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Project Summary 
 

Tri Cycle Farms, whose main mission is to reduce food insecurity in their community, is a non-

profit urban farm in Fayetteville, Arkansas. The “Tri” in their name refers to the three parts of their 

foundation:  giving a third of their yield to volunteers, giving a third to local food pantries, and selling a 

third to sustain the farm and demonstrate the economy of local food production. They want to expand on 

the third part and have a vision of building a hydroponic greenhouse with the intention that it will create 

more crops to sell and give, as well as provide more educational opportunities for members of the local 

community. The framework planning for this greenhouse was done in part by Sarah Gould and Laura 

Gray, as part of their honors theses in 2019 where they designed the internal layout, one hydroponics 

system, and chose the most profitable crops (Gould, 2019 and Gray, 2019). My objective for this work is 

to pick up where they left off and design a different hydroponics system to be implemented in the 

greenhouse.  In addition, I will design an educational program for students to experience when they visit 

the farm. I utilized the engineering design process to size the layout and water return for a system of 

hydroponics called Shallow-Aero Ebb and Flow (SAEF), which is a new technique that strengthens the 

root system and is versatile for many plants (Chidiac, 2018). I then used this technical information to 

begin Tri Cycle’s mission of “grow growers and farm farmers” to produce a method to communicate to 

elementary-age students. I created a plan for an interactive prototype to demonstrate relevant principles of 

the SAEF system that includes an activity and reflection sheet for students to complete after the tour. The 

educational goals I used to create the module were set by the Arkansas K-4 Science Standards (Arkansas 

Department of Education, 2016) and were applied to a lesson to teach students that hydroponics is a 

viable solution for improving food sustainability. Tri Cycle can use these plans for the implementation of 

their hydroponic house and educational outreach.  
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Introduction 
 

Feeding the world is an important task that will only become more challenging as global 

population increases and the rate of climate change accelerates (Ehrlich et al., 1993). This global 

problem may be easy to ignore because it either seems overwhelming or does not affect those in 

our community.  In reality, it is estimated that 1 in 6 people struggle with hunger in Arkansas, 

including 1 in 4 children (Feeding America, n.d.). These staggering numbers are what prompted 

Tri Cycle Farms to be founded as a means to combat food insecurity in the area and mitigate the 

large global problem by solving local community problems one-by-one. A registered 501c-non-

profit, their mission is “growing community through soil”. They provide fresh, healthy food for 

the community while at the same time teaching citizens how to grow it themselves. This was the 

inspiration for their vision of a hydroponic greenhouse project that will provide a higher crop 

yield per year, and make a goal profit of $70,000 annually, which they can use to hire a full-time 

staff and buy more supplies for the farm. The goal of this greenhouse is to have a working 

system of five different hydroponics systems all growing different crops, with an eventually 

connected storage area and office space. Much of this internal design has been completed by 

Gray (2019) and Gould (2019), with the chosen hydroponic systems being Deep Flow 

Technique, Nutrient Film Technique, Dutch Bucket System, Strawberry Vertical Walls, and 

Shallow-Aero Ebb and Flow (SAEF). The optimal crops were chosen to be lettuce, tomatoes, 

strawberries, and basil, which were selected based on sustainability metrics and profitability. The 

Dutch bucket system has been designed for this greenhouse, leaving four systems in need of 

sizing. I chose to design the SAEF system due to its interesting operations and capabilities.  

 The other hope Tri Cycle has for their hydroponics house is to expand its educational 

program for teaching the community the sources of food and how to grow it. This is an 
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expansive goal, as their programs range from field trip tours for elementary students, volunteer 

programs with university students, to farming and gardening programs for adults. All of these are 

equally important, but I chose to focus on elementary students taking field trips to the farm. The 

goal was, using Arkansas Science Standards as a guide, to help them understand that plants do 

not necessarily need soil, that hydroponics is useful, and the role it plays in food sustainability.   
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Literature Review 
 

Hydroponics 
 
 Hydroponics refers to the practice of growing plants without soil, relying instead on the 

circulation of water to provide necessary nutrients for plants. This practice is not new.  Evidence 

of hydroponic farming can be found from 600 B.C. Mesopotamia (Turner, 2008).  Even though it 

has a long history, hydroponics can provide a promising future in sustainable farming. The 

nature of hydroponics has been proven to use 90% less water than traditional practices, produces 

a higher yield in shorter amounts of time, uses less space, and has more metrics to precisely 

control resources such as lighting, atmospheric conditions, and nutrient/water delivery (Popsop, 

2015). Other benefits include more predictable growing conditions and a lower probability of 

damaging microorganisms present compared to soil (Chidiac, 2018). In the age of rapidly 

growing human populations and changing climate, the world is going to need a method to 

consistently and reliably produce food. This directly relates to Tri Cycle Farm’s mission and 

their plans to build a hydroponic greenhouse, with the goal they will be able to sell high quality, 

uniform produce.  The following background information is presented on each of the five 

selected hydroponics systems for the Tri Cycle greenhouse (Chidiac, 2018).  

