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ABSTRACT 

EFFECTIVENESS OF VEGETATIVE FILTER STRIPS IN RETAINING 
SURFACE-APPLIED POULTRY LITTER AND 

SWINE MANURE CONSTITUENTS 

Land application of animal manures (e.g. poultry litter, poultry 
manure, and swine manure) to pasture and range can lead to runoff quality 
degradation during storms that occur soon after application. Vegetative 
filter strips (VFS) have been shown to reduce pollution in runoff from 
row-cropped areas but have not been extensively studied in pasture and 
range settings. Th is research i nvo 1 ved characterizing performance of 
fescue VFS in improving quality of runoff from pasture land areas treat ed 
with poultry litter and swine manure. The VFS were found to be quite 
effective in reducing off-site transport of ammonia nitrogen (NH3-N), total 
Kjeldahl nitrogen (TKN), ortho-phosphorus (P04-P), total phospnorus (TP) , 
and fecal coliform (FC) for simulated storms occurring 2-5 days following 
poultry litter and swine manure applicati on. The VFS were from 81 to 99% 
effective (at a VFS length of 21.4 m) i n reducing incoming mass transport 
of NH3-N, TKN, P04-P, TP, and FC in runoff from poultry litter-treat ed 
plots. Similar performance was observed for the VFS installed below plots 
treated with swine manure. Transport of suspended so l ids and chemi cal 
oxygen demand was also reduced by the VFS, but generally not to the extent 
of other litter and manure constituents. Transport of poultry l itter and 
swine manure constituents were well-described by first-order kinetics . 

I. Chaubey, D.R. Edwards and T.C. Daniel 

Completion Report to the U.S. Department of the Interior, Geologi cal 
Survey, Reston, VA, March, 1994. 

Keywords Vegetative Fi l ter Strips/Animal Manures/Nonpoint Source 
Pollution/Pasture 
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INTRODUCTION 

Land disposal of animal manure is widely recognized as an economic 

means of productively us ing manure constituents as well as an effective 

disposal technique. Runoff from land application sites, however, is a 

potentially significant source of pollution. Runoff from these areas may 

contain undesirable quantities of sediment, organic residue, nutrients and 

potentially pathogenic organisms. Past research has demonstrated 

potential runoff quality impacts of poultry litter and swine manure 

application to pasture/range areas (Westerman et al., 1983; Mcleod and 

Hegg, 1984; Edwards and Daniel, 1992, 1993). Concerns about the impact of 

surface-applied poultry litter and swine manure on water qua 1 i ty are 

increasing in areas where production is heavily concentrated. As the 

production of poultry and swine continues to expand, in terms of both 

number of facilities and the area covered, anxieties regarding the 

environmental implications will be shared by an increasing number of 

citizens, local governments, service agencies, and regulatory agencies. 

While much progress has been made toward the control of agricultural 

non-point source (NPS) pollution through the use of best management 

practices (BMPs), the role of BMPs in rectifying problems associated with 

broiler litter and swine manure disposal is currently limited by both 

pract i ca 1 and technical problems. The practical problems stem from the 

fact that the user of the litter or manure may not be able to implement 

all BMPs due t o economic considerations and/or characteristics of the 

rece iving fie lds. The technica l problems are associated with a lack of 

theoretical and experimental investigations to precisely identify the 
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levels at which BMPs should be implemented (e.g., manure application 

rates) as a function of physical and biological variables. 

One practice that is receiving attention for removing sediment and 

nutrients from the runoff from crop land and areas of livestock activity 

is vegetative f ilter strips (VFS). Vegetative filter strips (also 

referred to as grass filters, vegetat ive buffer strips, filter strips or 

buffer strips) are vegetated reg ions emplaced down slope of pollutant 

source areas to remove impurities from incoming runoff. 

Vegetative filter strips puri fy i ncoming runoff by allowing 

increased opportunity for infiltration of soluble pollutants, deposition 

of sediment and sediment-bound pollutants, and adsorption onto plant 

surfaces and soil particles. There are very limited methods for VFS 

design with respect for removal of nutrients, organic matter, and 

microbes. Consequently, VFS can eas i ly be installed in areas and under 

conditions in which they are ineffective or overdesigned for removal of 

such po 11 utants. 

Infiltration is perhaps the most significant removal mechanism 

affecting VFS performance under pasture/range settings. In genera 1 , 

infiltration rate depends on so i l physical properties, vegetative cover, 

antecedent soil moisture condition, rainfall intensity, and the slope of 

the i nfi ltrat i ng surface. So i ls protected by vegetative cover tend to 

have higher infiltration rates than bare soils. Many pollutants 

associated with runoff from enter the soil profile as the infiltration 

takes place. Once in the soil profile, most of these pollutants are 

removed by a combination of physical, chemical , and biological processes. 
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Infiltration is also important because it decreases the amount of runoff, 

which reduces the ability of runoff to transport pollutants. 

