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Project Summary 

Hydroponics is an agricultural technique in which plants are grown without soil and are instead 

grown in water systems that include nutrients and other growth-supporting media. Hydroponic systems 

typically reside inside, so that the system can be fully controlled by the grower by manipulating the 

temperature and amount of light the plants receive. The benefits of growing plants using hydroponics 

include: the amount of water used is reduced, it is less labor to grow organic produce with an indoor 

system, less space used, and it allows for growing food anywhere. Tri Cycle Farms is planning for the 

construction of a Hydro House to contain hydroponics systems. Products from this facility will provide a 

source of sustainable income, an opportunity for education in the community, and a means to battle food 

insecurity.  Tri Cycle hopes to enhance its capacity to be self-sustaining through its Hydro House project. 

For this project, I designed one of the hydroponic systems that will be in the Hydro House and 

created an educational module that can be utilized by nearby elementary schools. This meets two of the 

goals of Tri Cycle by providing community education and a sustainable agricultural method to fight food 

insecurity in Northwest Arkansas. The hydroponics system that I have designed is a Deep Flow 

Technique (DFT) hydroponic system where the plants are placed in a floating raft on top of a water 

reservoir containing a plant nutrient solution. An air compressor and bubbler provide the necessary 

dissolved oxygen to the plant’s roots. The lighting of the system was designed to grow basil but could 

easily be adjusted to grow other crops. I have also worked to create an education module that meets the 

State of Arkansas science education standards for 5th grade students. This educational opportunity will 

allow Tri Cycle to teach elementary students not only about hydroponic systems, but also why these 

systems are important to support Tri Cycle’s missions including water conservation, battling food 

insecurity, and the importance of sustainable farming practices. This report demonstrates the processes to 

design the DFT system, the components in the system that needed to be monitored, a demonstrative 

educational poster, and discussion of the steps to be taken to fully implement the multiple goals for the 

Hydro House for Tri Cycle Farms. 
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Introduction 

 Almost 50% of the water that is used for irrigation is lost due to wind, evaporation, and runoff 

and is caused by inefficient irrigation methods and systems (US EPA, 2017). Because of a growing 

population and a limited supply of drinking water on Earth, water conservation is essential. Growing 

crops using hydroponics can save 70-90% more water than traditional farming because the water is 

recirculated and reused (Greenhouse Management, 2016). Hydroponics also gives full control of the 

system to the grower, allowing them to decide the amount of light and nutrients the plants receive, as well 

as the temperature and humidity of the air. Because of this control, hydroponic growers are not as 

susceptible to unpredictable environmental conditions like weather patterns, droughts, and soil erosion. 

Growing crops indoors protects the plants from outside conditions and allows the farmers to produce 

crops out of season when lack of availability can result in higher prices and profits and also without added 

pesticides. 

 Aside from the environmental benefits, hydroponic systems also provide many practical benefits 

to growers. Hydroponic systems allow the growers to control the nutrients and root zone pH, regulate root 

and shoot temperature separately, and can result in higher efficiencies and high yields per area. These 

systems also help growers to avoid contaminating their food by maintaining the growing area under 

contained and cleaned conditions (Franz et al., 2007).  

Tri Cycle Farms is a 502-(c)(3) nonprofit urban farm located in Fayetteville, Arkansas. Tri Cycle 

Farms gets their name from their mission to fight food insecurity by giving a third, sharing a third, and 

selling a third of all the produce harvested on the farm. Tri Cycle is currently building a greenhouse with 

plans for many different hydroponics systems actively growing produce. The greenhouse for the 

hydroponic systems, which Tri Cycle has deemed the Hydro House, will further Tri Cycle’s mission of 

battling food insecurity in Northwest Arkansas. This Hydro House has been in the planning stages for 

over five years and it will allow the farm to continue providing their three main pillars of sharing, 
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teaching, and farming. The Hydro House will allow Tri Cycle to create a sustainable profit through their 

high-end products grown in the greenhouse, which will then keep Tri Cycle open to provide the 

community education and continue donations to local food pantries. Since Tri Cycle is an advocate of 

sustainable farming, the hydroponic house will continue its methods of sustainable agriculture, 

considering the many benefits hydroponics provides. The educational program outlined in this project will 

provide Tri Cycle a method to showcase the benefits of hydroponic farming and inspire elementary 

students to learn more about ways they can grow their own food. 