 Nutrient Film Technique (NFT) is the oldest and most common hydroponic system. It 

involves two to three millimeters of constantly flowing water across the plant roots, which 

develops a film of nutrients which the plants absorb. This requires a continuous but small water 

pump for circulation, and plants receive oxygen through diffusion through the water. Common 

problems with this system include clogging pumps and difficult to control water temperatures 

since the high surface area of the thin layer of flowing water reaches ambient temperatures 

quickly. A common example of an NFT system is shown in Figure 1. 
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Figure 1. Example layout of Nutrient Film Technique (NFT) (DIY Aquaponics Australia, 2017).  

 Deep Flow Technique (DFT) includes a system of deep water with the plants residing on 

the surface. This is commonly seen in rice production or nature in swamps or ponds where algae 

and bacteria are the primary producers of oxygen in the water. These systems are cheaper than 

other techniques, and water temperature is easier to control. However, because of the deep water 

with most not being exposed to the surface, oxygen levels can become low, requiring monitoring 

and supplemental dissolved oxygen.  

 

Figure 2. Example layout of Deep Flow Technique (DFT)  (Hydroponic Urban Gardening, 2019).  
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 Shallow-Aero Ebb and Flow (SAEF) systems combine shallow irrigation techniques from 

NFT, raft implementation of floating plants from DFT, and root strengthening qualities from 

aeroponics. Water is pumped up from a reservoir which floods an elevated shallow tray of plants.  

The pump is then turned off and water then drains by gravity back down to the reservoir, leaving 

the root zone exposed.  The exposed roots can then take in oxygen. The flooding and draining 

occur on a timed cycle that is energy and space-efficient, and the constant exposure to oxygen 

hardens the roots and makes them stronger and more resilient in the case of pump failure. More 

details of this system are provided in the remainder of this report, and a detailed outline of the 

layout can be found in Figure 6. 

Dutch bucket systems involve components of ebb and flow systems of flooding and 

draining, but split up the flow into fragmented media beds, mainly buckets, for optimal nutrient 

uptake. Water flows from a reservoir and is then diverted into different nozzles to be distributed 

to their respective planters (Figure 3). Separate buckets can be useful for crops that require more 

nutrients, and can also be useful in managing pests (Storey, 2016). Plants that require more water 

or nutrients can have the correct amount directed to them without negatively affecting the 

surrounding plants.  

 

Figure 3. Example layout of Dutch bucket system (Storey, 2016). 
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Tri Cycle has also planned to implement vertical wall hydroponics to be used for 

strawberry production. This type of system utilizes gravity to feed the water at the top and allow 

it to disperse down the wall. It also allows for high-density production per area and can adapt to 

many different plants (Singh, 2017). Vertical walls also provide aesthetic value to the 

greenhouse and are easily accessed for harvest.  

 

Figure 4. Example of a hydroponic vertical wall planter (3D Warehouse, 2017). 

 

Education Module  
 
 When designing a module with the intent of teaching a specific concept to an appropriate 

audience, decisions must be made about the best approach. The target audience in this project is 

third through fifth graders, so understanding how they best learn science concepts is important. A 

study completed in Nigeria found that school-age children were able to learn science and math 

concepts using a hands-on approach with demonstrations, even before they were exposed to any 

formal curriculum on the subjects (Ekwueme et al., 2015). In terms of my project, if students 

who have not been exposed in the classroom to hydroponics or sustainable agriculture practices 

are given hands-on learning tools at the farm, they could be able to gain meaningful knowledge 
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still. Elementary age children are an important group to educate about agriculture and the source 

of their food, as this understanding can be a framework on which to place additional knowledge 

they will gain as they get older to hopefully improve food sustainability for the world around 

them. Students are willing and able to learn about such concepts, and in response, more STEM 

curricula are being integrated with agriculture literacy (Vallera, 2019). Any curriculum that is 

used to teach these concepts should be reflective of the Arkansas K-12 Science Standards (2016) 

which provide specific goals that each age group should be learning each year. In order to teach 

third through fifth graders these topics in science, they must have an underlying goal that can be 

found in these standards (Arkansas Department of Education, 2016).  
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Engineering Design 
 