Vegetative filter strips can also purify runoff through the process 

of deposition. If the VFS is relatively resistant to overland flow in 

co·mpari son to the po 11 utant source area, then the velocity (and thus 

sediment transport capacity) of runoff will decrease upon entering the 

VFS. If the VFS sufficently decreases the sediment transport capacity of 

the runoff, then some deposition of suspended solids will occur within the 

VFS, usually at or near the top of the VFS. Sediment-bound pollutants 

will presumably be removed from the runoff during deposition of the 

solids. 
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OBJECTIVES 

The objective of this study was to assess the effectiveness of 

fescue VFS for the removal of sediment, nutrients, chemical oxygen demand, 

and bacteria from poultry litter and swine manure surface-applied to 

fescue pasture. 

This work complements previous studies by examining poultry litter 

and swine manure as the animal manure source as opposed to 1 ivestock 

manures, which have often been used in studies of this nature. The study 

also adds to prior work in that most previous studies have addressed use 

of VFS just beneath row-cropped land or feed lots; this work addressed 

assessing VFS effectiveness just beneath pasture/ range land. Another 

distinguishing characteristic of this study was the use of only one plot 

per replication to examine differing VFS lengths, whereas previous studies 

have generally required one plot per replication per VFS length to be 

examined. 
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RELATED RESEARCH 

Sediment Transport in VFS 

Neibling and Alberts (1979) found that VFS lengths of up to 4.9 m 

reduced incoming sediment load from a bare 6. 1 m plot by more than 90%. 

The majority of sediment was deposited during the upper 0.6 m of the VFS. 

No equations were presented to est imate the influence of grass filter 

parameters on sediment yie ld. 

Scientists at the University of Kentucky developed design equations 

to relate to VFS performance to selected parameters. Tollner et al. 

(1976, 1977) described sed iment deposition in simu l ated VFS to the mean 

flow vel ocity, f low depth, particle fall vel oci t y, filter length, and the 

spacing hydraulic radius of the simulated medium. They also developed 

steady-state equations to predict the rat e of advance of a sediment 

deposition front in a grass filter. 

Barfield et al. (1977, 1979) developed a steady-state model to 

estimate VFS performance as a fu nction of characteristics of incom ing 

sediment, runoff, and the VFS. Model simu l ations indicated that sediment 

concentration in r unoff exiting the VFS is most sensitive to channel slope 

and spac i ng, but the expected usef ul l ife of the VFS (the time required to 

essentially saturate i t wi th sediment) is primarily a function of incoming 

sediment load. Hayes et al . (1979) modified the model to predict VFS 

behav ior for non-uniform particl e sizes and t ime varying inflows. Hayes 

and Hairston (1983) used field data to eva l uate the Kentucky model for 

multiple storm events . 

Kao et al. (1975) suggested t hat VFS be al ternated with bare areas 

to help avoid VFS saturation with sediment since, with the appropriate 
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arrangement of bare and VFS areas, most sediment incoming to the VFS could 

be deposi t ed just before ente r ing t he VFS . This strategy would enable the 

deposited sediment to be removed as needed from the bare areas without 

damaging the VFS. However, t hese findings have not been validated under 

field cond i t i ons with ac t ual grasses. 

Nutrient Transport in VFS 

Several scientists have st udied the effectiveness of VFS with 

respect to nutrient removal. Similar to sediment, however, generally 

accepted procedures are lacking to size VFS to achieve desired 

effectiveness of nutrient removal . 

Doyle et al. (1975, 1977) applied dairy manure upslope of both 

fescue (Festuca arundj nae ea Schreb) and forest buffers and found that 

filter lengths of only 3.7 t o 4 .6 m were very effective in removing 

soluble and suspended nu t rients from runoff. Thompson et al . (1978) 

applied dairy manure to frozen or snow-covered orchardgrass (DactyUs 

glomerata) plots on sandy loam so i l and found that a 12 m orchardgrass 

filter removed 55, 46, 41, and 45% of incoming total P, N0
3
-N, TKN, and 

total N, respect i vely . Increasing the filter length to 36 m increased 

removal of total P, N0
3
-N, TKN, and total N to 61, 62, 57, and 69%, 

respectively. 

After applying dairy waste for one year to a fescue plot on silt 

loam soi 1 , Patterson et a 1 . (1980) found that a 35 m fescue VFS reduced 

incoming concentrations of biochemical oxygen demand (BOD), NH4-N, P04 -P , 

and TSS by 42, 38, 7, and 71%, respectively. Observed losses of N0
3

-N from 

the VFS were greater than the l oading, which was attributed to formation 

of N03-N from organic N and NH
3

-N in the filter. Citing problems with 
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maintaining grass cover on the VFS, the authors recommended that 

alternative VFS areas be established and used in rotation. 

Young et al. (1980) reported on the ability of a 27.4 m long VFS to 

remove pollutants from feedlot runoff. Significant reductions in incoming 

pollutant mass (79% total solids, 84% TN, and 83% TP) were achieved in the 

buffer strips. Incoming NH3-N, and P04-P were similarly reduced. Schwer 

and Clausen (1989) reported that a 26 m long VFS retained 95% of incoming 

solids, 89% of incoming TP, and 92% of incoming TKN (mass basis) from 

dairy milkhouse waste water. 

Bingham et al. (1980) applied caged layer poultry manure to grass 

area and measured fescue VFS effectiveness at various distances. The 

authors observed concentration reductions even at buffer area length to 

waste area length ratios of 0.5 and 0.75, but they concluded that buffer 

lengths in 1:1 ratio to land application areas were necessary to achieve 

background levels of pollution in filters below manure application sites. 