 This project is a continuation of work conducted by biological engineering students and students 

in the sustainability minor over the past three years in honors thesis projects and sustainability capstone 

projects. In this prior work, the layout and lighting of the greenhouse have been designed, as well as a 

Dutch bucket system. The objective of this project is to design the light and set up a Deep Flow 

Technique (DFT) system as well as create an educational module that could be used in local elementary 

schools. The lighting and design of the system are applications of engineering I learned in my biological 

engineering degree program, but the educational module was added to expand my skills outside of the 

traditional STEM skillset. Creating an educational program will allow me to share why hydroponic 

systems are so important, and how they can make a big difference in the way the world currently 

produces food. I also hope to inspire elementary students to become curious about the source of their 

food, the potential benefits of sustainable agriculture, and how they can help improve food security now. 

 

Literature Review 

Types of Hydroponic Systems 

 Plants have a variety of needs and requirements, and there are many different types of hydroponic 

systems to fit those needs. For Tri Cycle’s Hydro House, there will be five different hydroponic systems 
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being implemented. Each system has advantages and disadvantages, but all will be used for producing 

premium produce and education. Described below are the five systems that will be placed in the Hydro 

House, with descriptions of their advantages and disadvantages.  

Deep Flow Technique (DFT), also known as a floating raft system, or Deep-Water 

Culture (DWC) system in non-academic sources (Figure 1). This type of system needs to be 

monitored to maintain the necessary water level, electrical conductivity (E.C.), pH, and dissolved 

oxygen levels. The system, shown in Figure 1 includes an air compressor and air-stones so that 

the reservoir is actively aerated, and the nutrients are mixed. The plants float on top of the water 

using a raft, typically made of extruded polystyrene foam or low-density polyethylene, and the 

roots of the plant grow into the water and fertilizer solution. The DFT systems require a large 

amount of water and nutrients to operate successfully, and the dissolved oxygen levels are not 

always homogenized. It is easier to maintain a stable fertilizer solution temperature in a DFT 

system compared to an NFT system (Chidiac, 2017).  

 

Figure 1. Deep Flow Technique system diagram, (NoSoilSolutions, 2014) 

Nutrient Film Technique (NFT), as seen in Figure 2, uses a sloped trough or tube to move 

the nutrient solution through the system. The liquid fertilizer solution is pumped from the 

reservoir to the high side of the inclined plane and is then the thin film flows down through the 

system. The flow of nutrients is returned to the reservoir through a gutter at the low end of the 

plane and is recirculated through the system. For most NFT systems, a solid substrate to hold 
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roots is not used so that the roots have better access to the nutrient film to improve growth. 

Because of the thin film of water containing the nutrients, the water has a high surface area and 

can carry enough dissolved oxygen unless the ambient air is too warm, causing the water’s 

temperature to rise. Warmer water can hold less oxygen than cold water. NFT systems can use a 

Venturi device that supplies oxygen to the system by entraining ambient air bubbles into the 

water. The system’s potential limitations are potential pump failures (which quickly endanger the 

plants because of loss of water to the roots), the nutrient solution might need to be chilled to 

dissolve sufficient oxygen, there are unequal distributions of temperature, oxygen, and nutrients 

in the water for long sloped planes, and there is potential for the tubing in the system to clog due 

to algal growth (Chidiac, 2017). 

 

Figure 2. Nutrient Film Technique system diagram, (Off-Grid Gorilla, 2015) 

Vertical wall systems (Figure 3) provide efficient use of growing space and can create an 

aesthetically pleasing living wall. This system is ideal for growing strawberries because of their 

shallow root systems. Tri Cycle plans to grow strawberries in their vertical wall system (Forney, 

2020). The vertical walls maximize growing space per floor footprint, shown in Figure 3, 

allowing them to be useful in areas that would otherwise not be productive. Tri Cycle plans to use 

a vertical wall into their Hydro House to maximize on space efficiency of the system. 
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Figure 3. Vertical wall system diagram, (Seek an Idea, 2012) 

The Dutch bucket method (Figure 4) is a low-footprint type of drip system that allows the 

grower to arrange the system’s layout considering the building spacing and type of crop. 

Displayed in Figure 4, the buckets are connected through an irrigation line that pumps water and 

nutrient solution from the system’s reservoir. The system can be set to water the plants at certain 

times and durations. This system is ideal for crops like tomatoes, which grow best using cycled 

watering times rather than continuous water flows (Gould, 2019). 

 

Figure 4. Dutch bucket system diagram, (Storey, 2016) 
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The Shallow-Aero Ebb-and-Flow System (SAEF) (Figure 5). is the second iteration of a 

system that has been designed by Joseph (JC) Chidiac that includes elements from multiple other 

hydroponic systems. He has created a new cultivation system by implementing elements from 

NFT, aggregate beds, and ebb-and-flow irrigation. The system includes irrigation trays containing 

a shallow layer of aggregate, which is then flooded to a shallow depth and requires very little 

water and energy (Chidiac, 2017). Chidiac has been working on the second generation of this 

system, which will allow for the roots to go without water at times, creating a stronger, hardier 

root system. 