Hydroponics House 
 

The designs of the hydroponics systems are based on the internal layout designed by 

Sarah Gould and Laura Gray in Spring 2019. That layout includes five different irrigation 

systems designed for different crops: Nutrient Flow Technique, Deep Flow Technique, Dutch 

Buckets, Strawberry Vertical Walls, and Shallow-Aero Ebb and Flow. The layout of the 

greenhouse is shown in Figure 5, with dimensions and future additional space. Each one of these 

hydroponics systems was chosen based on what was best for the proposed crops to sell. Gould 

and Gray selected these systems and crops, as well as designed the irrigation system for Dutch 

Bucket systems. This left four different systems to be sized, including the SAEF system, which I 

designed to grow lettuce in this work.  Information for the design was provided by horticulture 

engineer JC Chidiac, who developed the SAEF system.  

 
 
 
 
 
 
 
 
 
 

 



15 of 39 
 

 
Figure 5. Internal Layout of Hydroponic House for Tri Cycle Farms (Gould 2019). 

 
SAEF System and Requirements  
 
 The main concept of the SAEF system is that it uses one of the most common systems of 

hydroponics, ebb and flow, and creates more durable roots by utilizing a sealed, insulated, cool 

root zone. Water is pumped over the roots and drained back down into a reservoir on a time 

interval of approximately 15 minutes. The water contains added nutrients necessary to the plant 

while draining hardens the roots to make them more resilient if the pumping system were to fail.  

 The ideal environment produced in the greenhouse will mimic the natural growing 

conditions in Arkansas as much as possible, so local produce can be grown and sold as 

traditional local produce was the product market identified by Tri Cycle Farms. The chosen crop 
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for this system is lettuce, and its ideal conditions and requirements for the SAEF system are 

shown below (Andersen, n.d.):  

• Sunny conditions 

• pH of 6.0-7.0 

• Ambient temperature from 15-21º C 

• Water temperature from 18-26º C 

• 20% safety factor on water reservoir volume 

• Provide flooded roots in 1-5 minutes  

• Tray drain of water within 10 minutes  

 

The volume of the reservoir, flooding time, and draining time will be the guiding constraints 

to size the pipe and pump system. The given dimensions show how the system fits within the 

greenhouse (Figure 5). The plants are placed on polystyrene rafts that lay on a rectangular flood 

tray. Water will flood these trays from a reservoir underneath the raised system, where it will 

gravity drain after the filling cycle is completed. This system will house two identical rafts for 

ease of maintenance and allow rotation of different crops, but both rafts will operate using the 

same tray and reservoir.  

 

The required calculations and sizing are as followed: 

• Volume of reservoir and flood tray 

• Rate of flooding 

• Rate of draining  

• Size of pipe/tubing  
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• Size and power requirement of pump  

• Lighting requirements  

 

The depth of the plant trays is 0.5 inches, which will provide the optimal amount of water 

and air to cover the root zone. Since the reservoir capacity will need to be of sufficient volume to 

spread water to both trays, its capacity will be 2x the volume of one tray, plus a safety factor of 

20%. This gives a volume of 7.2$%!, (54 gallons, 0.204 &!). This will be the amount of water 

that floods the trays and subsequently drains. The next step in the process was sizing the pipe and 

pump system.  

 These calculations are dependent on the chosen layout for the system. The relationships 

between length, height, velocity, and pressure are used to size an appropriate system to achieve 

the minimum flowrates. These decisions made for the final layout are outlined below (Figure 6), 

after iterations were done using different parameters.  

 

 
Figure 6. Elevation view of final proposed design of SAEF system growing lettuce. Point 1 and Point 2 
are shown for calculation references. 
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 This diagram shows a submersible pump in the water reservoir beneath the raised trays of 

plants.  The trays receive the water from the submersible pump. Since the depth of the trays is 

only 0.5” the side walls of each tray are too short for tubing to penetrate the side, so the tubing 

will enter the trays through the top of the rafts. The trays are also equipped with an overflow tube 

to set the water height, as well as the tube to gravity drain the water. Because of this, the 

containers are open to the atmosphere, and therefore the pressure difference between them will 

be negligible. The total pipe length will be 6.86 ft.  The pipe material was chosen to be PVC 

flexible tubing because it is a food-grade material. These parameters will be used to make design 

decisions for the best system for lettuce growth.  