Dickey and Vanderholm (1981) measured the effectiveness of VFS in 

removing sediment and nutrients from feedlot runoff. After settling the 

runoff for partial solids removal, they applied the runoff directly to the 

filters. They found total reductions in incoming nutrients and solids of 

over 80% on a concentration basis and over 90% on a mass basis for filter 

lengths ranging from 91 to 262 m. They recommended settling to be used to 

remove solids from feedlot runoff before application to filter areas to 

prevent damage to vegetation and reduced filter effectiveness. 

Edwards et al. (1983) used two 30.5 m fescue VFS in series to purify 

incoming storm runoff from a paved feedlot after passage through a 
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settling basin. The first VFS removed approximately 50% of incoming total 

P and total N with similar proportions removed by the second VFS. 

Overman and Schanze (1985) studied the runoff quality from "coastal" 

bermudagrass after it was irrigated with waste water from a municipal 

waste water plant. They detained the water in a holding pond before 

applying in the field and found that with the exception of TP, the field 

served as an exce 11 ent po 1 i sh i ng unit for the treatment p 1 ant. The 

detention pond reduced concentrations of BOD, TSS, and TKN by 91, 75, and 

82%, respectively, while the bermudagrass reduced incoming concentrations 

by 78, 81, and 65%, respectively. The overall reduction in TP 

concentration "r1as found to be 25% by the detention pond and 39% by the 

bermudagrass filter. 

Researchers at Virginia evaluated the effectiveness of VFS for the 

removal of sediment, N, and P from cropland runoff with field plots and 

observation of VFS on farms in Virginia (Dill aha, 1989; Dill aha et al., 

1985, 1986a, 1986b,1988, 1989; Lee et al.,1989). Under uniform flow 

conditions, 9.1 and 4.6 m VFS removed 91 and 81% of the incoming sediment, 

69 and 58% of the incoming P, and 74 and 64% of incoming N, respectively, 

from feedlot runoff. Dill aha et al. (1989) found in a similar study with 

cropland runoff that 9.1 and 4.6 m VFS removed an average of 84 and 70% of 

incoming suspended solids, 79 and 61% of the incoming P, and 73 and 54% of 

the incoming N, respectively. Magette et al. (1986, 1989) observed 

similar resu lts, noting that VFS effectiveness decreased with increasing 

time and with decreasing VFS to source area ratio. 

Michelson and Baker (1993) studied effectiveness of 4.6 and 9.1 m 

VFS on herbicide runoff losses from conventional and no-tillage crop land. 
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Reductions in the mass transport of sediment and atrazine were observed to 

be 72.2 and 37.1% by 4.6 m VFS, and 75.7 and 55.4% by 9.1 m VFS, 

respectively. 

Dill aha et al. (1986b) conducted a study to evaluate the long-term 

effectiveness and operational problems associated with vegetative filter 

strips by observing them on 33 farms in the Chesapeake Bay and Chowan 

River Basins. The most significant factor affecting VFS performance was 

the f l ow regime of runoff. The strips were highly effective for shallow 

runoff that was uniformly distributed across the VFS. Under concentrated 

flow conditions, however, VFS effectiveness was greatly reduced. They 

suggested that cost-shared VFS be limited to fields with fairly uniform 

slopes and poorly developed drainage patterns, excluding the sites in 

which more than 40 to 50% of the runoff crosses the VFS as concentrated 

fl ow. They a 1 so recommended mowing to contra 1 weeds and to promote 

thicker grass growth. 

Recently, several researchers (Flanagan et al., 1989; Williams and 

Nicks, 1988) have attempted to evaluate the effectiveness of VFS for 

erosion control with the Chemicals, Runoff, and Erosion from Agricultural 

Management Sys terns (CREAMS) model (Kn i se l , 1980) . Wi 11 i ams and Nicks 

(1988) applied CREAMS to a 1.6-ha watershed in Oklahoma. The authors 

concluded that CREAMS was a useful tool for evaluating VFS effectiveness 

in reducing sediment yield . This model, like the Kentucky model, does not 

consider the long-term effectiveness of VFS in that CREAMS also does not 

account for long-term sediment accumulations within the VFS. 

Consequently, CREAMS would be expected to overestimate long-term sediment 

trapping. The model also does not account for concentrated flow effects. 
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CREAMS does have a nutrient transport component, but the applicability for 

use with VFS has not been substantiated. 

Flanagan et al. (1989) devel oped a simplified procedure from CREAMS 

simulations to ca l culate the effect i veness of filter strips for removing 

sediment from shallow overland flow. Predictions of sediment delivery 

ratios using the simple equations were close to those predicted using the 

complete CREAMS model. They used these simplified equations to select the 

minimum width of filter strip to trap a desired level of sediment when the 

strip was composed of dense grass and was located at the base of a slope 

having minimal flow concentrations. 