 

Figure 5. Shallow-Aero Ebb-and-Flow system diagram (Halveland, 2020) 

Importance of Hydroponic Systems 

Hydroponics has the potential to completely change the way our food is grown, making a positive 

difference for the world. One benefit of hydroponic growing is the system’s efficient use of water to grow 

the same product as using traditional field methods. The water in a hydroponic system is re-circulated and 

has minimal losses, whereas typical farming practices have leakage of water into the soil and a greater 

amount of evaporation. Since agricultural use is a major contributor to the depletion of the world’s 

freshwater sources, hydroponics provides a way to grow food and minimize water usage (FAO, 2002). 

Another area in which hydroponics is beneficial is nutrient efficiency. Nutrients are applied to the closed 

system, so there is no nutrient loss caused by leakage into the ground or nutrients getting swept away in 
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runoff water as with field systems. This closed system for nutrients reduces the pollution of lakes and 

rivers, creating better water quality compared to land used for agriculture. Lastly, hydroponic systems can 

be much more space efficient than typical farming methods and can grow produce in large cities that lack 

space for growing it outside. (Foley et al., 2011) stated, “to meet the world’s future food security and 

sustainability needs, the production of food must grow with the population, but the agricultural footprint 

must substantially shrink.” As the global population continues to increase, agricultural production 

methods need to provide more food as well. Since there is often limited space available and open land 

farming methods can endanger surrounding water systems, hydroponics is a potential solution to food 

insecurity as well as water scarcity.  

 

Methods of Design 

Project Scope and Objectives 

 The scope and objectives for this project were created after meeting with the Founder and 

Executive Director of Tri Cycle Farms, Don Bennett. He explained that the motivation for the Hydro 

House is to create a sustainable source of income for Tri Cycle and provide a place of education for those 

who visit Tri Cycle, especially children. Mr. Bennett would also like the Hydro House to be a method of 

outreach to the community and to increase awareness of Tri Cycle’s mission. Based on Tri Cycle’s goals, 

the engineering aspect of my project was to design a Deep Flow Technique Hydroponic system. The 

design was to include providing the lighting requirements for growing basil. Then based on Tri Cycle’s 

desire to use the Hydro House for education and outreach, I will be creating an educational module that 

can be used in local elementary schools. 
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DFT System Design and Consideration 

 The requirements and constraints of designing a DFT hydroponic system must first be considered. 

The system that Tri Cycle plans to build will be a small, self-contained DFT system, meaning no external 

reservoir. The nutrient solution will be applied directly to the reservoir containing the plant roots, and the 

air stones within the growing bed will mix the solution so that it is homogenized. The main components 

to be designed or sized include: 

• The number of lights required for a healthy basil crop; 

• A typical oxygen uptake rate for water at a design temperature; 

• The number of aerators required to meet minimum oxygenation requirements; 

• The layout of the system; 

• The parts and materials for the system. 

The design will be tailored to the scale of Tri Cycle’s chosen DFT system and will be adjustable if Tri 

Cycle decides to grow products other than basil in the system.  

After determining the requirements and constraints, the next step was to research the DFT system 

to better understand its advantages and disadvantages to more quickly design the components. After the 

system has been designed, an educational module will then be created to use in an elementary school. Dr. 

Peggy Ward, a University of Arkansas faculty member from the Department of Curriculum and 

Instruction, will serve as a resource to develop appropriate educational materials to match both age 

requirements and to meet any educational standards in science for the State of Arkansas. The deliverable 

for this part of my thesis includes a poster that can demonstrate the information that will be conveyed and 

a fully developed hands-on component relating to the information that will be taught. Both the poster and 

the activity need to meet appropriate educational standards and convey important information in language 

and concepts that can be understood by the chosen age group.  
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Design Results 

Lighting Design 

Each crop that will be grown in the Hydro House will have varying lighting requirements, and 

although the building was designed to allow a large amount of sunlight in, there may be days when the 

amount of sunlight available is limited. Therefore, the lighting system needs to be prepared for the worst-

case scenario, which is no natural light available. The considerations for the lighting required include the 

light footprint, the daily light integral required for the chosen crop, the photon flux density (PPFD) provided 

by the lights, and the capital and operating costs for the lighting system. The daily light integral is the 

amount of photosynthetically active photons that are delivered to an area of the plant each day and the 

photosynthetic photo flux density (PPFD) is the light intensity or density of the photons in the light 