 
 Flooding 
 

The required water flow rate to flood the trays determines the flow rate used for the rest 

of the calculations.  Water flow rate was determined from the previously found tray volume and 

average flood rate of 3 to 5 minutes.  This results in a flow rate using a 3 minute flood time of 

0.068 &!/&(). The relationship between the area of the pipe and the velocity of the water is as 

follows:  

* = ,-       (1) 

Where Q is flowrate (!!/#), V is velocity (m/s), and A is area of pipe (!") 

It is assumed that the ideal maximum velocity of water in the system for noise control 

and longevity is 2 m/s. Therefore, the minimum area inner diameter is 0.027 m, or 1.05 in. 

According to US Plastics, PVC is considered food safe if it is labeled NSF-51 (US Plastics, 

2013). The closest nominal size of this tubing has an ID of 1.0 in. Using this diameter resulted in 

a flow rate that did not flood the required volume within 3 minutes. However, since the 

requirement is that it needs to flood in less than 5 minutes, 4 minutes meets the requirement. A 
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flood time of 4 minutes and an ID of 1.0 in will be used in the remainder of the flooding 

calculations.  

Work needs to be added to the system to pump the water from the reservoir up and over 

the plant trays. This is dependent on the height, velocity, and pressure specifications that were 

decided earlier, and are related in Bernoulli’s equation 2.  

. = (ℎ" − ℎ#) + 4
$!%$"
&
5 + ('!

!%'"!

"(
)+6#%"     (2) 

Where W is work (m), h is height (m), P is pressure (atm), V is velocity (m/s), F is friction losses (m) 

This equation is dependent on the placement of point 1 and point 2. Referring back to 

Figure 6, point 1 was chosen to be at the bottom of the reservoir (empty, for the worst-case 

scenario), attached to the submersible pump. Point 2 will be at the top of the plant tray 

containers, and since the system will be open to the atmosphere, the pressure will be 0 gauge. 

There is no velocity at the bottom of the reservoir, and the total vertical height of the system is 3 

feet. This leaves a simplification of Bernoulli’s Equation to be:  

. = (0.9144	&) + (
("#$ )

!

"(
)+6#%"     (3) 

Where 6#%" is described as the energy losses due to friction, which is dependent upon the 

properties of the chosen pipe and the water flowing through it for major losses, and any bends or 

entrances for the minor losses. These are also dependent upon a friction factor, f, and the 

equations used are outlined below, as well as iterated in Table 1.   

6#%" =	6+, + 6-./                                                          (4) 

6+, = $ ∗
=
>
∗
?"

2@
 

6-./ = A
?"

2@
+&()BC	DBEEFE	$CB&	F)%CG)HF 
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$0 = 0.11 41
2
+ 34

56
5
7."9

	  

If f’³ 0.018: f=f’ 

If f’<0.018: 

$ = 0.85$0 + 0.0028  

Where L is length of straight pipe (m), D is diameter of pipe (m), V is velocity (m/s), k is fitting coefficient, 

e is roughness coefficient, Re is Reynold’s number. 

Since the pipe chosen is smooth plastic, it will have a very small roughness coefficient of 0.0015 

mm. The tubing is flexible PVC, and the bends in the system total to 5-45º angles.  

 
 
Table 1. Bernoulli's equation calculations to find power requirements of pump. 

 
 
 
 The viscosity and density of the pumped water were retrieved from Principle of Process 

Engineering (1997) at the normal temperature of 25º C.  Other assumptions in this table to 

Length of Straight Pipe 2.09 m h1 0
Number of Fittings (45º) 5 type B h2 0.9144 m

P1 0
Find f P2 0
V 2 m/s v1 0
d 0.02540005 m v2 1 m/s
density 998 kg/m3 F 1-2 0.81477013 m
viscosity 9.84E-04 Pa s
Re 5.15E+04 W 1.78019053 m

epsilon 0.0015 mm
f' 0.02119691
f (if <0.018) W 1.78019053 m

Q 0.00085 m3/s
Fsp 0.35558645 density 998 kg/m3

gravity 9.81 m/s2
K fittings 0.25
Entrances 1 type C P 14.8144305 W, delivered 
F minor 0.45918367 0.2 assuming 20% efficiency 

74.0721527 W, consumed
F 1-2 0.81477013 m 0.09929243 hp

Use 0.1 hp pump

Friction Factor Bernoulli's

Power
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account for are the 20% efficiency of the pump, since pumps of this size are relatively 

inefficient, and it will need to run its cycle continuously. This also assumes that the bends in the 

tubing are consistent with that of type B, or 45º angles, as well as one type C entrance into the 

plant trays. The findings of these calculations conclude that a 0.1 hp pump with a 1200 GPH 

capacity will be the best fit for this system (Figure 7). A pump of this nature can be easily 

purchased at Lowe’s for $119. While this pump is not specified as food-grade, commercial 

options were limited to choose the right specifications for this system.  