Lee et al.(1989) developed an event-based model to simulate P 

transport in VFS by i ncorporating chemical transport submodels into 

SEDIMOT II, a storm water and sediment transport model originally 

developed for strip mine reclamation. The model considers advection, 

infiltration, biological uptake, adsorption, phosphorus desorption 

processes from land surface to runoff, and changes in sediment size 

distribution on P transport . The model simulates time-varying 

infiltration, runoff discharge, sediment yield, particle size 

distribution, and dissolved and sediment-bound P discharge along with 

sediment and P trapping efficiencies in VFS. 

Munoz-Carpena et al. (1992) developed a single-event model to 

simulate hydrology and sediment filtration in VFS. They linked three 

submodels: a modified Green -Ampt infiltration routine, a finite element 

kinematic wave overland flow algorithm, and the University of Kentucky 

sediment filtration model. Major inputs to the model were VFS properties 

(length, slope , hydraulic roughness, grass spacing, media height), soil 
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i nfi ltrat ion parameters, sediment and water inflow from the adjacent 

agricultural field and sediment properties. Major outputs of the model 

were runoff from the filter, infiltration rate, total infiltration, 

sediment outflow, sediment deposition, and filter trapping efficiency. 

The model predictions, however, applied to an ideal situation, since only 

sheet f l ow over a uniform, dense stand of vegetation was considered. 
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MATERIALS AND METHODS 

Description of Experimental Plots 

Six plots with dimensions of 1.5 m by 24.4 m (long axes oriented up 

and down slope) were constructed for the study at the Main Agricultural 

Experiment Station in Fayetteville, Arkansas. The soil is Captina silt 

loam (fine-silty, mixed mesic, Typic Fragiudult). Each plot was graded to 

a uniform 3% slope along the ma i n axis and was bordered with wood (0.1 m 

below and 0.1 m above ground) to isolate runoff. A stand of fescue grass 

was establ ished on the plots in spring, 1992 by seeding at approximately 

500 kg/ha. Wooden gutters were installed across each plot at 3.1, 6.1, 

9.2, 12.2, 18.3, and 24 .4 m down slope to enable collection of runoff at 

those lengths down the plot. Each gutter was fitted with a removable, 

water-tight cover that was capable of preventing water entry into the 

gutter. Each gutter cover was constructed of sheet metal and fitted with 

a gasket to seal the gutter/cover interface. Three wing nuts with gaskets 

and washers were used to hold the cover tightly to the gutter. The covers 

were removed to co ll ect runoff samples whenever desired. 

Thirty soi l samples (0-2.5 cm depth) were col lected from each plot 

on the dates of poul try li tter and swine manure application. The samples 

were mixed together, and 3 composite samples from each plot were analyzed 

by the University of Arkansas Agri cultura 1 Services Laboratory using 

standard methods of analysis (Page et al . , 1982). The results of the soil 

analyses are given in Table 1. 

Poultry Litter and Swine Manure Collection, Analysis, and Applicati on 

Poultry litter was collected from a broi l er house in mid April, 

1993. Three samples were collected and analyzed for moisture content 
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Table 1. Chemical characterization of the soil receiving 
poultry litter and swine manure. 

Concentration 1 

Constituent Poultry L itter2 Swine Manure3 

% 
H20 22.5 ( 1. 24) 23.4 ( 1. 5) 
Organic matter 0.7 (0) 0.7 (0.3) 

pH units 
pH 5.3 (0.2) 5. 7 ( 0. 1) 

µmhos/cm 
EC 17.7 (0.5) 20.0 ( 2. 0) 

mg/kg 
TKN 557.7 (25.8) 732.0 (86.6) 
NH -N 1.6 ( 1. 5) 8.5 (8.6) 
N0

3
-N 1. 5 ( 1. 5) 3.3 (2.9) 

p 75.7 (4.9) 76.8 (9.3) 
K 36.5 (19.9) 68.7 (18.9) 
Fe 129.2 (7.6) 140.5 (6.6) 
Cu 6.5 ( 1. 3) 0.7 (0.3) 

1 Mean of three replications; "as i S II basis. 

2 Plots subsequently treated with poultry litter. 

3 Plots subsequently treated with swine manure. 

4 Figures in the parentheses show standard deviations. 
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(MC), total N, NH
3
-N, N0

3
-N, TP, K, Fe, Cu, pH, and electrical 

conductivity (EC) by the University of Arkansas Agricultural Services 

Laboratory. Moisture content was determined gravimetrically by weighing 

a sample of the litter before and after drying at 104°C for 24 h. Total 

N was determined by the combustion method with a Leco FP 228 Nitrogen 

Determinator (Campbell, 1991). Inorganic N composition was determined by 

extraction with 2M KCL and distillation. Phosphorus, K, Fe, and Cu were 

determined by digestion with HN0
3 

and analysis by the inductively coupled 

plasma method (Thermo Jarrell Ash Model 300) (Donohue and Aho, 1991) after 

preparation according to Campbell and Plank (1991). Water was added to 

the litter to obtain ratios of 1:1 (water/litter) and 2:1 for analyses of 

pH and EC, respectively. The composition of the poultry litter is shown 

in Table 2. The litter was refrigerated (4°C) for 1 d prior to application 

to the plots. 

