, 7.1, and 7.5, respectively. 

The actual rates at which the secondary amendments were added were determined by titrating 

soil/amendment mixtures with either HCl or NaOH and from these data calculating the number 

of milliequivalents of either alum (Al2(S04) 3• 18H20) or calcite (CaC03) required to maintain the 

pH of the soil:amendment mixtures at the desired values. 

Following addition of primary and secondary amendments, sufficient water was added 

to the soil to achieve a gravimetric moisture content of 0.3 g g-1
• After thoroughly mixing the 

moistened soil:amendment mixtures, the bottles were capped and incubated in the dark at room 

temperature (20-22 °C) for four weeks. The bottles were opened and stirred once each week 

during the incubation. At the end of the incubation, sufficient deionized water was added 

directly to the soil in the bottles to achieve a soil:solution ratio of 1:2 (SO g soil:IOO mL water). 

Bottles were then placed on an end-over-end shaker (30 rev min-1
) for 2 h and centrifuged at 

4066 x g for 20 min. Unfiltered samples were collected for measurement of pH and electrical 

conductivity (EC). The soluble reactive phosphate (SRP) contents of filtered (0.45 µm millipore 

filters) samples were determined using an ascorbic acid technique according to APHA method 

2320 B (APHA, 1992). 

Each soil/treatment combination was run in triplicate, resulting in 138 bottles per soil and 

414 bottles overall. 
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RESULTS 

Experiments with Poultry Litter 

Calcium Amendments 

Calcium oxide decreased the water soluble P levels in the litter from > 2000 mg P/kg 

to < 1 mg P/kg when an equivalent of 43 g Ca was added per kg of litter (Fig. 1). It is not 

known whether this was due to precipitation or adsorption. Whatever the mechanism, the data 

suggest that soluble P runoff from fields receiving poultry litter could be decreased significantly 

if the litter were pretreated with CaO. The pH of the litter increased from 7.2 (control) to 

approximately 12 at the higher rates of CaO (Table 4). A reduction in pH of the litter treated 

with CaO would be expected with time, due to equilibration with atmospheric COi. This 

gradual reduction in pH may result in increased P solubility, since the solubility of calcium 

phosphates is highly pH dependent. However, even if the pH drops to 8, the equilibrium 

concentration of the most soluble calcium phosphate minerals, such as brushite (CaHP04.2H20), 

would be about 104 Mor 3 mg P L-1 (Lindsay, 1979). This would still be roughly two orders 

of magnitude lower than soluble P levels determined for the litter used (200 mg P L-1
). 

Recently, it has been determined that the majority of P runoff from land application of 

poultry manure occurs during the first runoff event (Edwards and Daniel, 1993a). If soluble P 

levels could be decreased for at least a few weeks following land application, then there would 

be time for precipitation and adsorption by soils to occur, as well as uptake by plants and 

microorganisms. Therefore, if the solubility of P was lowered for only a short period of time, 

it would be beneficial from both an environmental and an agronomic viewpoint. 

Calcium hydroxide decreased P solubility in poultry litter in the same manner as Cao 

(Fig. 1). Since Ca(OH)i is less caustic, this treatment would be preferable to CaO, which can 

cause severe bums upon skin contact. 
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Calcitic and dolomitic limestone had little effect on P solubility in poultry litter as shown 

by SRP concentrations (data not shown). There are several possible reasons why these. 

amendments did not work. One possibility is that the experiment was not carried out for a 

sufficient period of time. Normally, it takes months for limestone to completely react and 

neutralize soil acidity. Our incubation period was one week, which may have been an 

insufficient time period for solubilization and precipitation reactions. Phosphorus adsorption by 

calcite should have occurred, since this is an extremely fast reaction. Kuo and Lotse (1972) 

found that 80% of the phosphate sorption from inorganic P solutions by CaC03 occurred within 

the first 10 seconds. 

The pH of the unamended litter was initially 8.2, which decreased to 7.2 after one week. 

Both calcite and dolomite are relatively insoluble at this pH, which may have led to inadequate 

amounts of Cai+ in solution to precipitate P. However, even if the Ca2
+ concentrations in 

solution were low, P adsorption onto the calcite surface should have removed P from solution, 

as shown in previous research (Amer et al., 1985; Brown, 1980; Griffin and Jurinak, 1974; 

Stumm and Leckie, 1971). Phosphorus accumulation onto calcite surfaces was described by 

Stumm and Leckie (1971) as a three step process; (1) chemisorption of phosphate onto the 

surface causing the formation of amorphous calcium phosphate nuclei, (2) a slow transformation 

of these nuclei into crystalline apatite, and (3) crystal growth of apatite. In our study . this 

process may have been inhibited by the high SOC levels in these treatments. High soluble C 

levels were measured in the extracts of samples which had relatively high pHs (Fig. 2). 

Innskeep and Silvertooth (1988) showed that apatite precipitation was inhibited by the presence 

of soluble organic compounds, such as fulvic and humic acids. Magnesium and pyrophosphate, 

both of which are present in poultry litter, also inhibit this reaction (Amer and Mostafa, 1981; 

Amer et al., 1985; El-Zahaby and Chen, 1982). 

12 



Gypsum (CaS04.2H20) decreased SRP from over 2000 mg P kg-1 to approximately 700 

mg P kg-1 at the 100 g kg-1 rate (Fig. 1). It should be noted that the lowest rate of gypsum used 

in this study was high enough to exceed the solubility product of gypsum (2.4 g L-1). This helps 

to explain why increasing rates of this compound did not influence P (ie - water soluble Ca 

levels will not be expected to increase after the solubility has been exceeded). If the reduction 

in SRP noted with the gypsum treatment was due to the formation of calcium phosphate 

mineral(s), P removal could be enhanced with this amendment if the pH were increased to 8 or 

higher. If adsorption of P by gypsum was the dominant mechanism of P removal with this 

amendment, then concentrations of P should have decreased with increasing rates of gypsum. 