(Ledtonic, 2019). Tri Cycle has identified grow lights they prefer to use, so for buying efficiency, 

redundancy, and replaceability, the same lights will be used for this design. The next step was to calculate 

the number of lights required for the system to meet plant requirements. The lights that Tri Cycle uses have 

the following specifications: 

• 4-feet length 

• Power requirement per unit is 330 watts 

• Hanging height is 3 feet above the plants 

• Light footprint is 3 ft by 6 ft, totaling an 18 ft2 area 

• Provides a photon flux density (PPFD) of 350 μmol/m2/s 

Assuming the worst-case scenario is a day with no light, the given lights have been designed to provide 

all necessary lighting requirements for the chosen crop, which is basil. The minimum daily light integral 

required for basil is 15 mol/m2/day, as specified by Joseph Chidiac, a horticultural engineer who has 

worked with Tri Cycle Farms. The chosen lights need to be sized to provide a minimum DLI of 15 
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mol/m2/day over a 12-hour day. Since no natural light is the absolute worst-case scenario, no safety factor 

will need to be added. 

 PPFD =  
15 mol

m2  ∙  day
×

1,000,000 μmol

1 mol
×

1 day

12 hours
×

1 hour

3600 s
 =  347.22 μmol/m2/s 

Based on the above calculation, the given lights provide the minimum amount of light required for 

healthy basil. The required PPFD of 347 μmol/m2/s is less than the provided PPFD of 350 μmol/m2/s, so 

the light footprint just needs to cover the growing area. At a hanging height of 3 feet, the lights create a 

footprint of 3 ft by 6 ft, which matches the dimensions of one DFT system. Since the layout calls for three 

systems, the DFT system requires three lights. The provided lights will work for the worst-case scenario 

without any adjustments of hanging height. The entire DFT system will fit beneath the light footprint of 

three of the chosen lights. Although the lights will be able to provide all of the necessary sunlight for the 

basil, to reduce electricity usage, the lights will only be on when necessary. In the summer, most days 

provide enough sunlight so that no supplemental light is needed, but as sunlight hours and intensities 

lessen, supplemental light will be required for at least part of the day. 

 

DFT System Design 

The layout of the Deep Flow Technique system was important and needed to determine first. Since 

Tri Cycle already has the containers for the DFT system, the design needs to follow established 

dimensions and layouts. The DFT system for Tri Cycle will be three small, self-contained systems, 

meaning there will not be an additional reservoir for nutrient mixing. This reduces the need for a water 

pump and monitoring any flow in the system and creates a more compact system. The set up must include 

an aerator with attached air stones for mixing of the nutrient solution and providing dissolved oxygen to 

the roots. Other materials required are a floating raft to hold the plants, tubing for the aerator, nutrient 

solution, basil plants, the chosen grow lights, and the containers for the system. The layouts of the 
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systems show a side view (Figure 6) of the system with all of the necessary components and a top view 

(Figure 7) of the system showing the footprint area. Figure 8 displays the layout of the entire Hydro 

House and the five hydroponic systems that will be included. The diagram also includes the head house 

with a cold room and an irrigation room. This design is not included in this work and will be implemented 

in the second phase of Tri Cycle’s Hydro House project. 

 

Figure 6. Side view of Deep Flow Technique system, design depth of 8 inches (Off-Grid Gorilla, 2015) 

 

Figure 7. Top view of Deep Flow Technique system in Hydro House, drawn in AutoCAD  
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Figure 8. Entire layout of Tri Cycle's Hydro House including planned secondary phase's head house (Gould, 2019) 

 

Oxygen Uptake Rate (OUR) data measured for fish tank water was used to estimate the oxygen 

requirements for the system. This data was measured as part of a class, BENG 2632 Biological 

Engineering Design Studio, and should represent oxygen requirements for water well in excess of those to 

be found in this system. The OUR determines the oxygen consumption by the microorganisms in the 

water. The data was collected from 12 teams, giving the data 12 trials shown in Table 1. I averaged the 

data and found the standard deviation for the 12 trials. Any data points more than three standard 

deviations from the average was considered an outlier to be removed from the data set. There were no 

outliers in this data set. The water in which this test was performed was maintained at 20°C, but the given 

range of water temperatures for the Hydro House will remain within the 20°C - 25°C range. The higher 
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the water temperature, the less oxygen is dissolved in the water. This is due to the solubility of oxygen 

being reduced as the temperature increases, as described in Henry’s Law. As an example, in standard 

atmospheric air, the saturated amount of dissolved oxygen held at 20°C is 9.09 mg/L, while the saturated 

amount held at 25°C water is 8.26 mg/L (Fondriest Environmental, Inc., 2013).  