Liquid swine manure was pumped from an unagitated pit beneath a 

production facility into a metal container two days before the experiment 

in mid May. Two samples of the manure slurry were collected from the 

stirred container and analyzed for MC, total N, NH
3
-N, N0

3
-N, TP, K, Fe, 

Cu, pH, and EC by the University of Arkansas Agricultural Services 

Laboratory. Moisture content was determined gravimetrically by weighing 

a sample of the slurry before and after drying at 104°C for 24 h. Total 

N was determined by digestion with H2S04 and H
2
0

2 
followed by distillation. 

Inorganic N fractions were determined by distillation without digestion. 

Amounts of TP, K, Fe, and Cu in the slurry were determined by digestion 

with HN0
3 

and analysis by the inductively coupled plasma method (Thermo 

Jarrel Ash Model 300) (Donohue and Aho, 1991). Analyses of pH and EC 
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Table 2. Poultry litter and swine manure 
composition. 

Constituent 

H20 

pH 

EC 

Total N 
NH -N 
N03-N 
Tolal p 
K 
Fe 
Cu 

Concentration 

Poultry Li tter1 Swine Manure2 

% 
24 .6 (1.03

) 94.4 (0.04) 

pH units 
8.5 (0.0) 7.6 (0.2) 

---- µrnhos/cm 
6,000 (0.0) 6,500 (707) 

- mg/kg -
33,100 (6686) 
4,516 (390) 

176 (25) 
15,833 (462) 
20,633 (4697) 

101 (30) 
467 (12) 

- rng/L --
2,491 (301) 
1, 846 ( 13) 
53.2 (5 . 4) 

1,725 (348) 
966 (97) 
634 (336) 

15 (2.5) 

1 Mean of three sample s; "as is" basis. 

2 Mean of two samples; "as is" basis. 

3 Figures in the parentheses show standard deviations. 
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followd standard methods of analysis (Greenberg et al., 1989). The 

composition of the swine manure is shown in Table 2. 

The poultry litter and swine manure were manual l y-applied at rates 

of 186 and 203 kg N/ha, respectively, to the upper 3.1 of each plot with 

careful attention to the uniformity of application. Three plots were 

treated with poultry 1 itter and three with swine manure. Application 

rates of selected poultry litter and swine manure constituents appear in 

Table 3. The grass height was approximately 0.1 mat the time of poultry 

litter and swine manure application. The litter and manure application to 

the upper 3.1 m of the plots and the placement of the runoff collection 

gutters enabled assessment of effectiveness of VFS lengths of 0, 3.1, 6.1, 

9. 2, 15. 2, and 21 . 4 m. 

Runoff Sampling and Analysi s 

Simulated rainfall was intiated 2 d following poultry litter 

application and 5 d following swine manure application. Four rainfall 

simul ators (Edwards et al., 1992), altogether capabl e of app lying rainfall 

to one complete plot, were used to supply rainfal l at an intensity of 50 

mm/h. The plots received no natural rainfall between 1 itter/manure 

application and the simulated rainfall. The municipal water that was used 

as the simulated rainfall source was sampled and anal yzed (Table 4). The 

simulated rainfall was maintained until 1 h of runoff had occurred on each 

plot. The elapsed time between the beginning of rainfall and the 

beginning of runoff was noted for each plot. Seven runoff samples were 

manually-collected from the gutters on approximately a 0.17 h sampling 

interval , starting 0.08 h after start of runoff. All runoff samples at a 

given sampli ng time were col l ected sequential ly beg i nning with the 
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Table 3. Application rates of selected 
poultry litter and swine manure 
constituents. 

Application Rate 

Constituent Poultry Litter Swine Manure 

Total N 
NH -N 
N0

3
-N 

Tolal P 

185.9 
25.4 
1.0 

88.9 

kg/ha 
203.0 
150.4 

4.3 
140.6 

Table 4. Municipal water composition. 

Constituent 

NO -N 
TKN 
NH -N 
P0

3 
- P 

Total p 

Concentration 1 

- mg/ L -
0.550 (0.01 2

) 

0.476 (0.31) 
0.003 (0.0) 
0.003 (0.01) 
0.050 (0.03) 

1 Mean of three replications. 

2 Figures in the parentheses show standard deviations. 
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bottom gutter. The times required to collect the samples were measured to 

enable computation of runoff rates and volumes. 

Analytical Analyses of the Runoff Samples 

Aliquots of the runoff samples were filtered (0.45 µm pore diameter) 

immediately after collect ion for P04-P and N0
3

-N analysis. The runoff 

samples were then ana 1 yzed by Arkansas Water Resources Center Water 

Quality Laboratory for TKN, NH
3
-N, N0

3
-N, TP, P04-P, chemical oxygen demand 

(COD}, FC, and total suspended solids (TSS) using standard methods of 

analysis (Greenberg et at., 1992). The macro-Kjeldahl method was used for 

TKN analysis . Ammon i a was determined by the ammonia-selective electrode 

method. An ion chromatograph was used in analysis of N0
3

-N and P04-P. 

Total P was determined by the ascorbic acid colorimetric method following 

H2S04 -HN03 acid digestion . The closed reflux, colorimetric method was used 

for COD analysis. Fecal coliform concentration was measured using the 

membrane-filter technique. 