However, this was not observed. 

The addition of CaF2 (K.v=3.4 x 10-11
) did not increase P removal in the Ca treatments, 

suggesting that fluorapatite formation did not occur (data not shown). This could have been due 

to the presence of organic acids, Mg, and HC03 , all of which inhibit apatite formation (Brown, 

1981; Innskeep and Silvertooth, 1988). Mineral equilibria studies often indicate that when 

calcium phosphates are forming the solubility is intermediate between octacalcium phosphate 

(C~H(P04)3 2.5H20) and beta tricalcium phosphate (6-Ca3(P04) 2) (Moore et al., 1991; Fixen 

et al., 1983). 

Aluminum and Iron Amendments 

Alum additions greatly decreased water soluble P (Fig. 3). Without CaC03 to buffer the 

pH, water soluble P increased at the highest alum rates. This was believed to be due to the 

acidity created by the alum, which may have caused: (1) dissolution of inorganic calcium 

phosphates, (2) acid hydrolysis of organic P, and/or (3) dissolution of Al(OH)3, which would 

result in P release if adsorption had been the primary mechanism of removal. The pH of the 

alum treated litter dropped to 3.5 at the highest rate (Table 4). Calcium phosphate minerals are 
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highly soluble at this pH and could release enough P to achieve the P concentrations noted at 

the higher rates (Lindsay, 1979). Dicalcium phosphate is added to poultry feed to help insure 

proper bone development, since most of the P in soybean and corn is phytate P (which is 

unavailable to chickens since they lack the phytase enzyme). 

When CaC03 was added with the alum to buffer the pH, virtually 100% of the soluble 

P was removed from solution (figure 3). Hsu (1976) indicated that the optimum pH range for 

P removal by Al was 5.5 to 8.0, as stated earlier. Cooke et al. (1986) stated that alum removes 

phosphate from solutions by two different mechanisms, depending on the pH. Under acidic 

conditions (pH < 6) they indicated that AlP04 forms, whereas at pH 6 to 8, an Al(OH)3 floe 

forms, which removes P from solution by sorption of inorganic phosphate and entrapment of 

organic particles containing P. 

Another benefit associated with treating litter with alum would be a decrease in soluble 

organic carbon (SOC) levels in runoff water from litter-amended fields. Soluble organic C 

levels were relatively low under acidic conditions, whereas they tended to be high in the controls 

and in treatments which increased the pH of the litter (Fig. 2). Decreases in SOC concentrations 

and associated reductions in biological oxygen demand of wastewaters are one of the primary 

functions of flocculents used in wastewater treatment (Ulmgren, 1975). Decreases in SOC 

runoff should also improve water quality in lakes and rivers receiving runoff from pastures 

amended with poultry litter treated with acid forming products by decreasing 0 2 demand. 

Addition of metal flocculents also decreased the solubility of Cu and Zn, which occur in high 

concentrations in poultry litter (Edwards and Daniel, 1992). Minimum solubility of both of 

these metals occurred at approximately pH 6 (data not shown). 

Sodium aluminate decreased SRP levels to around 600 mg P kg-1 litter at the lowest rate 

(Fig. 3). Increasing rates of sodium aluminate did not decrease water soluble P, which was 

14 



probably due to elevated pH at the higher rates. As mentioned earlier, the optimum pH range 

for P removal using Al is 5.5 to 8.0 (Hsu, 1976). Calcitic limestone as an additive to the 

sodium aluminate treatment did not decrease soluble P (data not shown). 

Additions of ferric iron as Fei(S04)J°2H20 or FeC13 greatly decreased P solubility at the 

lower rates, but increased the solubility at the higher rates (Fig. 4). Increases in SRP at the 

higher rates may have been due to: (1) dissolution of calcium phosphates, (2) acid hydrolysis 

of organic P, and/or (3) a decrease in adsorption of P by Fe compounds due to dissolution of 

Fe oxides and hydroxides at low pH. The pH of these two treatments approached 2 at the 

_ higher rates (Table 4). These values are well below the optimum pH range (4. 7 to 7.1) for P 

removal by Fe reported by Hsu (1976). Therefore, removal using these compounds would have 

been enhanced if the pH of the litter had been maintained at a higher value. 

Hsu (1973, 1975) showed that the presence of sulfate extends the optimum range of 

acidity for P removal to lower pH levels for both Fe(JII) and Al, with the effect being far more 

significant in the case of the Fe(Ill) system. Hsu (1976) stated that there is no need for acidity 

adjustment in an Fe(III) system with S04 present. He suggested that S04 induces coagulation 

of colloidal mixed salts soch as Fe(OH)3 and FeP04 by neutralizing the excess positive charges, 

but is unable to compete with P04 for Fe3+. However, his studies were carried out with pure 

solutions, which did not contain condensed phosphates or organic-P compounds. The results 

from the present study indicate that pH adjustment is necessary even for Fe(III) systems which 

contain S04 , such as the Fei(S04}J-2H20 treatment, because when extremely acid conditions 

occur, water soluble P levels increase dramatically. It is well known that at low pH condensed 

phosphates and organic-P compounds hydrolyze, releasing orthophosphate (APHA, 1992). 

Ferrous sulfate (FeS047H20) additions greatly decreased the solubility of P in poultry 

litter (Fig. 4). Water soluble P concentrations were not significantly different in the FeS04 
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treatment amended with CaC03 , indicating that P removal with this compound is less pH 

dependent than for some of the other Fe compounds. Additions of ferrous chloride greatly 

decreased P solubility (Fig. 4). Additions of calcitic limestone in conjunction with ferrous 

chloride resulted in more efficient P removal at lower rates than ferrous chloride alone (data not 

shown). 

Experiments with Litter-Amended Soils 

The General Linear Models (GLM) Procedure of SAS indicated that treatment was 

highly significant (Pr > F 0.0001) in explaining variation in SRP levels in each of the three 

soils. The least significant difference (LSD) between treatment means at the a=0.05 level was 

0.18 for all of the soils. For each soil, all 45 treatment means were significantly different from 

the control. 