Table 1. Experimental Oxygen Uptake Rate data provided from Biological Engineering Design Studio class 

 

The OUR from the trials was calculated to be 2.36 
𝑚𝑔 𝐷𝑂

𝐿∙𝑑
. Since the water in the data trials was 

held at 20 C and the design temperature of the water in the DFT system is 25 C, the increase in OUR 

because of temperature will be estimated using the van’t Hoff relationship (Ito et al., 2015). For this 

situation, we are assuming the worst case, which would be a temperature of 25°C, so that the system to 

add dissolved oxygen can be designed to meet a higher demand in the case that the dissolved oxygen 

levels drop. The temperature coefficient equation is a derivation of the van’t Hoff equation. It is shown 

below, along with the calculations to determine OUR at 25°C from a reference condition at 20 C.  

 

Trial
OUR 

(mg/L*d)

Difference Between 

Data and Average

1 -2.470 0.109

2 -2.679 0.317

3 -1.504 0.858

4 -2.840 0.478

5 -4.790 2.429

6 -0.922 1.439

7 -2.739 0.377

8 -2.597 0.235

9 -1.720 0.641

10 -2.363 0.002

11 -2.086 0.276

12 -1.629 0.732

Average -2.361 (mg DO/L*d)



Page 18 of 34 
 

𝑅2 = 𝑅1 × 𝑄10

𝑇2−𝑇1
10 = 2.36 × 2.2

25°𝐶−20°𝐶
10 = 3.5 

𝑚𝑔 𝐷𝑂

𝐿 ∙ 𝑑
 

Where 𝑄10 = 2.2 for respiration (such as OUR), the factor by which the reaction rate increases when the 

temperature is raised by ten degrees, averaged from the typical range of 2.0 – 2.4 for respiration (Keane, 

2019) 

𝑅1 = 2.36 
𝑚𝑔 𝐷𝑂

𝐿∙𝑑
, the measured reaction rate at temperature 𝑇1 

𝑅2 = the reaction rate being solved for which is at 𝑇2 

𝑇1 = 20°𝐶 , the temperature at which the OUR reaction was measured 

𝑇2 = 25°𝐶 , the design temperature of the water in the system 

After calculating the OUR, which is 3.5 
𝑚𝑔 𝐷𝑂

𝐿∙𝑑𝑎𝑦
 for 25°𝐶 water, the next step is to determine many 

aerators need to be in the system based on this OUR. The Biological Engineering Design Studio Data also 

provided estimations on the output per aeration bubble bar (standard fish tank equipment) in a water tank 

system, which is 5.44 
𝑔 𝐷𝑂

𝑑𝑎𝑦∙𝑏𝑢𝑏𝑏𝑙𝑒𝑟
 for water that was at 5 

𝑚𝑔 𝐷𝑂

𝐿
. The system I am designing includes three 

DFT systems, each approximately 340 liters in volume for a total system volume of 1,020 liters. Based on 

these experimental numbers, each DFT system needs 0.2 bubblers to replenish the oxygen leaving the 

system, or 0.7 bubblers for the entire system. There was also a difference in depth of the water between 

the system in which the data was measured and the DFT system being designed. The DFT system will 

have of water depth of 8 inches, while the system the data was from had a depth of approximately 15 

inches. This decrease in depth will limit the amount of time the oxygen has to dissolve into the water, 

resulting in the bubble bars in the DFT providing approximately half the rate of the bubbler in the fish 

tank, which increases the total required number of bubblers to 1.3. In the case of dissolved oxygen, one 

bubbler per container should provide enough oxygen for the system, but the bubblers are also necessary 

for mixing and distributing the nutrients in the water. Since the system should be mixed by the bubblers 
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and based on the estimated numbers provided, I recommend including two bubble bars for each system, 

totaling six bubble bars. After building the system, I recommend the DO be measured in different areas of 

the tank to determine if there is enough mixing for the system. If the water is not being mixed and 

distributed throughout the system insufficient, more air stones or bubble bars can be added to the system.  