Statistical Analyses 

The runoff amounts and poultry l itter and swine manure constituent 

concentration data were used to compute f l ow-weighted concentrations and 

mass transport of TKN, NH
3
-N, N0

3
-N, TP, P04-P, COD, FC, and TSS past 

various VFS lengths. One-way analysis of variance tests were performed to 

determi ne the effects of VFS length on average concentration, average mass 

transport, and average proport i on of mass transport reduction for 

different litter and manure constituents. Least significant difference 

(LSD) testing used to separate treatment means when analysis of variance 

indicated a significant VFS lengt h treatment effect. 

19 



RESULTS 

Effects of VFS Length on Runoff Concentrations of 

Litter and Manure Constituents 

Flow-weighted mean runoff concentrations , averaged across all 

replications, for all the investigated water quality parameters for 

poultry litter and swine manure are shown in Tables 5 and 6, respectively. 

All parameters were significantly (p<0.05) affected by VFS length , 

although concentrations of TSS, COO, and FC in runoff from poultry litter

treated plots and TP, TSS, COO, and FC in runoff from swine manure -treated 

plots did not decrease significantly (p<0.05) after a VFS length of 3.1 m. 

The data generally indicate the influences of filtration by the grass, 

dilution by the simulated rainfal l, and infiltration of soluble 

parameters. However, decreasing concentrations were expected, s i nee 

dilution must occur if the simulated rainfall is relatively pure in 

comparison to the oncoming runoff, and if the VFS topsoil is relatively 

pure in comparison to the manure-treated topsoil. 

Effects of VFS length on Mass Transport of 

Litter and Manure Constituents 

Effects of VFS length on masses of poultry litter and swine manure 

constituents transported past the runoff collection troughs at the various 

VFS lengths are summarized in Tables 7 and 8, respectively. Mass 

transport of all parameters except N0
3
-N was significantly affect ed 

(p<0.05) by VFS length treatment. Mass transport of N03 -N tended to 

increase (although not significantly) with VFS length and averaged 0.82 

kg/ha poultry litter-treated area and 0. 32 kg/ ha swine manure- treat ed 

area . It is likely that the predominant source of N03-N in the runoff was 
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Table 5. Mean' runoff concentrations of selected poultry lHter 
constituents as a function of VFS length 

VFS Constituent 
length 

N01 -N Ntti-N TKN PO.-P TP TSS coo FC 

-m- mg/L cfu/IOOml 

0 0 67a2 7. lSa 26. SDa 4.29a 6. 72a 61.60a 170.68a 
3.1 0.62b 2.02b 6.88b l.38b 2.22b 22 26b 53. lib 
6.1 0.56c 0.9bc 4.68bc 0.75bc I 04bc 16 78b 37 25b 
9 2 0.55c 0.64bc 3.03bc 0 44bc 0 59bc 19 lOb 32 94b 

15.2 0. 52cd 0.12c l.85c 0.20c 0 28c 11. 05b 19 49b 
21 4 O.SOd 0.05c l.67c 0 17c O 22c 12 52b 19.54b 

1 Mean of three replications 

1 W1th1n-column means followed by the same letter are not 
significantly (Q=0.05) different by LSD test . 

Table 6. Mean I runoff concentrations of selected swine manure 
constituents as a function of VFS length. 

VFS Constituent 
length 

75354a 
13090b 
7057b 
2629b 
773b 
332b 

N01-N lltti-N TKN PO,-P TP TSS coo FC 

m mg/l cfu/lOOml 

0 0 S6a2 11.Sla l8.47a 9 79a ll.07a 61. 73a 126.SSa 1149000a 
3 . 1 0 Sb 2.0Sb 3.97b 2 Olb 2 I lb 12.09b 35 21b 75000b 
6.1 0.48bc O.Bbc 2 .18bc 1.07bc l .18b 11. 42b 27 46b 217000b 
9 2 0 48bc 0.18c 0.89c 0 .46c 0 57b 8.68b 22 78b 126000b 

15. 2 0.43c 0.06c 1. OBc 0.29c 0.4b 9.48b 42 .83b 115000b 
21. 4 0.44bc 0.04c l.OOc 0.24c 0.34b 5.3b !9.38b 152000b 

'Mean of three replications . 

1 Within-column means followed by the same letter are not s1gnir1cantly 
(Q=0 .05) different by LSD test . 
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Table 7. Mean 1 mass transport of selected poultry litter const i tuents 
as a function of VFS length 

VFS Constituent 
length 

N~-N TKN P04 -P TP TSS COD FC 

-m- kg/ha -cfu/na-
0 4. 2a1 15.Sa 2.Sa 4 .Oa 35 .9a 101.4a 
3 . 1 2. 2b 9.2b l.Sb 2.3b 22 7ab 56 .3b 
6.1 1.3bc 7. lbc 1. lbc l .Sbc 23 .8ab 54 .9b 
9.2 l .Ocd 5. lbc 0.7cd 0.9c 29 8ab 50 . lb 

15.2 0.3cd 4.2c 0 4d 0.6c 20 . 2b 37.2b 
21. 4 0. Id 3.4c 0.3d 0.4c 18 .6b 31. lb 

1 Mean of three repl ica t ions. 

1 Within-column means fol lowed by t he same l etter are not 
s1gn1f1cantly (Q<0.05) di fferent by LSD test . 

436402 E+6a 
135964 E+6b 
97278 E+6b 
40246 E+6b 
l4613 E+6b 
10014 E+6b 

Table 8 . Mean 1 
mass transport of selected swine manure 

constituents as a function of VFS length . 