Calcium Amendments 

Addition of calcium carbonate decreased the SRP contents of all three soils at all rates 

of addition (Figs. 5, 6 and 7). Little additional depression of the SRP was noted at rates of 

addition greater than 0.25X. At this and higher rates, the SRP contents of the soils were 

reduced by approximately 50%. Addition of calcium carbonate increased the pH of the soils 

(Table 5). At the highest (2X) rate of addition the pH values of the Fayetteville, Linker and 

Mountainburg soils were 7.36, 7.45 and 7.32, respectively, compared with control values of 

6.07, 5.95 and 6.42. A parallel series of treatments in which alum was used as a secondary 

amendment were not used because the preliminary titrations of soil/amendment mixtures 

indicated that the desired pH (7.5 in the case of Ca amendments) could be maintained without 

the use of acidifying compounds. 

Gypsum was considerably less effective in reducing soil SRP levels than calcium 

carbonate. Used alone, gypsum decreased SRP levels in the soils by 20 to 30 % when added 
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at rates greater than or equal to 0.5X (Figs. 8, 9 and 10). Addition of gypsum slightly 

decreased the pH values of the Fayetteville and Linker soils, while low rates increased the pH 

and high rates had no effect on the pH of the Mountainburg soil. When calcium carbonate was 

used as a secondary amendment the SRP contents of the soils were much lower than when 

gypsum was added alone. However, the extent of these reductions in SRP were similar in 

magnitude to those observed when calcium carbonate was added alone. The addition of calcium 

carbonate along with gypsum resulted in significant increases in pH in all three soils. In all soils 

the addition of gypsum + calcium carbonate was no more effective at reducing SRP levels than 

the addition of calcium carbonate alone. 

Soluble reactive phosphate levels in all three soils were decreased by the addition of 

Ca(OH)2 (Figs. 11, 12 and 13). When added at equivalent rates, Ca(OH)2 was the most 

effective of the three Ca amendments used in this study at reducing soil levels of SRP. 

However, additions of Ca(OH)2 at rates of 0.5X or greater raised the pH of all soils· to values 

approaching 8 (Table 5). When alum was added as a secondary amendment, soil pH values 

were lower than the Ca(OH)2 alone treatment but were still greater than or equal to 7 at Ca(OH)2 

addition rates of 0.5X and greater. The addition of alum significantly reduced soil SRP levels 

relative to the Ca(OH)2 alone treatments. 

Iron and Aluminum Amendments 

Addition of alum at the 0.5X and IX rates decreased SRP levels in all soils to values 

lower than those achieved with any of the Ca amendments (Figs. 14, 15 and 16). The lowest 

SRP level in each soil was associated with the IX rate of alum. An increase in SRP at the 2X 

rate of alum was observed for all three soils and was most pronounced in the Linker soil. This 

increase may be due to the fact that 2X rates of alum lowered soil pH values into the 3. 7 - 4 

range (Table 5). The solubility of many aluminum minerals increases greatly at pH values lower 

17 



than 4. In all soils SRP was reduced to about 1 mg P Kg·1 soil at the 0.5X rate and to less than 

0.5 mg P Kg·1 soil at the lX rate. Addition of calcium carbonate as a secondary amendment 

increased soil pH (fable 5) and decreased SRP levels relative to the alum only treatments, 

particularly in the Linker soil. The lowest levels of SRP achieved with alum, 0.03, 0.01 and 

0.02 mg P Kg·1 soil for the Fayetteville, Linker and Mountainburg soils, respectively, were 

obtained using the 2X rate of alum plus CaC03• 

Ferrous sulfate was the most effective amendment for reducing SRP levels in the soils 

(Figs. 17, 18 and 19). Soil levels of SRP at the O.lX, 0.25X and 0.5 X rates of FeS04 were 

consistently lower than those observed for alum added at the same rate. Differences in SRP 

levels obtained with alum and ferrous sulfate at the IX and 2X rates were not significant. 

Addition of CaC03 did not decrease SRP levels relative to the FeS04 only treatments at the IX 

and 2X rates, but there was a decrease at lower rates. This was somewhat surprising, as the 

differences in pH between with and without CaC03 treatments was greater at the lX and 2X 

addition rates (fable 5). 

DISCUSSION 

Recently, there has been increasing emphasis on decreasing runoff of bioavailable P, 

rather than particulate P, since it is more available for use by algae that are responsible for 

eutrophication (Sharpley et al., 1992; Sonzogni et al., 1982). Water soluble Pis by far the most 

available form of P to algae and bacteria. Drastic reductions in soluble P levels running off 

agricultural lands receiving poultry litter should help improve the water quality of adjacent lakes 

and rivers. 

It should be noted that alum and lime are relatively inexpensive and readily available. 

Calcium compounds, such as CaO or Ca(OH)2, cost approximately $55 per metric ton. Results 

from this study indicate that 50 kg of Ca(OH)2 per metric ton of litter may be adequate to 
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immobilize most of the litter P. Since there are 20 metric tons of litter produced per house per 

growout (each house contains I5,000 to 20,000 birds), one ton of Ca(OH)2 (slaked lime) is 

needed per house per growout. Assuming five growouts per year, the annual cost of slaked lime 

for one house would be $275. Gross incomes per house normally exceed $25,000 per year. 

Therefore, the cost of slaked lime needed for P immobilization would be around I% of the gross 

income, which should be economically feasible. 

Our results also suggest that quantities of amendments required to immobilize P in 

excessively fertilized soils are low enough to be practical on a field scale. For example, the IX 

rate of alum used in this study is equivalent to roughly 27 Mg ha-1 (I2 t/6" acre-furrow-slice). 

