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PROJECT SUMMARY 

 

Universities attempt to plan curricula and advise students to have the best chance of 

passing and completing their degree on time. However, still, some students fail to pass courses, 

causing them to have to retake them and delay their graduation, and in extreme cases, withdraw 

from their university degree. High graduation rates have great implications for all facets of 

society. First, they are important to the individual because having a university degree increases 

quality of life and job security. Graduation rates are important to universities because they are 

used as a means of ranking and allocation of public funding. Graduation rates are also important 

to society as a whole because more people attaining a university education leads to lower crime 

rates, higher diversity of labor, and increased global trade. 

The purpose of this study was to develop an optimization tool that iteratively decides the 

optimal progression through a list of courses, symbolic of a degree program. In an effort to 

simulate reality, the optimization tool was built to solve for the optimal progression through a 

subset of the Bachelor of Science in Industrial Engineering degree at the University of Arkansas. 

The model outputs the list of courses a student should take for a given semester in order to have 

the best probability of passing, and the model updates its suggestions as it learns more about the 

student, such as which courses the student has already completed and which courses they have 

failed and need to retake. To select a given semester’s courses, the optimization model takes the 

form of a dynamic program in which the number of decision stages equals the number of courses 

to select for that semester. The dynamic program can be envisioned as a shortest path problem on a 

network in which nodes represent the states of the dynamic program, arcs represent the actions of the 

dynamic program, and paths correspond to a subset of courses that could potentially be selected for a 

given semester. The path length is related to the probability of a student passing all courses on the 

path and how imperative it is that the student completes those particular courses that semester, 

calculated from experimental data. The program then calculates the shortest, or least costly, path 

in the network of course decisions using Dijkstra’s Algorithm. Statistics are recorded on the 

number of semesters it took the student to graduate. 
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BACKGROUND AND SIGNIFICANCE 

 

At first glance, it may seem that the only stakeholder in university education is the 

student. Actually though, it is the simultaneous interdependencies between students, educational 

institutions, and the nation as a whole that makes virtually everyone a stakeholder. Thus, it is 

important that graduation rates are maximized because of their importance to stakeholders. 

For an individual, having a college degree is proven to have both tangible and intangible 

returns on the investment. According to a study done at Georgetown University, people who 

have at least a bachelor’s degree earn 84% more than people without a bachelor’s degree over 

the course of their lifetime, amounting to $32,000 per year and $1.4 million over a lifetime. 

[Heckler 2018]. They earn more employer-provided benefits such as health insurance and 

retirement plans, leading to better health and longer life expectancy [Heckler 2018]. Although 

difficult to quantify, a college education has positive effects on a person’s aptitude and critical 

thinking skills [Heckler 2018]. Completing a college degree instills in a person confidence, time 

management skills, and work-leisure balance, all skills that increase quality of life. A college 

degree is not the only way, but it is the most reliable path toward financial stability and freedom. 

Graduation rates are in the interest of educational institutions because of the tie to state 

financial support. “State financial support is increasingly being appropriated on the basis of 

performance—i.e., student outcomes, primarily measured by student graduation rates” [Hester 

and Ishitani 2018]. Many states are now requiring public institutions to disclose student 

performance statistics each year and prove that they are using state resources effectively. If they 

do not, they are at risk for lower funding, resources, and expenditures. With the transparency of 

rankings open to the public via heavily relied-on search engines such as U.S. News and World 

Report, a drop in rankings could cause prospective students to turn to other appealing 

universities on the basis of newer technology and funding opportunities. Graduation and 

retention rates are the primary factors in these rankings. 

Our nation as a whole should also be invested in student performance because of its 

implications on the economy. In recent years the US has fallen behind other countries in college 

degree production [Powell, Gilleland, and Pearson 2012; Webber and Ehrenberg 2010]. This is 

likely a reason for countries such as China surpassing the US in industrial productivity. Greater 

graduation rates mean a greater diversity of skilled labor in the economy and consumer spending, 

boosting economic growth. Greater numbers of people having high-paying jobs that provide 

benefits means less people requiring government assistance, generating a bigger pool of money 

for public works. Comparing the United States to developing countries, many societal issues 

resolve themselves with increased education. 