 

Figure 7. Pump curve of the selected pump (blue) v. system curve (orange). Operating point is determined to be at 1200 GPH. 

 

Draining  
 
 The tubing for draining will be performed by gravity, and therefore no work will be 

required to add to the system. There is a minimum flowrate that the draining process must meet, 

the full volume in no longer than 10 minutes (JC Chidiac, personal communication). Using the 

same source for NSF-51 flexible tubing, different diameters of tube were iterated to find their 

corresponding drain times. This was done by using the previously described Bernoulli’s equation 

and friction factor equations, solving for the velocity using a theoretical pipe size, and 
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consequently deriving the flowrate. The acceptable pipe size would have a flow rate of no less 

than 0.00034 m3/s.  

0 = (ℎ" − ℎ#) +
'!

"(
+ 6#%"                                                (5) 

6#%" = $ ∗ :
;
∗ '!

"(
+ A '!

"(
																																																										 (6) 

Subsitututing equation (5) into equation (6) gives a formula to iterate diameters to check for an 

acceptable flowrate. The minimum diameter for this to occur is 1-1/4”, which gives a drain time 

of 8.46 minutes. This design will also have an overflow tube installed next to the drain pipe, in 

which the opening will be at the top of the plant tray. This will allow for any extra volume of 

water to drain back down into the reservoir, as well as leaving the root zone partially open to 

atmospheric pressure.  

 
Lighting 
 
 One of the main benefits of hydroponics systems is that it can produce crops at their 

optimal conditions year-round. An important condition to control is lighting, as during the winter 

the greenhouse will receive less natural sunlight. For this worst-case scenario, light will enter the 

greenhouse for 8 hours at a rate of 100 µmol/m"/day (Chidiac, 2020), a photosynthetic photon 

flux density (PPFD). This translates to a daily light integral (DLI) of 2.88 mol/m"/s, using 

equation 7.  

>=L = MM6>	 <=>?
=!∗+

	N	 !377	+
;

	N	 #"	B
;
	N	 #	=>?

#C#7%<=>?
   (7) 

 This is assuming a 12 hour photoperiod day (Gray, 2019). Lettuce grown in Arkansas 

requires a minimum of 10 mol/m"/s (Chidiac, 2020), leaving a deficit of 7.12 mol/m"/s that will 

need to be provided with supplemental lighting. The required lights will have to provide a PPFD 

of 165 µmol/m"/s, using the inverse of Error! Reference source not found.equation 8.  
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MM6>	 <=>?
=!∗+

= >=L	 =>?
=!∗;DE

	N	 #C#7
%<=>?
=>?

	N	 #	;DE
#"	BF

	N	 !377	+
;DE

   (8) 

Tri Cycle owns lights that can emit 350 µmol/m"/s, which will be enough to supplement 

the lettuce crops. These particular lights have a light print of 3ft x 6ft (18 ft") when hung at the 

height of 3 ft from the plant canopy. The SAEF system has a surface area of 8 ft x 18ft (144ft"), 

which concludes 8 light fixtures will be able to provide light to the entire area. Each light emits a 

wattage of 330 W, and the annual power requirement can be calculated as follows. The yearly 

hours refer to 12 hour days needed to light the greenhouse for 4 months during the winter. 

-))QGD	MBRFC	(A.ℎ) = 	 !!7	G
?.(B/

	N	 #!HH	BF
EF

	N	 IG
#777	G

	N	8	D(@ℎ%E = 3,548	A.ℎ  (9) 

 The average cost of electricity of Fayetteville, AR, is $0.0674/kWh (Electricity Local, 

2020), which can be used to determine the annual operating costs of lighting the greenhouse.  

-))QGD	MBRFC	UBE% = -))QGD	MBRFC	VFW0X(A.ℎ)N	 $7.73K
IGB

 (10) 

The annual operating costs for the proper amount of lighting for the SAEF system is $240. 
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Complete Parts List  
 
Table 2. Complete parts list for SAEF system construction. Completed system will cover 144 !"!. 

Component Cost per unit Note 
Heavy Duty 100 Gallon 
Reservoir (Figure 8a) 

$109.73 This provides an optimal shape 
and height for ease of access and 
maintenance, only half of the 
container’s volume will need to 
be filled  
 

Hydroponic Adjustable 
Bench Stand (Figure 8c) 

$1,652.95 This is an adjustable bench 
stand that is very customizable 
to systems, so it could be used 
elsewhere as well. The height of 
the water will be set by only 
pumping the exact amount of 
water into the bench. 