 The required materials for setting up the DFT system are three system containers, six bubble bars, 

a sheet of lightweight, food-grade material, typically polystyrene, three of the grow lights that Tri Cycle 

has chosen to use, and liquid nutrient solution. All of these materials can be combined to grow a healthy 

crop, in this case basil, in a Deep Flow Technique system. The system will need to be monitored to make 

sure the aerator is always mixing the water and providing oxygen to the roots, and the nutrient levels 

should be routinely checked. I have listed the necessary materials below in Table 2, with examples of 

products that can be chosen. I chose the raft to be made of Low-Density Polyethylene due to LDPE’s 

sustainability benefits: capable of reuse, non-toxic, recyclable as a class 4 material, and an increased rate 

of recycling compared to polystyrene and Styrofoam (EPE USA, 2019). For the airline tubing, I 

recommend the tubing be a solid dark color to prevent the growth of algae. All of the costs listed are 

estimates based on products found online to give an estimate for the cost of the DFT system, but they are 

not set costs.  

Table 2. Required DFT materials and costs 
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Education Discussion 

To educate elementary school children on why hydroponic systems are important, I created an 

education module to be brought to the classroom. Tri Cycle is particularly focused on educating children 

because they are the next generation of farmers, scientists, and community members, and Tri Cycle hopes 

to inspire decisions to support sustainable food production from an early age. The focused age range is 5th 

grade students, and the educational poster and information portrayed reflect the Arkansas Science 

Standards for 5th grade as outlined by the Arkansas Department of Education. The education component 

of this project will hopefully not also educate the next generation on the importance of sustainable food 

and water systems, but also help educate me in how better to communicate with non-technical audiences 

and allowed me to expand my thinking out of a STEM-based project. Whether a student wants to go into 

a STEM-based career or not, I want them to know that they can make a difference in their home and that 

growing their food in soil or water is something they can easily do. 

After deciding to pursue an educational component for my thesis, Julie Halveland and I met with 

Dr. Peggy Ward, a clinical assistant professor in the College of Education and Health Professions at the 

University of Arkansas, who specializes in curriculum and instruction. Halveland is a fellow biological 

engineering student working with Tri Cycle to design a separate hydroponic system and educational 

component to be taught on-site. Dr. Ward agreed to help Ms. Halveland and I find educational standards 

that apply to teach about hydroponic systems and the conservation of natural resources. Dr. Ward also 

helped us to understand how to read the educational standards and determine what is important to convey 

to a set age group. The following standards relate to my topic of hydroponics and the standards state that 

students who demonstrate an understanding can do the following based on their age group: 

• Performance Expectation: 

o 5-ESS3-1    Obtain and combine information about ways individual communities 

use science ideas to protect the Earth’s resources and environment. 
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o 5-LS1-1     Support an argument that plants get the materials they need for growth 

chiefly from air and water. [Clarification Statement:  Emphasis is on the idea that plant 

matter comes mostly from air and water, not from the soil.] 

• Disciplinary Core Ideas: 

o ESS3.C:  Human Impacts on Earth Systems 

§  Human activities in agriculture, industry, and everyday life have had major 

effects on the land, vegetation, streams, ocean, air, and even outer space. But 

individuals and communities are doing things to help protect Earth’s 

resources and environments. (5-ESS3-1) 

o LS1.C:  Organization for Matter and Energy Flow in Organisms 

§  Plants acquire their material for growth chiefly from air and water. (5-LS1-1) 

• Science and Engineering Practice: 

o Obtaining, Evaluating, and Communicating Information 

§  Obtaining, evaluating, and communicating information in 3–5 builds on K–2 

experiences and progresses to evaluating the merit and accuracy of ideas and 

methods. 

§  Obtain and combine information from books and/or other reliable media to 

explain phenomena or solutions to a design problem. (5-ESS3-1) 

o Engaging in Argument from Evidence: 

§  Engaging in argument from evidence in 3–5 builds on K–2 experiences and 

progresses to critiquing the scientific explanations or solutions proposed by 

peers by citing relevant evidence about the natural and designed world(s). 

§  Support an argument with evidence, data, or a model. (5-LS1-1) 

The above standards have been important in considering how to convey the information of what a 

hydroponic system is, how it works, and why this system is important to a group of 5th grade students. 

The information included on the educational poster is intended to teach the students at a level they can 
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fully understand and comprehend, while also attempting to engage the students and convey the 

importance of water conservation. I hope to demonstrate how hydroponics relates to water conservation 

and inspire the students to care about how their choices can affect the environment.  