Semester course recommendation is one key area to examine how effective educational 

advising is. This study develops an optimization tool that models a degree curriculum as an 

activity network and recommends semester course decisions based on course failure rates and 

penalty values for not taking courses by certain times. 
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KEY RESEARCH FINDINGS 

 

Introduction 

 This section highlights the areas of research that are most pertinent to the development 

and technical feasibility of the project. Although distinct areas of research, they are closely 

related and can be synthesized to build an inclusive predictive model. 

 

Graph Theory 

 In mathematics, a network is a set of objects that are connected together [Farahani et al., 

2013]. The connections between the objects, or nodes, are known as edges [Farahani et al., 

2013]. Networks are also known as graphs, thus constituting the basis of the branch of 

mathematics, Graph Theory.  

 Networks can be either directed or undirected. In directed graphs the movement from one 

node to another is restricted in direction, which can be imagined as an edge pointing from one 

node to other nodes. In undirected graphs, or bidirectional, movement from one node to any 

other node that it is connected to is valid, and vice versa. Figure 1 shows an example of a 

directed network. 

 

 
Figure 1: Example of directed graph [Planck 2018] 

 

 The marvel of Graph Theory lies in that networks can represent systems of all variety in 

the real world. For example, a network could represent a supply chain system where nodes 

represent stores and edges represent transportation paths. Another example could represent the 

World Wide Web, where nodes represent computers, and edges represent the Internet and the 

delivery of information to individual devices [Farahani et al., 2013]. From these contrasting 

examples, we see that networks can represent both physical and intangible systems.  

 From an implementation standpoint, a convenient way to store the information contained 

in a network is an adjacency matrix. For an unweighted network of N nodes, the network can be 

stored in an N × N matrix [Farahani et al., 2013]. Each component aij represents an edge from 
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node i to node j [Farahani et al., 2013]. The values in the adjacency matrix consist of ones and 

zeros (or null values), where one indicates the existence of a connection between node i and node 

j, and zero (or null) means no such connection exists: 

 

𝑎𝑖𝑗 =  {
1      if there is an edge from node i to node j

0 or Null      otherwise
 

  

The cost, or length of the edge from node i to node j is not always one. The cost of a path 

can take on any value, and differing costs among node edges signifies that the impact of 

advancing from one physical location in a network or stage in a decision making process to 

another is not the same. For weighted networks, the adjacency matrix takes the following form: 

 

𝑎𝑖𝑗 =  {
{𝑥 | 𝑥 ∈  ℝ}     if there is an edge from node i to node j

Null      otherwise
 

 

It became evident that Graph Theory is relevant to this project, as it pertains to the idea of 

progressing through decision stages of selecting courses for a given semester. Nodes can 

represent the decision to take a course or not take a course, and the progression through all nodes 

in a set define a path or plan for a semester schedule, from a feasible set of courses considered. 

 

Dijkstra’s Shortest Path Algorithm 

 In an unweighted network, the costs of advancing from node to node in a network are 

irrelevant; therefore the impact of every decision is assumed to be the same. However, in reality, 

the cost, or value of alternative decisions is frequently different across alternatives. Some 

decisions are better or worse than others. In the case of selecting courses for a semester, the cost 

of each decision is not the same for two key reasons. As seen in experimental data, different 

courses have different pass and failure rates, thus incurring unequal risks to the student when 

taking them. Also, due to courses serving as pre-requisites for other courses, courses also have 

different costs as it is more important that certain courses be completed earlier on because they 

correspond to more other courses. 

 In the scope of this problem, nodes represent states in a decision making process, or a 

certain number of courses selected after a certain number of stages. Edges correspond to 

decisions about courses. Because of this, a path through the network represents an entire 

selection of a number of courses. The starting node, or source, represents the state in which no 

courses have been selected, and the last node, or sink, represents the state in which all courses 

have been selected. The idea of multiple paths existing from source to sink, all of which are 
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comprised of edge lengths representing the cost of every sub-decision (taking the course or not), 

pleads for a method of finding the shortest, or least costly, path through the network.  