However, it should not be necessary to treat the soil to a depth of I5 cm, because the runoff 

interacts with only the top few cm of the soil. If only the top 2.5 cm of the soil is to be treated, 

the IX rate of alum is equivalent to roughly 4.5 Mg ha-1 (2 t/I" acre-furrow-slice). Similarly 

for the IX rate of slaked lime, the required amount to treat a soil to a depth of I5 cm would be 

9.7 Mg ha-1 (4.3 t/6" acre-furrow-slice) or 1.6 Mg ha-1 (0.7 t/I" acre-furrow-slice) to treat only 

the upper 2.5 cm of the soil. If slaked lime cost $55 per metric ton, the cost of treating soil to 

a depth of 2.5 cm would be $55 Mg-1 x 1.6 Mg ha-1 = $88 ha-1 ($36 per acre). However, 

before valid economic analyses can be performed, on-farm experiments need to be conducted 

to determine if the soil and litter treatment levels examined in this study are adequate. 

Although alum and ferrous sulfate are more expensive than Ca(OH)i, the benefits of 

using these compounds should far exceed that of the Ca compounds. Lowering the pH of the 

litter will decrease NH3 volatilization. High levels of NH3 in poultry houses increase the 

incidence of ascites in poultry (water belly) and other respiratory related maladies, such as New 

Castle Disease (Anderson et al., I964) and airsacculitus (Ehrlich, I963). Since the amount of 

NH3 volatilization is a function of the ratio of NH3'NHi in the litter, which is controlled by pH, 
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reducing the pH of the litter to around 6.0 will cause N losses via this mechanism to cease. 

This should result in increased weight gains in the birds, as well as decreased incidence of 

respiratory problems. 

Currently, the number one complaint received by federal and state regulatory agencies 

concerning poultry production concerns odors arising from land application of litter. Ammonia 

is one of the primary agents responsible for the odor. Wolf et al. (1988) estimated that 37% of 

the N is lost from litter during the first 11 days of application. If these losses were combined 

with those that occur in the houses, the total loss by volatilization would probably exceed 50% 

of the total N. Therefore, volatilization losses not only result in air pollution, but in losses of 

valuable fertilizer N. Decreasing NH3 volatilization will result in higher NIP ratios in poultry 

litter. Currently, the NIP ratio in litter is often as low as 2, whereas the the NIP ratio in the 

feed is near 8. The difference is mainly due to N loss via volatilization. Since application rates 

of litter are based on the N requirement of the crop, less litter could be applied per acre if the 

N content were higher. 

Alum and ferrous sulfate were clearly more effective than any of the Ca amendments in 

immobilizing P in the excessively fertilized soils used in this study. Slaked lime was able to 

reduce SRP levels to quite low levels, but only at high rates and at pH values too high to permit 

normal crop growth. Alum and ferrous sulfate, on the other hand, reduced SRP to very low 

levels at relatively low rates of application and at soil pH values appropriate for crops. Which 

of these two equally effective amendments is "best" is not yet clear. Which costs less will 

certainly be a factor, but how these amendments perform in field trials will certainly be 

important. It should also be pointed out that the long-term effectiveness of these two 

amendments may differ dramatically due to differences in the stability of the P compounds that 

form following treatment. The mineral which we believe is forming following alum treatment 
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is variscite, AlP04 • This mineral is very insoluble in the pH range 5 - 7, but its solubility 

increases rapidly as the pH drops from 5 to 3.5. Therefore, P immobilized by treatment with 

alum will remain immobilized as long as the pH is not allowed to drop much below 5. The 

mineral that we believe is forming following ferrous sulfate treatment is strengite, FeP04 • The 

solubility of this mineral is affected by pH in much the same way as the solubility of variscite. 

In addition, however, strengite becomes unstable under reducing conditions. Reducing 

conditions typically develop in a soil when it becomes waterlogged. If the soil stays waterlogged 

for several days, the ensuing reductive dissolution of strengite could result in the release of P 

to solution. Therefore, P immobilized by treatment with ferrous sulfate will remain immobilized 

as long as oxidizing conditions and pH values above 3 are maintained in the soil. 

CONCLUSIONS 

The results of this study showed that a reduction in soluble P levels in both poultry litter 

and high STP soils can be achieved using Al, Ca, and/or Fe amendments. Although P 

precipitation using chemical amendments has been used for over 30 years for wastewater 

treatment, there have been no reports in the literature of using this technology on animal 

manures or on excessively manured soils. More research is needed in this area to determine: 

(1) if these results can be verified by field studies, (2) if the P minerals formed by this process 

are stable in various geochemical environments, (3) if this is an economically feasible practice, 

and (4) if there are any other beneficial and/or detrimental side effects from this practice. 

21 



REFERENCES 

Amer, F., and H.B. Mostafa. 1981. Effect of pyrophosphate on orthophosphate reactions in 
calcareous soils. Soil Sci. Soc. Am. J. 45:842-847. 

Amer, F., A.A. Mahmoud, and V. Sabet. 1985. Zeta potential and surface area of calcium 
carbonate as related to phosphate sorption. Soil Sci. Soc. Am. J. 49:1137-1142. 

American Public Health Association (APHA). 1992. Standard Methods for the Examination 
of Water and Wastewater. 18th ed. Amer. Puhl. Health Assoc., Washington, D.C., 1268 pp. 

Anderson, D.P., C.W. Beard and R.P. Hanson. 1964. The adverse effects of ammonia on 
chickens including resistance to infection with Newcastle disease virus. Avian Dis. 8:369-379. 

Bremner, J.M. and C.S. Mulvaney. 1982. Total Nitrogen. In (A.L. Page, R.H. Miller and 
D.R. Keeney eds.) Methods of Soil Analysis, Part 2, Second Edition. Amer. Soc. Agron. Puhl. 
Madison, Wisconsin. 

Brown, J.L. 1980. Calcium phosphate precipitation in aqueous calcitic limestone suspensions. 
J. Envir. Qual. 9:641-644. 