Polystyrene Plant Rafts $270 These will be custom cut to fit 
the number of plants needed 

Food Grade Flexible PVC 
Tubing, 1.0” flooding, 5/8” 
draining (Figure 8b) 

$18.30  

1200 GPH Submersible 
Waterfall Pump (Figure 8d 

$119  
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Figure 8. Parts needed to obtain and build SAEF system. 

 
Cleaning and Safety Considerations  
 

Since the goal of this greenhouse will be to sell the produce, food safety is an important 

consideration. Everything the plants could touch needs to be food-safe, including pipes, trays, 

and pumps. However, for the purposes of this project, it was not possible to achieve complete 

success. The water pipes and polystyrene rafts will be food-safe, as well as the grow tray bench. 

A different, more custom pump composed of food-safe materials could be chosen for a safer 

system. The chosen parts of this system need to be routinely cleaned to maintain its efficiency 

(a) (b) 

https://hydrobuilder.com/hydroponics/hydroponic-reservoirs/100-gallon-
reservoirs/urban-oasis-heavy-duty-gray-100-gallon-reservoir.html 

 

https://www.hoseandfittings.com/pvc-nsf/ 

(c) (d) 

https://hydrobuilder.com/hydroponics/hydroponic-
grow-trays-and-stands/grow-trays-1317/botanicare-
slide-bench-system.html 

 
https://www.lowes.com/pd/smartpond-1200-GPH-
Submersible-Waterfall-Pump/1000597001 
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and sanitation purposes. The timing of the cleanings is dependent on the rate of algae growth in 

the system. Since the root zone will be in a low light environment, algae will be an issue to 

resolve and the rafts will have to be lifted and scrubbed, as well as the reservoir tank. The system 

will need to be monitored upon installation for optimal time intervals to clean. Other 

considerations related to maintenance include mosquito or redworm infestation. Maintaining 

movement of water throughout the system will reduce this risk, as they are more prone to 

stagnant areas of water. Corrosion is another factor to consider with routine cleaning, as any 

exposed metal on the pump or fittings could become susceptible. Depending on where the final 

location of the system is in regards to the electrical outlet, a ground-fault circuit interrupter 

should be used if the installation is within 6 ft of the system, to avoid electric shocks and 

damage.  
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Educational Outreach  
 
 Part of Tri Cycle Farms’ vision for their hydroponic house is to expand their educational 

programming to reach a larger audience. The engineering principles used, such as pipe and pump 

sizing, energy savings, and optimized plant growth, provide great opportunities to teach the 

community about sustainable farming, especially in an age of rapidly changing climate. Tri 

Cycle already conducts many school field trips that visit the farm every year, as well as teaching 

programs for adults. While speaking with Don Bennett, founder of Tri Cycle, he mentioned the 

best way to pique interest and involvement includes hands-on learning so audiences can see, 

touch, and even taste what is being grown. This may not be possible when touring the anticipated 

hydroponic house, as Tri Cycle will want to maintain food safety guidelines as much as possible, 

making hosting visitors problematic. Too many people walking in and out without following 

proper sanitary measures could result in contaminated food, which they cannot sell or use.  

 To account for this, while still providing a meaningful learning experience, an idea we 

had was an interactive prototype of the ebb and flow hydroponics system that will sit outside the 

greenhouse where individual parts can be observed and the goal of using hydroponics as a viable 

option for sustainable farming can be demonstrated. Before creating an educational prototype, a 

target audience should be chosen. I chose to focus on elementary-age students, 3rd-5th grade, 

because they are the future farmers, scientists, and leaders that already have a curiosity about the 

world around them. The students will be able to learn about hydroponics while thinking about 

how it can apply to everyday life.  

 When creating an educational program for students, every decision was guided by the 

Arkansas K-12 Science Standards for curriculum.  The standards are divided into topics that each 

age group should be learning at their grade level. The goals of this project are to teach students 
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that plants can thrive even without soil, and that hydroponics can be an option for a more 

sustainable farming future. I found the relevant science education standards for hydroponics and 

sustainability (Table 3), and my final module design will be measured against them. The 

program will be split up into three deliverables: a prototype display of an ebb and flow system, 

an accompanying poster describing hydroponics, and an activity sheet for the students to reflect 

and complete after making observations.   
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Table 3. Arkansas 3-5 Elementary Science Standards, sorted by relevance to hydroponics (Arkansas 
Department of Education, 2016).  