 The problem of finding the shortest path through a network turns out to be a classic 

problem in Graph Theory. There are many different algorithms already established. The key 

algorithm incorporated in this project was Dijkstra’s algorithm. The algorithm was developed in 

1972 by Dutch computer scientist Edsger Dijkstra [Yan 2020]. Cost in an information-based 

network is analogous to distance in a physical network, but the method of finding the shortest 

path is the same and is summarized below [Yan 2020]. 

 

1. “Distance to current vertex is zero 

2. Distance to all other distances to other nodes is set to infinity 

3. S, the set of visited vertices is initially empty 

4. Q, the queue, initially contains all vertices 

5. While Q is not empty do: 

a. Select the element of Q with the minimum distance 

b. Add u to the list of visited vertices, S 

i. For each neighbor v of u do: 

1. If the distance to v > distance to u + distance from u to v, then a 

new shortest path is found, and distance to v = distance to u + the 

distance from u to v” 

Return dist [Yan 2020] 

 

 The original algorithm outputs the value of the shortest path and not the path itself [Yan 

2020], however using the same principles, we can return the shortest path between two 

respective nodes using Dijkstra’s algorithm to quantify the length of each path considered and 

selecting the shortest one. 

 The concept of finding the shortest path is especially relevant to this project. The purpose 

of modeling semester course selection as a network is to select the path that is the least costly to 

the student, which allows for the best probability of passing all courses and graduating on time. 

Dijkstra’s algorithm is the basis for determining all decisions regarding all courses considered—

either to take the course or to not. 

 

Dynamic Programming 

 Dynamic Programming is a technique for solving optimization problems that depend on 

results from simpler constituent optimization problems. The optimal solution to the overall 

problem depends on the optimal solution to the preceding problems. 
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 An optimal selection of courses can be built up by drawing upon solutions to smaller 

course selection optimization problems. The dynamic program first proceeds by figuring out the 

shortest path to the sink node from every node in the last node. Then, using those solutions, it 

finds the shortest path to the sink node from every node in the second-to-last node. This process 

is repeated until the shortest path is found. 

 

Simulation 

 To validate any predictive model, simulation is a technique that allows the model to be 

tested with many combinations of input. In the case of this study, the goal was to simulate 

students progressing through a subset of courses from the Industrial Engineering degree at the 

University of Arkansas following the suggestions of the optimization model. Therefore, the 

system required a method of solving a complete progression through the subset of courses under 

the model suggestions to gather performance metrics across many replications. To solve this, 

simulation of an entire progression through the subset of input courses was modeled as a 

dynamic program, where each subproblem was an optimization problem of each semester’s 

selections. In each optimization problem, the shortest path through the network represented a 

decision about each individual course considered for a semester. From this, information was 

extracted regarding which courses should be taken in order to have the best probability of 

passing all courses and graduate on time. 
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DATA COLLECTION AND PREPARATION 

 

Introduction 

 This section discusses internal data that was used in the project, its format, and how it 

was used in the construction of the model. This data was collected in the University of Arkansas 

Office of Student Success. 

 

At the University of Arkansas, data is consistently collected in the form of student grade 

records in the Office of Student Success. The compilation of data includes individual records of 

courses each student takes, many different attributes about the student, and the outcome of the 

course. For the purpose of this project, a request was made to the University of Arkansas Office 

of Student Success to receive student course/grade records for all Industrial Engineering courses 

at the University of Arkansas. This dataset included student grade/course records for all 

industrial engineering courses for 839 students for the past twenty years. The data was used to 

derive the pass rates for two purposes in the optimization model: one, to calculate the cost to the 

decision of taking or not taking a course and two, to simulate a random outcome of a student 

passing or not passing the course, according to its pass distribution. Table 1 shows a truncated 

sample of what was included in the data. 

 

Course_Section_Term Catalog # Course 

Term 

Course 

Grade 

DFW Major HS GPA 

2333_001_1133 2333 1133 W 1 INEG 3.765 

2313_001_1119 2313 1119 A 0 INEG 4.335 

2103_001_1139 2103 1139 F 1 INEG 3.915 

3513_001_1193 3513 1193 B 0 INEG 4.025 

3613_001_1153 3613 1153 C 0 INEG 3.415 

 

Table 1: Sample of individual course-grade records 

 In the data received, for each student course/grade record, one of the available attributes 

was ‘DFW.’ This binary variable either had the value zero or one, indicating true or false. A 

DFW value of one signified that the student had a DFW outcome, which means they either 

received a D or an F, or they withdrew from the course. In each of these circumstances, it was 

assumed that the student had to retake the course.  