VFS Constituent 
length 

N~-N TKN PO,-P TP TSS 

-m- kg/ha 
0 3 62a 5.8la 3. !0a 3 . 49a l9.6la 
3.1 l .03b l .99b l. Ol b 1. 07b 6.06b 
6.1 0 60c 1. 77b 0.86bc 0 97bc 9. ISb 
9.2 0 13d 0.65c 0.34cd 0 43bcd 6.62b 
15 . 2 0 04d 0.83c 0.23d 0 32cd 7.31b 
21. 4 0.03d 0. 76c 0.18d 0 26d 4. 45b 

1 Mean of three replications . 

1 Within-column means followed by the same letter 
are not significantly (Q<0 .05) different by LSD tes~ . 
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the simu lated rainfall itself, the soil, and/or the grass, since (a) the 

N03-N contents of the litter and manure were small, and (b) the short time 

and dry conditions between poultry litter and swine manure application and 

simulated rainfall would not have promoted N0
3
-N formation. A reduction 

in N03 -N transport might have been observed if the simulated rainfall N0
3

-

N concentration had been low relative to those of the litter and manure. 

Mass transport values for COD and FC are not shown in Table 8, because VFS 

1 ength had no effect on the mass transport of these parameters. The 

average mass transport (computed for all VFS lengths and replications) was 

22. 32 kg/ha manure-treated area for COD and 1. 64 X 1012 cfu/ha manure

treated area for FC, respectively. Mass transport data for the other 

parameters, however, indicate that mass is being removed as the runoff 

travels down slope. Decreases in concentrations of all the parameters 

except for N03 -N in runoff from poultry litter-treated plots (Table 7), and 

N0
3
-N, COD, and FC in runoff from swine manure-treated plots {Table 8) can 

thus be attributed to filtration mechanisms (i.e., infiltration and 

trapping/adsorption to grass and/or debris) as well as to dilution. 

For the plots treated with poul try litter, significant (p<0.05) mass 

transport reductions occurred up to a VFS length of 9.2 m in the case of 

NH
3
-N and P04-P. Mass transport did not significantly (p<0.05) change 

beyond a VFS length of 6.1 m for TKN and TP, and 3.1 m for TSS, COD, and 

FC. 

For the swine manure-treated plots, mass transport did not decrease 

significantly (p<0.5) after a VFS length of 9.2 m for NH
3
-N, TKN, P04-P, 

and TP, and 3.1 min the case of TSS. 
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First order kinetics was used to describe the relationship between 

mass transport of poultry litter and swine manure constituents and VFS 

length. The equation used was 

M = M. ek L 
1. L 1. 0 1 

(1) 

where M,,L is the mass transport (kg/ha treated area) of constituent i 

transported past VFS length L, M is the mass transport (kg/ha treated 
1 .o 

area) of constituent i initially entering the VFS, k is the rate 

coefficient (l/m) of constituent i, and L is VFS 1 ength (m). The 

parameter k, was determined from linear regression of natural logarithms 

of mass transport data against VFS 1 ength. The regression 1 in es were 

forced through initial values of incoming mass transport . The values of 

k, are given in Table 9. 

Figures l, 2, and 3 demonstrate the relationship between actual and 

predicted (first-order) mass transport of NH3 -N, TP, and P04 -P for 

different VFS lengths for the poultry litter-treated plots. Relationships 

between actual and predicted (first-order) mass transport past different 

VFS lengths of these nutrients for the swine manure treated plots are 

shown in Figures 4, 5, and 6. In all cases, predicted mass transport 

values were very similar to the observed values. 

Proport ions of Reduct ion of In i tial Mass Transport 

Vegetated filter strip effectiveness was computed for each poultry 

litter and swine manure constituent from 

(2) 
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Table 9. Rate coefficients for first -order model of 
mass transport. 

Poultry Litter Swine Manure 

Parameter kl c.v. 2 k c.v. 
-1 -m - -%- -1 - m - %-

TKN -0.084 37 -0.26 22 
NH -N -0.174 41 -0 . 13 22 
TP3 

-0.123 45 -0. 15 35 
PO -P -0. 113 33 -0 .16 34 
COD -0.064 36 -0.08 45 
TSS -0.035 32 -0.06 47 

1 k is rate coefficient. 

2 C.V. is the coefficient of variation. 
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Figure 1. Observed and predicted (first-order) mass transport 

of NHJ- N from the plots treated with poultry litter as a 

function of VFS length. 
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Figure 2. Observed and predicted (first-order) mass transport 

of TP from the plots treated with poultry litter as a 

function of VFS length. 
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Figure 3. Observed and predicted (first -order) mass transport 

of P04-P from the plots treated with poultry litter as a 

function of VFS length. 
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where E is the effectiveness (%) of VFS length i for parameter j, M 
1 . J 1 . J 

is the mass of parameter j transported past VFS length i, and M is the 
O,J 

mass of parameter j transported past the zero VFS length (i.e., initially 

entering the VFS). The effectiveness values of the various VFS lengths 

with respect to the runoff analysis parameters from the plots treated with 

poultry litter and swine manure are indicated in Tables 10 and 11, 

respectively. No values are shown for N0
3

-N since, as discussed earlier, 

mass transport of this parameter was independent of VFS length. 