Brown, J.L. 1981. Calcium phosphate precipitation: Effects of common and foreign ions on 
hydroxyapatite crystal growth. Soil Sci. Soc. Am. J. 45:482-486. 

Cooke, G.D., E.B. Welch, S.A. Peterson, and P.R. Newroth. 1986. Lake and Reservoir 
Restoration. Butterworths, Ann Arbor Science Book, Boston, MA. 

Edwards, D.R. and T.C. Daniel. 1992. Environmental impacts of on-farm poultry waste 
disposal - a review. Bioresource Tech. 41:9-33. 

Edwards, D.R. and T.C. Daniel. 1993a. Effects of poultry litter application rate and rainfall 
intensity on quality of runoff from fescuegrass plots. J. Environ. Qual. 22:361-365. 

Edwards, D.R. and T.C. Daniel. 1993b. Runoff quality impacts of swine manure applied to 
fescue plots. Transactions of the ASAE 36:81-86. 

Ehrlich, R. 1963. Effects of air pollutants on respiratory infections. Arch. Environ. Health 
6:638-642. 

El-Zahaby, E.M. and S.H. Chien. 1982. Effect of small amounts of pyrophosphate on 
orthophosphate sorption by calcium carbonate and calcareous soils. Soil. Sci. Soc. Am. J. 
46:38-46. 

Fixen, P.E., A.E. Ludwick, and S.R. Olsen. 1983. Phosphorus and potassium fertilization of 
irrigated alfalfa on calcareous soils: II. Soil phosphorus solubility relationships. Soil Sci Soc. 
Am. J. 47:112-117. 

22 



Griffin, R.A. and J.J. Jurinak. 1974. Kinetics of phosphate interaction with calcite. Soil Sci. 
Soc. Amer. J. 38:75-79. 

Huang, C.L. and E.E. Schulte. 1985. Digestion of plant tissue for analysis by ICP emission 
spectroscopy. Commun. in Soil Sci. Plant Anal. 16:943-958. 

Hsu, P.H. 1973. Complementary role of iron (111), sulfate and calcium in precipitation of 
phosphate from solution. Environ. Lett. 5: 115-136. 

Hsu, P.H. 1975. Precipitation of phosphate from solution using aluminum salt. Water Res. 
9: 1155-1161. 

Hsu, P.H. 1976. Comparison of iron (III) and aluminum in precipitation of phosphate from 
solutions. Water Res. 10:903-907. 

Innskeep, W.P. and J.C. Silvertooth. 1988. Inhibition of hydroxyapatite precipitation in the 
presence of fulvic, humic and tannic acids. Soil Sci. Soc. Am. J. 52:941-946. 

Kuo, S. and E.G. Lotse. 1972. Kinetics of phosphate adsorption by calcium carbonate and Ca
Kaolinite. Soil Sci. Soc. Am. J. 36:725-729. 

Lindsay, W.L. 1979. Chemical Equilibria in Soils. 449 pp. John Wiley & Sons, New York. 

Lindsay, W.L. and P.L.G. Vlek. 1977. Phosphate minerals. In J.B. Dixon et al. (eds.) Minerals 
in Soil Environments. Soil Sci. Soc. Amer., Madison, WI. 

McCoy, J.L., L.J. Sikora and R.R. Weil. 1986. Plant availability of phosphorus in sewage 
sludge compost. J. Environ. Qual. 15:403-409. 

McLeod, R. V. and R.O. Hegg. 1984. Pasture runoff quality from application of inorganic and 
organic nitrogen sources. J. Environ. Qual. 13: 122-126. 

Miller, D.M., P.A. Moore, Jr., D.A. Edwards, D.A. Stephen and E.E. Gbur. 1993. 
Determination of water soluble phosphorus in soil. Ark. Farm Res. 42( 4): 10-11. 

Moore, P.A., Jr., K.R. Reddy, and D.A. Graetz. 1991. Phosphorus geochemistry in the 
sediment-water column of a hypereutrophic lake. J. Environ. Qual. 20:869-875. 

Perkins, H.F., M.B. Parker, and M.L. Walker. 1964. Chicken manure - its production, 
composition, and use as a fertilizer. Bull. NS 123, Georgia Agri. Exp. Station, Athens, GA. 

Pierzynski, G.M., T.J. Logan and S.J. Traina. 1990. Phosphorus chemistry and mineralogy in 
excessively fertilized soils: solubility equilibria. Soil Sci. Soc. Amer. J. 54: 1589-1595. 

Ripley, P.G. 1974. Nutrient removal-an American experience. J. Water Pollut. Control Fed. 
46:406-416. 

23 



Sharpley, A.N., S.J. Smith, O.R. Jones, W.A. Berg, and G.A. Coleman. 1992. The transport 
of bioavailable phosphorus in agricultural runoff. J. Envir. Qual. 21:30-35. 

Sharpley, A.N.; S.J. Smith, B.A. Stewart and A.C. Mathers. 1984. Forms of phosphorus in soil 
receiving cattle feedlot waste. J. Environ. Qual. 13:211-215. 

Sonzogni, W.C., S.C. Chapra, D.E. Armstrong, and T.J. Logan. 1982. Bioavailability of 
phosphorus inputs to lakes. J. Envir. Qual. 11:555-563. 

Soon, Y.K. and T.E. Bates. 1982. Extractability and solubility of phosphate in soils amended 
with chemically treated sewage sludges. Soil Sci. 134:89-96. 

Stumm, W. and J.0. Leckie. 1971. Phosphate exchange with sediments: Its role in the 
productivity of surface waters. III-26/1-26/15. In Proc. 5th Int. Water Pollut. Res. Conf., San 
Francisco, July-August 1970. Pergamon Press Ltd. 

Ulmgren, L. 1975. Swedish experiences in chemical treatment of wastewater. Water Poll. 
Control Fed. J. 47:696-703. 