 I started by creating a poster where I included all of the information I would like to present to the 

students, not worrying about the grade level of information or language being presented. I then sent the 

poster to Dr. Ward, who read through the poster and explained how to make this more presentable to the 

target age group. The first draft of the poster can be seen in Figure 9, and is a poster that conveys the 

standards for 5th grade education, but has a reading level of 10th grade or above. After receiving 

suggestions for revisions, I worked with Dr. Ward to create a 5th grade level poster, one that would better 

capture and keep the attention of the students. The improvements included adjusting the language of the 

poster, limiting the number of words, and adding pre pictures for a better visual understanding. The poster 

colors were also changed to be more vibrant and colorful to draw the student’s attention. The final draft of 

the poster, seen in Figure 10,  also includes four distinct sections, mimicking science posters created for 

this age group. Next, the second draft needed to be analyzed for readability and understanding for 5th 

grade students.  

 To ensure that the educational poster I have created will meet the level of the target audience, Dr. 

Ward calculated the Flesch-Kincaid Grade Level test for the poster. The Flesch-Kincaid Grade Level is a 

readability test that is useful to measure how easily people will understand a portion of text. The score my 

poster received was a 4.6, which is right where the score should be for a 5th grade poster, and the equation 

performed for the test can be seen below: 

Flesch − Kincaid Grade Level = 0.39 × (
total words

total sentences
) + 11.8 × (

total syllables

total words
) − 15.59 

This reading level is based on two factors: sentence length and word length. These factors are based on 

the idea that longer sentences are more difficult to follow than short sentences, and words that contain 

fewer syllables are more easily understandable. The score generated by this equation relates to the U.S. 
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grade level of education, so a Flesch-Kincaid Grade Level of 4.6 means that the poster I have created will 

be understandable for the target age of 5th grade students (Linney, 2017).  

 The main sections of the poster include the questions (1) What do plants need to survive?, (2) 

What is Hydroponics?, (3) Why is Hydroponics Important?, and (4) Did you know? The first section asks 

the students what components plants need to survive and list out the answers. This allows the presenter to 

describe how most of the necessary plant requirements do not come from the soil, but from air and water. 

The soil provides root support for the plant and the necessary nutrients for growth, but both of these 

components can be supplied from other materials. The poster then describes hydroponics in the next 

section, which is an agricultural technique that utilizes water instead of soil. The water contains a nutrient 

solution that supplies the plant the nutrients it requires, a grow light can supply the necessary sunlight, 

there are air pumps or water pumps to provide the necessary oxygen for the roots, and most systems 

utilize various growing mediums to provide support for the roots. The next section of the poster describes 

why hydroponic systems are important. The section discusses the reduction of water usage, how 

hydroponic systems can be located anywhere, and that the produce grown in these systems is not limited 

to a certain growing season like plants grown outdoors. Lastly, the “Did you know?” section describes 

how the students can get involved and learn more about growing food using water. The example 

demonstrated by visuals on the poster is cutting the ends off of green onions, sticking the end with the 

roots on it in water, and growing another green onion just from food scraps. After this section, the 

presenter will ask the class some questions to gauge the understanding level. The questions will allow the 

students to brainstorm about what they just learned and share their thoughts. For example, what kind of 

environments would benefit from growing their food hydroponically and what all can be controlled when 

a farmer grows using a hydroponic system? The questions were included in the first draft of the poster but 

will be presented verbally based on the second draft of the poster. These questions will verify that the 

students have been paying attention, learning, and the lesson has met the standards listed above. As this 
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lesson plan develops, the questions may change or more may be added, but I believe it is important to get 

the students thinking and talking about how this system works and how it can benefit different people. 

 After the presentation, the class can then perform a hands-on activity to allow the lesson to better 

sink in. There are many options for this hands-on project, and the project can be tailored to what the class 

has available, but I will be focusing on one of the activities that can be performed. After learning about 

hydroponic systems and their environmental benefit, the students will be split into groups and given a 

scenario for a farmer who would benefit from having a hydroponic system. The scenarios could be 

different for each group of students, allowing them to create solutions that are tailored to the need of the 

specific farmer. If available, the class should have materials to build a simple hydroponic system. The 

materials needed are: 

• A water reservoir, can be varying sizes depending on the space available 

• A floating raft: Styrofoam sheets of polyethylene for a more sustainable option 

• Materials to cut the floating raft to fit the container 

• Cubes of growing medium, can have different kinds to allow students to be creative 

• Plants, like basil or lettuce 

• Small aquarium pump and tubing 

• The nutrient solution, make sure it is for hydroponic systems 

Using the materials listed, allow the students in their groups to design their own system (“Classroom 

Hydroponics Lesson Plan,” 2017). If materials are not available, use cutouts to represent things like a 

plastic tub and aerator. Create a scenario for the groups, like they are a farmer in a cold northern state, or 

they are in an urban area and want to provide a local source of produce. This will allow the students to 

think of creative solutions to problems that are presented and understand how the system works. The 

students can then present their design to the class and explain why they made certain choices for their 

design, fulfilling another one of the standards above, 4-ETS1-2. After thinking through their system and 
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getting the chance to build something, the students will have a much better grasp of how hydroponic 

systems look and they will have utilized their creative problem-solving skillset. 