Furthermore, no data for TSS or COD are given in Table 10, and for TSS, 

COD, and FC in Table 11, because the effectiveness of these parameters did 

not vary with VFS length for lengths between 3.1 and 21.4 m. The average 

effectiveness (computed for all lengths and replications) of the VFS for 

the poultry litter-treated plots for COD and TSS was 34.5 and 50.7%, 

respectively. The average VFS effectiveness (computed for all lengths and 

replications) was 61.4, 49.5, and 58.8% for TSS, COD, and FC, 

respectively, for the swine manure-treated plots. 

Table 10 indicates that the 21.4 m VFS length was from 80.5 to 99.0% 

effective in reducing incoming mass transport of TKN, NH3-N, TP, P04-P, and 

FC. The LSD testing of the mean effectiveness values, however, indicated 

that VFS effectiveness in terms of TKN, TP, and FC removal did not 

increase significantly (p<0.05) beyond VFS lengths of 9.2 m. Vegetative 

filter strip effectiveness with respect to NH3 -N and POd-P removal 

increased up to 15.2 m. 

Maximum effectiveness (at 21.4 m VFS length) varied from 87.3 to 

99.2% for reducing incoming mass transport of TKN, NH3-N, TP, and P04-P 

from the plots treated with swine manure (Table 11). LSD testing of the 
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Table 10. Mean 1 VFS effectiveness for selected 
poultry litter constituents. 

VFS Constituent 
Length 

NH -N 3 TKN PO -P 4 TP FC 

-m- % 
3.1 46.6c2 39.2c 38.8d 39.6c 62.2c 
6 .1 69.8b 53.5bc 55.lcd 58.4bc 77. 2b 
9.2 77 .6b 66.6ab 70.5bc 74.0ab 89.9a 

15.2 94. la 75.7a 84.9ab 86.8a 97.2a 
21. 4 98.0a 80.5a 89.5a 91.2a 98.9a 

1 Mean of three replications. 

2 Within-column means followed by the same letter 
are not significantly (p<0.05) different by LSD 
test. 

Table 11. Mean 1 VFS effectiveness for selected 
swine manure constituents. 

VFS Constituent 
Length 

NH3 -N TKN PO -P 4 TP 

-m- % 
3.1 70. 9c2 64.9b 65.4b 67.0b 
6.1 82 .9b 69. lb 71.3b 70.9b 
9.2 96.4a 88.7a 88. 7a 87.2ab 

15.2 98.8a 86.2a 92.9a 91.1 a 
21. 4 99.2a 87.3a 94.3a 92.4a 

1 Mean of three replications. 

2 Within-column means followed by the same letter are 
not significantly (p<0.05) different by LSD test. 
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mean effectiveness values, however, indicated that the effectiveness in 

terms of NH
3
-N, TKN, P0

4
-P, and TP mass transport reduction did not 

increase significantly (p<0.5) beyond a VFS length of 9.2 m. 
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CONCLUSIONS 

The fescue VFS removed significant (p<0.05) quantities of TKN, NH
3
-N, 

TP, P04-P, TSS, and COO from incoming runoff that originated from a 3.1 m 

long source area treated with poultry litter. The VFS also were effective 

in reducing significant quantities of TKN , NH3-N, P04-P, TP, and TSS from 

incoming runoff that originated from swine manure-treated area. The 

effectiveness of the VFS depended on the particular poultry litter/swine 

manure constituent as wel l as the VFS length. 

The VFS were ineffective in removing N0
3

-N from the incoming runoff 

from the poultry litter-treated area and N03-N, FC, and COO from swine 

manure-treated area, although this might have been due to the relatively 

high N03 -N concentration of the water used to provide simulated rainfall. 

Effectiveness of VFS did not significantly (p<0.05) increase beyond 

3.1 m for TSS and COO, 9.2 m for TKN and TP, and 15.2 m for NH
3
-N and P0

4
-

P, respectively, for poultry litter-treated plots. There was no 

significant increase in the effectiveness of VFS beyond 3.1 m for TSS, and 

9.2 m for NH3-N, TKN, P04-P, and TP, respectively, for the plots treated 

with swine manure. 

Fescue VFS appear to be effective in improving the quality of runoff 

from source areas treated with poultry litter and swine manure, if 

considerations mentioned earlier are followed. Further research is needed 

to determine the impact of source area to buffer area ratio on VFS 

performance and to quantify the effects of other variables such as type of 

vegetation, and rate and nature of incoming flow (diffuse vs. 

concentrated) on VFS performance. 
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Given the relatively straight forward nature of the results of this 

experiment and past success in modeling VFS performance, it seems likely 

that accurate estimation of VFS performance under a variety of 

circumstances will be possible in the future. It will then be the task of 

appropriate governmenta 1 agencies to define goa 1 s with regard to VFS 

effectiveness or even to establish something similar to discharge 

limitations in order for VFS (or similar management options) to be most 

effectively and rationally implemented. 
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