Westerman, P.W., T.L. Donnelly and M.R. Overcash. 1983. Erosion of soil and poultry 
manure - A laboratory study. Transactions of the ASAE 26: 1070-1078. 

Westerman, P.W. and M.R. Overcash. 1980. Short-term attenuation of runoff pollution 
potential for land-applied swine and poultry manure. In (R.J. Smith, ed.) Livestock waste: A 
renewable resource. Proc. Fourth /nJ. Symp. on Livestock Wastes, 289-292. St. Joseph, 
MI:ASAE. Symposium ~eld at Amarillo, Texas. 

Wolf, D.C., J.T. Gilmour, and P.M. Gale. 1988. Estimating potential ground and surface 
water pollution from land application of poultry litter - II. Publication No. 137, Ark. Water 
Resources res. Center, Fayetteville, AR. 

Wooley, J.L. 1991. Arkansas Poultry Production. County production figures for broilers, 
commercial egg flocks, hatchery supply flocks and turkeys. Arkansas Coop. Ext. Service Publ. 
pp. 21. 

24 



Table 1. Rates of chemical amendments applied to poultry litter. 

Treatment 

I. Cao 
2. Cao+ CaF2 

3. Ca(OH)2 

4. Ca(OH)2 + CaF2 

5. CaC03 

6. CaC03 + CaF2 

7. CaMg(C03)2 

8. CaMg(C03) 2 + CaF2 

9. CaS04.2H20 
10. CaS04.2H20 + CaF2 

11. Al2(S04) 3.18H20 
12. Al2(S04) 3.18H20 + CaC03 

13. Na2Al20 4 

14. Na2Al20 4 + CaC03 

15. Fei(S04) 3.2H20 
16. FeC13 

17. FeS04 • 7H20 
18. FeS04.7H20 + CaC03 

19. FeC12.4H20 
20. FeC12.4H20 + CaC03 

rate of primary amendment secondary 

-------------------------------g/kg litter ----------------------

30, 60, 90, 120, 150 
30, 60, 90, 120, 150 
40, 80, 120, 160, 200 
40, 80, 120, 160, 200 
50, 100, 150, 200, 250 
50, 100, 150, 200, 250 
100, 200, 300, 400, 500 
100, 200, 300, 400, 500 
100, 200, 300, 400, 500 
100, 200, 300, 400, 500 
100, 200, 300, 400, 500 
100, 200, 300, 400, 500 
25, 50, 75, 100, 125 
25, 50, 75, 100, 125 
60, 120, 180, 240, 300 
50, 100, 150, 200, 250 
90, 180, 270, 360, 450 
90, 180, 270, 360, 450 
60, 120, 180, 240, 300 
60, 120, 180, 240, 300 

25 

0 
5 
0 
5 
0 
5 
0 
5 
0 
5 
0 
100 
0 
100 
0 
o· 
0 
100 
0 
100 



Table 2. Classification and properties of soils used in the studies. 

Soil Series 

Fayetteville fine 
sandy loam 

Linker loam 

Classification 

Fine-loamy, mixed, thermic 
Rhodultic Paleudalf 

Fine-loamy, siliceous, thermic 
Typic Hapludult 

pH 

6.4 

6.1 

Mountainburg stony Loamy-skeletal, siliceous, thermic 6.3 
fine sandy loam Lithic Hapludult 

*OM = organic matter 
#STP = soil test phosphorus 

26 

OM* Total P STP# 

% 
3.8 

2.4 

4.3 

-------mg kg-1--------

944 157 

1063 283 

1291 237 



Table 3. Rates of primary (1°) and secondary (2°) chemical amendments applied to the 
Fayetteville, Linker and Mountainburg soils. 

Fayetteville Linker Mountainburg 
Treatment' lo 20 lo 20 lo 2 o 

------------~---------------gkg·l _____________________________ _ 

1. Control 0 0 
2. O. lX Al2(S04) 3• 18H20 1.02 0 
3. O.lX Al2(S04) 3•18H20 + CaC03 1.02 0.12 
4. 0.25X Al2(S04) 3• 18H20 2.54 0 
5. 0.25X Al2(S04) 3•18H20 + CaC03 2.54 0.42 
6. 0.5X Al2(S04) 3•18H20 5.08 0 
7. 0.5X Al2(S04) 3•18H20 + CaC03 5.08 1.00 
8. lX Al2(S04) 3•18H20 10.14 0 
9. lX Al2(S04) 3•18H20 + CaC03 10.14 2.74 
10. 2X Al2(S04) 3•18H20 20.28 0 
11. 2X Al2(S04) 3•18H20 + CaC03 20.28 7.10 
12. O. lX Ca(OH)2 0.38 0 
13. O. lX Ca(OH)2 + Al2(S04)3• 18H20 0.38 0.25 
14. 0.25X Ca(OH)2 0.94 0 
15. 0.25X Ca(OH)2 + Al2(S04) 3•18H20 0.94 0.28 
16. 0.5X Ca(OH)2 1.88 0 
17. 0.5X Ca(OH)2 + Al2(S04) 3•18H20 1.88 1.16 
18. lX Ca(OH)2 3.76 0 
19. lX Ca(OH)2+ Al2(S04) 3•18H20 3.76 3.84 
20. 2X Ca(OH)2 7.52 0 
21. 2X Ca(OH)2+ A12(S04) 3•18H20 7.52 11.10 
22. O. lX FeS04•7H20 0.84 0 
23. O. lX FeS04•7H20 + CaC03 0.84 0.68 
24. 0.25X FeS04•7H20 2.12 0 
25. 0.25X FeS04•7H20 + CaC03 2.12 0.88 
26. 0.5X FeS04•7H20 4.24 0 
27. 0.5X FeS04•7H20 + CaC03 4.24 1.26 
28. lX FeS04•7H20 8.46 0 
29. lX FeS04•7H20 + CaC03 8.46 2.32 
30. 2X FeS04•7H20 16.92 0 
31. 2X FeS04•7H20 + CaC03 16.92 5.06 
32. 0. lX CaC03 0.50 0 
33. 0.25X CaC03 1.28 0 
34. 0.5X CaC03 2.54 0 
35. lX CaC03 5.08 0 
36. 2X CaC03 10.16 0 
37. O. lX CaS04•2H20 0.88 0 
38. 0. lX CaS04•2H20 + CaC03 0.88 0.52 
39. 0.25X CaS04•2H20 2.18 0 