Other activities that could be performed with the class include planting seeds as a class or starting 

a comparison activity to outline the similarities and differences between traditional farming and 

hydroponic growing. Due to current social distancing policies, I will be unable to test this educational 

module at any local elementary school, but after schools reopen a Tri Cycle volunteer will be able to 

present this information to elementary students in the area. Based on feedback from the poster and 

activity, the presenter can make changes as they see fit, as long as the educational standards are being met 

and the students have a certain level of understanding of the topic. 
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Figure 9. First iteration of educational poster, includes all information to convey but with a higher reading level than 5th grade 
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Figure 10. Second draft of educational poster, geared more towards 5th grade learning 
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Discussion and Future Opportunities  

As this project continues to evolve, there will be more design project opportunities at Tri Cycle 

Farms to complete. Of the five systems in the Hydro House, there is only one system remaining to design. 

A previous honors student designed the Dutch bucket system, Ms. Halveland designed the SAEF system, 

I designed the DFT system, and a member from the Tri Cycle community is designing the vertical 

strawberry wall. The only hydroponic system design remaining for the Hydro House is the Nutrient Flow 

Technique (NFT), but that is not the last component needing attention. Don Bennett, the Executive 

Director of Tri Cycle, plans for the second phase of development to include a head house that will be 

attached to the Hydro House. The head house will be able to provide an irrigation room and cold room, 

allowing for a seed starting location before the plants are moved to the hydroponic systems and allowing 

Tri Cycle to begin their “Seed to Sell Learning Initiative.” This initiative will be another way for students 

of the University of Arkansas to get involved with Tri Cycle, starting as a service-learning program for 

students to volunteer or take a service-learning class. This initiative will need volunteers and students of 

all skill sets, as Tri Cycle starts the plants from seeds, grows them in the Hydro House, and then sells the 

produce to local retailers and restaurants. There is also the option to add in sensors to connect the main 

house to the Hydro House, which would allow for more manageable and efficient monitoring of the crops. 

The hydroponic systems can also all be part of research teams, which is why the systems were all created 

with multiple units in the case there needs to be a comparison between different growing methods. There 

are many areas for students and volunteers to get involved with Tri Cycle and the Hydro House and make 

a positive impact on the northwest Arkansas community while learning about hydroponic systems. 

Construction of the Hydro House has been delayed for a variety of reasons over the past year, the 

most reason delays have been due to bad weather and a global pandemic. Tri Cycle plans to finish the 

construction of the first phase of the Hydro House before implementing additional ideas, but the room for 

growth and improvement is limitless. As construction begins on the Hydro House, Don Bennett believes 

that Tri Cycle will be able to better fundraise for the continuation of this project, and the Hydro House 
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will continue to adapt to the needs of Tri Cycle as well as the surrounding community. After the Hydro 

House is built, Tri Cycle will begin growing and selling produce that is in high demand or out of season, 

so that they can capitalize on the benefits of a completely controlled growing environment. As they start 

building up a larger client base for their hydroponic produce, Tri Cycle will continue to give back to their 

community and work towards a more food-secure community. The Hydro House will allow for a more 

stable income, perhaps even allowing them to hire more full-time staff members. Tri Cycle and their 

community is growing, and the impact they have on their community continues to grow. Although I have 

only been part of a small piece of this project, I am honored to have been part of this community and 

excited to see the Hydro House up and running in the future.  

 After two years of volunteering with Tri Cycle, I have learned a lot about sustainable farming and 

the impact one person can have over an entire community. Don Bennett started Tri Cycle Farms to meet a 

need in his community, and the non-profit farm has connected and provided for hundreds of people in 

Northwest Arkansas. I personally have met many amazing people through volunteering at the farm, and I 

was able to bring healthy and local food home to my own kitchen. I have greatly enjoyed learning more 

about composting, reducing food waste, and how easy it is to grow your own food. I am honored to be 

working with Tri Cycle now, playing a small part in their Hydro House project and seeing firsthand the 

plans and dreams Mr. Bennett has for Tri Cycle’s growth. Tri Cycle started as a response to one 

neighbor’s food insecurity and has grown to provide food, learning, and joy to an entire community. Tri 

Cycle will continue serving their community by providing education and food security, and I could not be 

more proud to have worked with such a determined and selfless group of people.  
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