 In Excel, a pivot table was used to calculate the average of the binary indicator variable 

DFW, by course. This information was crucial input information in the generation of the 

semester course decision networks. A summary of six courses’ data is shown in Table 2. 
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Course Code DFW Rate 

INEG 2103 0.21 

INEG 2313 0.17 

INEG 3613 0.12 

INEG 3623 0.13 

INEG 4553 0.04 

INEG 4683 0.05 

 

Table 2: DFW rates of six courses 
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METHODOLOGY 

 

Introduction 

 This section discusses the overall strategy of the construction of the model, important 

characteristics about it, and how it produced output.  

 

Modeling Course Decisions by Relationship 

 When evaluating whether or not to take a course, it must be considered according to its 

relationships with other courses. In this study there are three types of relationships (or lack 

thereof) that a course may have. The first relationship type is pre-requisite. This means that one 

course depends on another course which must be completed and passed for the student to take 

the other course. The second relationship type is co-requisite. This means that a course must be 

taken with or before another course to take that course. The third relationship type is really a lack 

thereof and is when a course has neither a pre- or co-requisite relationship with any other 

courses. It is a free course meaning that the course is free to be taken on its own anytime within 

the degree program. An example illustrating the possible decisions per course relationship is 

shown in Figures 2, 3, and 4. 

 

             Figure 2: Free course       Figure 3: Pre-requisite            Figure 4: Co-requisite 

 

  In Figure 2, course 1 is a free course, therefore the set of course decisions to consider is 

simply {1, 1̅}—either to take the course or not to take the course. Figure 3 shows a similar 

relationship, but it does not have the same implementation. Course 4 is a pre-requisite for course 

8. If the student has not already completed course 4, the set of course decisions is {4, 4̅}. If the 

student has completed course 4 in a previous semester, course 8 behaves as a free course, and the 

set of decisions to consider is {8, 8̅}. Thirdly, Figure 4 represents the most complex relationship. 

As is shown, course 2 is a co-requisite for course 3, meaning it must be taken alongside course 3 

if course 3 is taken and if course 2 has not been completed yet. From this relationship there are 
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three possible decisions to make, denoted in the sets {2, 3}, {2, 3̅}, and {2̅, 3̅}. Either we take both 

courses, the first but not the other, or neither one of the courses.  

 

Geometry of Network 

Recalling prior research discoveries, the capability of representing decisions about 

courses as nodes in a network is a powerful concept. Because of the need to select a number of 

courses for the semester (arbitrarily set by user) and the types of relationships among courses, 

this required that the network have a certain geometry.  

The first important dimension is the width, which is equal to the budget B, or the number 

courses the optimization tool selects per semester, plus one. This idea is shown in Figure 5.  

 

Figure 5: Conceptualization of the geometry of a network 

 

Moving from one node to another such as along the red edge, definitive decisions to take 

a course result in advancing one column to the left, which corresponds to filling one course out 

of the budget allowance. Decisions to not take a course are shown as a vertical line pointing 

downward. This path does not correspond to filling one course out of the budget, so the path 

does not advance a column to the left. Edges that advance two columns to the left represent the 

definitive decision to take both courses in a co-requisite pair or relationship. In this case two 

positions out of the selection spaces are filled, resulting in advancing two columns to the left. 
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 The other important dimension is the length of the network, also shown in Figure 5. This 

is equal to the number of stages (groups of alternatives, from which to select one) considered in 

the decision process plus one. Likewise in the preceding example, making the decision to take a 

course results in advancing one column to the left and also one row downward. Making the 

decision not to take a course also results in advancing one row downward. In either case, a 

decision was reached about the relationship considered. Over the course of any path from source 

to sink, the path advances over all levels, demonstrating the idea that all feasible course 

relationships are considered, and one and only one decision is reached. 

 

Generating the Network 

 For the reason that the optimization model should be able to work for selecting any 

number of any courses, it was necessary to automate the construction of the network based on 

input course options and desired number of courses. 