27 

0 0 
1.14 0 
1.14 0.10 
2.85 0 
2.85 0.54 
5.70 0 
5.70 1.36 

11.40 0 
11.40 3.42 
22.80 0 
22.80 7.32 
0.42 0 
0.42 0.38 
1.05 0 
1.05 1.38 
2.12 0 
2.12 3.62 
4.24 0 
4.24 6.44 
8.48 0 
8.48 15.78 
0.96 0 
0.96 0.22 
2.38 0 
2.38 0.52 
4.76 0 
4.76 0.90 
9.54 0 
9.54 2.38 

19.08 0 
19.08 3.82 
0.58 0 
1.44 0 
2.86 0 
5.72 0 

11.44 0 
0.98 0 
0.98 5.72 
2.46 0 

0 0 
1.38 0 
1.38 0.12 
3.48 0 
3.48 0.30 
6.94 0 
6.94 0.98 

13.88 0 
13.88 2.78 
27.78 0 
27.78 7.68 

0.52 0 
0.52 0.34 
1.30 0 
1.30 0.84 
2.60 0 
2.60 2.56 
5.14 0 
5.14 6.72 

10.30 0 
10.30 18.22 

1.16 0 
1.16 0.30 
2.90 0 
2.90 0.44 
5.80 0 
5.80 0.88 

11.58 0 
11.58 1.88 
23.18 0 
23.18 3.74 

0.70 0 
1.74 0 
3.48 0 
6.94 0 

13.90 0 
1.20 0 
1.20 6.94 
3.00 0 



Table 3. (Continued) 

Fayetteville Linker Mountainburg 
Treatment# 10 20 10 20 lo 2 o 

------------------------------gkg-'------------------------------
40. 0.25X CaS04•2H20 + CaC03 2. l 8 0.58 2.46 5.72 3.00 6.94 
41. 0.5X CaS04•2H20 4.38 0 4.92 0 6.00 0 
42. 0.5X CaS04•2H20 + CaC03 4.38 0.76 4.92 5.72 6.00 6.94 
43. IX CaS04•2H20 8.74 0 9.84 0 12.00 0 
44. IX CaS04•2H20 + CaC03 8.74 0.88 9.84 5.72 12.00 6.94 
45. 2X CaS04•2H20 17.48 0 19. 70 0 24.00 0 
46. 2X CaS04•2H20 + CaC03 17.48 0.92 19.70 5.72 24.00 6.94 

Trimary amendments listed first followed by secondary amendments after the 11 + 11
• See text 

for explanation of how rates were calculated. 
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Table 4. Effect of Al, Ca and Fe compounds on pH of poultry litter. 

Amendment Level (see Table 1 for actual rates) 

Treatment lx 2x 3x 4x 5x 

------------------ pH units ---------------

control 7.30 
Cao 9.82 11.76 12.29 12.41 12.44 
Cao+ CaF2 9.71 11.38 12.24 12.40 12.45 
Ca(OH)2 9.12 11.06 12.23 12.32 12.33 
Ca(OH)2 + CaF2 9.51 11.43 12.21 12.30 12.34 
CaC03 7.87 8.10 7.87 7.37 7.27 
CaC03 + CaF2 6.88 7.64 7.75 7.56 7.65 
CaMg(C03) 2 7.69 7.35 7.84 8.24 ·7.98 
CaMg(C03) 2 + CaF2 8.21 8.05 7.51 7.65 8.18 
CaS04.2H20 7.41 7.57 7.36 7.68 7.32 
CaS04.2H20 + CaF2 7.36 7.14 7.43 7.61 7.32 
Al2(S04) 3.18H20 5.73 4.26 3.81 3.59 3.50 
Al2(S04) 3.18H20 + CaC03 7.56 6.75 6.46 5.37 4.18 
Na2Al20 4 7.78 8.97 9.88 10.55 11.01 
Na2Al20 4 + CaC03 7.97 9.31 10.31 10.56 11.18 
Fei(S04) 3.2H20 7.21 4.86 2.77 2.45 2.33 
FeC13 5.33 3.52 2.21 1.97 1.88 
FeS04.7H20 7.13 5.67 4.39 4.28 5.15 
FeS04 • 7H20 + CaC03 6.73 6.17 6.03 6.14 5.21 
FeC12.2H20 7.19 4.85 4.42 4.09 3.95 
FeC12.2H20 + CaC03 7.32 6.23 6.05 5.83 5.34 

(LSD0.05 = 0.30) 
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Table 5. Effect of Al, Fe, and Ca compounds on pH of aqueous extracts of Fayetteville, Linker 
and Mountainburg soils. 