3rd Grade 
Weather and Climate 

3-ESS3-1 Make a claim about the merit of a design solution that reduces the impacts of a 
weather-related hazard.*  

[Clarification Statement: Examples of design solutions to weather-related hazards could include barriers 
to prevent flooding, wind resistant roofs, and lightning rods.]  
Engineering, Technology, and Applications of Science  

3-ETS1-1 Define a simple design problem reflecting a need or a want that includes specified 
criteria for success and constraints on materials, time, or cost.  

3-ETS1-2 Generate and compare multiple possible solutions to a problem based on how well 
each is likely to meet the criteria and constraints of the problem.  

3-ETS1-3 Plan and carry out fair tests in which variables are controlled and failure points are 
considered to identify aspects of a model or prototype that can be improved.  
Interdependent Relationships in Ecosystems 

3-LS2-1 Construct an argument that some animals form groups that help members survive. [AR 
Clarification Statement: Examples could include ant colonies, herds of bison, or hives of bees.]  

3-LS4-3Construct an argument with evidence that in a particular habitat some organisms can 
survive well, some survive less well, and some cannot survive at all. [AR Clarification Statement: 
Examples of evidence could include needs and characteristics of the organisms and habitats involved. 
The organisms and their habitat make up a system in which the parts depend on each other for 
survival.]  

3-LS4-4 Make a claim about the merit of a solution to a problem caused when the environment 
changes and the types of plants and animals that live there may change.* [Clarification Statement: 
Examples of environmental changes could include changes in land characteristics, water distribution, 
temperature, food, and other organisms.] [Assessment Boundary: Assessment is limited to a single 
environmental change. Assessment does not include the greenhouse effect or climate change.]  

5th Grade 
Matter and Energy in Organisms and Ecosystems 

5-LS1-Support an argument that plants get the materials they need for growth chiefly from air 
and water.  [Clarification Statement: Emphasis is on the idea that plant water comes mostly from air and 
water, not from the soil.] 

5-LS2-Develop a model to describe the movement of matter among plants, animals, 
decomposers, and the environment.  [Clarification Statement: Emphasis is on the idea that matter 
that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food 
Examples of systems could include organisms, ecosystems, and the Earth.] [Assessment Boundary: 
Assessment does not include molecular explanations.] 
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 While this table provides a list of standards that could apply to themes present at Tri 

Cycle, it will be important to note that my overall goal of this project will be for the students to 

arrive at the idea that plants can grow, and thrive, in water. The standard that most nearly reflects 

this is 5-LS1, “Support an argument that plants get the materials they need for growth chiefly 

from air and water.” This ultimately means the project will be aimed towards fifth-grade 

students, but it will be informational for all age groups, either recalling concepts they have 

already learned, or introducing them to new concepts they will later expand upon.  

The prototype display, depicted in Figure 9, will be similar to the designed SAEF system 

described in the earlier section of this report. However, it will be simplified to a much smaller 

scale ebb and flow system. This will account for the ease of taking apart the system and 

observing the individual components while considering the target audience of elementary age 

students. The system does not have to be sized for proper function because the purpose of any 

plants grown will be illustrative and not for actual production. A proposed list of construction 

materials is as follows: 

• Durable plastic bin acting as reservoir 

• Small submersible pump  

• PVC piping  

• Shallow tray on stand 

• Polystyrene plant rafts to lift and observe roots  
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Figure 9. Proposed simple prototype of Ebb and Flow hydroponics system to be displayed outside Tri Cycle 
Farm Hydro House 

 

Vision of the Field Trip 

Ideally, the students will begin the field trip by walking through the gardens and 

observing the produce grown in the soil around them, touching, smelling, and tasting the plants 

as guided by the staff. They will then come upon the greenhouse where pictures or a short video 

about the greenhouse and the crops grown inside can lead to discussion. They can then look at 

the prototype and turn on the pump, watch water flow over the roots, and observe how a plant 

can survive in a hydroponic system. The most important aspect of the prototype will be to 

observe healthy plant structure and roots, which they can compare to the plants they have already 

observed in the gardens.  

 Accompanying the prototype, outside the greenhouse will also be a poster describing the 

benefits of hydroponics and its connection to food sustainability. The poster is written with 

respect to the previously mentioned 5th grade standard, so the reading level will be appropriate. 
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However, to accommodate any other age groups visiting the greenhouse, visual graphics and 

illustrations are included. A rough draft of the poster (Figure 10) provides an example of how the 

idea could be displayed. It includes adequate information but will need to be redone by an 

illustrator or someone with more artistic capabilities than I possess. Regardless, the connection 

between plant growth and the benefits of hydroponics can be made. The poster emphasizes 

themes of sustainability, such as a higher yield with lower water and energy usage, as well as 

having more control over how the plants grow.  

 

Figure 10. Informational poster about hydroponics to be displayed outside the completed greenhouse. 

One last tool that the students and teachers will have the opportunity to use will be an 

activity sheet that sums up the goal of the hydroponics display. The sheet will encourage the 
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students to present model ideas that they have about plant growth and then modify them 

accordingly from what they learned at Tri Cycle. This can either be done at the site, using the 

poster and prototype to help guide them to some of the target ideas, or can be administered at a 

later time once they are back in a classroom setting. The worksheet is attached in the Appendix 

of this report because of length but includes drawing comparisons between the crops grown in 

the gardens they toured and the plants grown in the greenhouse. There are two columns for them 

to make this comparison, and in the end, it asks them to draw conclusions about how each one is 

needed and used. This encourages students to think about mental models they might have about 

plant growth, and allows them to make changes and expand on those ideas as they learn, setting 

them up for more science based learning where challenging models is crucial to the process. I 

also ask the audience an open ended question about food sustainability at the end of the 

worksheet. This is not for them to arrive at a direct answer, but rather to begin to think about 

what sustainability means as a whole. The earlier they can begin to understand these concepts, 

the better equipped they will be to solve problems in the world around them.  
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Conclusions and Future Plans  
 

While this project has produced usable results, they are intermediate. The next immediate 

steps would be to physically build the prototype of the display ebb and flow system, and test to 

ensure it functions properly. The poster accompaniment has suitable information for educational 

purposes, but more illustrations added for visual effects would be beneficial. After this, testing 

these programs with groups of field trip students, or in the classrooms, to gauge the effectiveness 

and make adjustments accordingly. When the greenhouse is eventually built, videos to show the 

inside workings would be useful for those large groups or those who do not follow proper food 

safety precautions, but an eventual procedure to “scrub in” before entering the greenhouse is 

necessary. While elementary education is important to Tri Cycle, adult educational programming 

associated with sustainable practices should also be explored. Tri Cycle has also expressed 

interest in created a more formal “Service Learning” project with the University of Arkansas for 

students to complete research and projects with them. Moving into the future, there is a need for 

these plans to be implemented for other students to continue the work and relationships cultured 

within the community. Other students can use these ideas and build upon them as I used the work 

form students last year to build my thesis.  There is still a need for sizing the other three 

hydroponic systems. Other considerations for the greenhouse include automated control of 

pumps, lights, and ventilation systems.  

Tri Cycle can use the theoretical design for the SAEF system as a guideline for installation 

after it has been tested and checked by licensed engineers. The SAEF systems will provide an 

efficient and versatile method to grow lettuce, among other crops, that Tri Cycle can use for 

becoming a more self-sustaining operation. This project will provide the community with fresh 

food to eat, and the opportunity to learn how food is grown sustainably.  
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Appendix 
Activity Sheet for Tri Cycle Farms Hydroponics House Field Trip 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What do plants need to grow? Circle all that apply. 
 

NUTRIENTS  WATER         LIGHT SOIL        SPACE      STABILITY 

Comparing Plants at Tri Cycle 
 
Question: How do the plants you saw in the gardens compare to the ones inside the greenhouse?  

- Observe and feel the plants surrounding you in the gardens at Tri Cycle, feel the soil and how the 
roots look 

 
Lettuce A 

 
https://gardenerspath.com/plants/vegetables/successf
ul-lettuce-patch/ 
 

Lettuce B 

 
https://www.greenandvibrant.com/grow-hydroponic-
lettuces 
 

What type of environment does each lettuce grow in? 
 
 
 

 

What does each lettuce leaf feel like? 
 
 
 

 

Where do these plants get their nutrients?  
 
 
 

 
 
 

Is there a taste difference between the two?  
 
 
 

 
 
 

Can lettuce still grow properly in water? 
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Plants grown 
in Soil 

Plants grown 
in water 

Draw connections to plants grown in soil to plants grown in water. What do they have in 
common? How do they differ?  

Label the parts of the hydroponics system below:  

 
https://www.epicgardening.com/hydroponic-systems/ 
 

Word Bank 
 

Reservoir 
 

Plant Roots 
 

Water Pump 
 

Rafts 
 

Timer 
 

Drain 

What is “food sustainability”?  
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