Treatment Fayetteville Linker Mountainburg 

--------------------------------pH units----------------------------
1. Control 6.07 
2. O.lX Al2(S04) 3•18H20 5.80 
3. O. lX Al2(S04) 3• 18H20 + CaC03 5.84 
4. 0.25X Al2(S04) 3•18H20 5.38 
5. 0.25X Al2(S04) 3•18H20 + CaC03 5.71 
6. 0.5X Al2(S04) 3•18H20 4.81 
7. 0.5X Al2(S04) 3• 18H20 + CaC03 5.38 
8. lX Al2(S04)J• 18H20 4.35 
9. lX Al2(S04) 3•18H20 + CaC03 5.31 
10. 2X Al2(S04) 3•18H20 3.80 
11. 2X Al2(S04) 3•18H20 + CaC03 5.74 
12. O. lX Ca(OH)2 6.63 
13. O. lX Ca(OH)2 + Al2(S04) 3• 18H20 6.48 
14. 0.25X Ca(OH)z 6. 79 
15. 0.25X Ca(OH)z + Al2(S04) 3•18H20 6.83 
16. 0.5X Ca(OH)2 7.46 
17. 0.5X Ca(OH)2 + Alz(S04) 3•18H20 7.31 
18. lX Ca(OH)2 7.68 
19. lX Ca(OH)2+ Al2(S04) 3•18H20 7.46 
20. 2X Ca(OH)2 7.82 
21. 2X Ca(OH)2+ Al2(S04) 3• 18H20 7.61 
22. O. lX FeS04•7H20 5.97 
23. O. IX FeS04•7H20 + CaC03 6.44 
24. 0.25X FeS04•7H20 5.61 
25. 0.25X FeS04•7H20 + CaC03 6.20 
26. 0.5X FeS04•7H20 5.15 
27. 0.5X FeS04•7H20 + CaC03 5.91 
28. lX FeS04•7H20 4.56 
29. lX FeS04•7H20 + CaC03 5.45 
30. 2X FeS04•7H20 3. 72 
31. 2X FeS04•7H20 + CaC03 5.13 
32. O. lX CaC03 6.34 
33. 0.25X CaC03 6.84 
34. 0.5X CaC03 7.14 
35. lX CaC03 7.24 
36. 2X CaC03 7.36 
37. O.IX CaS04•2H20 5.99 
38. O. lX CaS04•2H20 + CaC03 6.32 
39. 0.25X CaS04•2H20 5.87 

30 

5.95 
5.45 
5.54 
5.07 
5.39 
4.61 
5.31 
4.16 
5.25 
3.71 
5.57 
6.45 
6.19 
7.00 
6.71 
7.58 
7.00 
7.86 
7.40 
8.01 
7.65 
5.80 
5.88 
5.31 
5.66 
4.86 
5.21 
4.40 
5.24 
3.41 
4.50 
6.50 
7.11 
7.35 
7.47 
7.45 
5.80 
7.42 
5.78 

6.42 
6.25 
6.39 
6.23 
6.21 
5.87 
6.04 
5.07 
5.73 
4.00 
5.42 
6.52 
6.53 
6.93 
6.81 
7.19 
7.13 
7.49 
7.38 
7.92 
7.55 
6.82 
6.77 
6.49 
6.57 
6.21 
6.42 
5.64 
6.18 
4.72 
5.45 
6.82 
7.12 
7.26 
7.30 
7.32 
6.57 
7.29 
6.52 



Table 5. (Continued) 

Treatment Fayetteville Linker Mountainburg 

-------------------------------pH units----------------------------
40. 0.25X CaS04•2H20 + CaC03 6. 26 7.38 7.24 
41. 0.5X CaS04•2H20 5.79 5.71 6.39 
42. 0.5X CaS04•2H20 + CaC03 6.27 7.28 7.19 
43. lX CaS04•2H20 5.73 5.66 6.39 
44. lX CaS04•2H20 + CaC03 6.33 7.18 7.19 
45. 2X CaS04•2H20 5.79 5.64 6.38 
46. 2X CaS04•2H20 + CaC03 6.37 7.23 7.21 

LSD (.05) . 0.27 0.27 0.35 
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Figure 1 - Effect of calcium amendments to poultry litter on water 
soluble reactive P. 
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Figure 2 - Effect of poultry litter pH on soluble organic C. 
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Figure 3 - Effect of aluminum amendments to poultry litter on water soluble 
reactive P. 
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Figure 4 - Effect of iron amendments to poultry litter on water soluble reactive P. 
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Figure 5 - Effect of calcium carbonate additions to Fayetteville soil on 
soluble reactive P. 
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Figure 6 - Effect of calcium carbonate additions to Linker soil on 
soluble reactive P. 
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Figure 7 - Effect of calcium carbonate additions to Mountainburg soil on 
soluble reactive P. 
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Figure 8 - Effect of gypsum additions to Fayetteville soil on soluble reactive P. 
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Figure 9 - Effect of gypsum additions to Linker soil on soluble reactive P. 
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Figure 10 - Effect of gypsum additions to Mountainburg soil on soluble reactive P. 

' cc 
'< 
-0 en 
c 
3 
+ 
() 
!ll 
() 
0 
VJ 

t 
cc 
'< 
-0 en 
c 
3 
!ll 
0 
::J 
CD 

)> 

3 
CD 
::J 
Q. 

SAP (mg P/kg soil) 
0 ........ I\) VJ ~ 01 . . . 

0 01 ........ 01 I\) 01 VJ 01 ~ 01 01 01 
0-t----'-~..___._---J'--_.._--L~.._____._---==~----j 

0 
01 

3 ........ 
CD 
::J 
.-+ 

::D 
OJ 
.-+ 
CD 

........ 
01 

42 

s: 
0 
c 
z 
-i 

G)~ 
~z 
~ OJ 
3C 

:D 
G) 

en 
0 -r 



Figure 11 - Effect of slaked lime additions to Fayetteville soil on 
soluble reactive P. 
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Figure 12 - Effect of slaked lime additions to Linker soil on soluble reactive P. 
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Figure 13 - Effect of slaked lime additions to Mountainburg soil on 
soluble reactive P. 
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Figure 14 - Effect of alum additions to Fayetteville soil on soluble reactive P. 
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Figure 15 - Effect of alum additions to Linker soil on soluble reactive P. 
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Figure 16 - Effect of alum additions to Mountainburg soil on soluble reactive P. 
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Figure 17 - Effect of ferrous sulfate additions to Fayetteville soil 
on soluble reactive P. 
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Figure 18 - Effect of ferrous sulfate additions to Linker soil on soluble 
reactive P. 
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Figure 19 - Effect of ferrous sulfate additions to Mountainburg soil 
on soluble reactive P. 
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