 The approach taken was to input all course options, their relationships, and information 

such as course number, DFW rate, penalty, and whether or not the course had been completed, 

into a Course Log excel file. The main program, described in detail in the following section, read 

in the course information from the file to populate a three-dimensional array of all feasible 

alternative decisions for each relationship to be considered at each stage in the network. 

Using all alternatives in the course options list, the program generated the (B+1)(T+1) x 

(B+1)(T+1) adjacency matrix, which contained all the necessary information to build the 

network. Recalling, the adjacency matrix is a two dimensional matrix where an entry at the 

indices ij represents an arrow pointing from node i to node j with cost aij (zero indexing applies). 

Pertaining to an arc representing the decision for a single-course stage, the cost is comprised of 

the DFW rate f of the course and the penalty p for not taking it by the semester in question. Cost 

values for the lengths of edges in a pre-requisite or free course stage are calculated according to 

the following: 

 

aij = cost = {
𝑓𝑝 → course is taken

𝑝 → course is not taken
 

 

The penalty values are not given in the data but are arbitrarily set by the user. In setting 

the penalty values for courses in a particular semester we effectively establish a class of course 

selection policies that are parameterized by these values. By exploring different parameter 

settings, we hope to identify course-selection policies that are efficient with respect to graduation 

metrics. 
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Likewise, the different edge lengths for arcs in a co-requisite stage (in which, say, course 

1 is a co/requisite of course 2) are 

 

aij = cost = {

𝑓1𝑝1 + 𝑓2𝑝2  →  𝑏𝑜𝑡ℎ 𝑐𝑜 − 𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒𝑠 𝑡𝑎𝑘𝑒𝑛
𝑓1𝑝1 + 𝑝2  →  𝑓𝑖𝑟𝑠𝑡 𝑐𝑜 − 𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒 𝑡𝑎𝑘𝑒𝑛
𝑝1 + 𝑝2  → 𝑛𝑒𝑖𝑡ℎ𝑒𝑟 𝑐𝑜 − 𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒 𝑡𝑎𝑘𝑒𝑛

 

 

From the preceding two equations we see that the arc length is the expected penalty due 

to a stage’s courses either being attempted or unattempted but not completed after the current 

semester. The program then iterated through each entry of the adjacency matrix to build the 

network with the correct “arrows drawn” and path costs, stored in a Graph object of the Python 

class Graph. The network was then ready to run Dijkstra’s algorithm to calculate the shortest 

path through the network. 

 As a visual example of network generation, a sample network representing the situation 

in which three courses are to be selected is shown in Figure 6 below. In this situation, the 

selections will come from evaluating the stages of one free course, two co-requisite relationships, 

and a pre-requisite relationship.  

               

Figure 6: Sample network with costs 

 

Calculating the Shortest Path 
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 From Figure 6 we can see that there are many ways to reach the sink from the source. 

Using the methodology from the preceding section, the program used Djikstra’s algorithm to 

calculate the shortest path from the source to the sink.  

The output of the algorithm is the optimal progression through the network. It is 

important to understand, however, that the path merely contains the numbers of the nodes of the 

optimal progression through the network. It does not contain the actual numbers of which 

courses to take. This information can be deduced by leveraging the geometry of the network. 

 

Extracting Which Courses to Take 

 The fact that the network is constant in width allows for easy conversion from an optimal 

progression of nodes to optimal selection of courses to take. This idea is best explained by 

revisiting the prior example in Figure 7.  

 
Figure 7: Optimal progression of nodes through network 

 Suppose that the shortest path, relating to the total of the costs of each segment, is the 

path in red. Also, suppose that in stages 1, 2, 3, and 4, the feasible alternatives were {1} and {1̅} 

in stage 1, {2, 3}, {2, 3̅}, and {2̅, 3̅} in stage 2, {4, 5}, {4, 5̅}, and {4̅, 5̅} in stage 3, and {6} and {6̅} 

in stage 4. This is an example of evaluating a free course, two co-requisite pair, and a pre-

requisite pair. The shortest path as indicated is the path 3-6-10-12-16.  

 Here we notice that the difference between node numbers between successive nodes can 

be one of three cases: B – 1, B, or B + 1. The difference of B, such as between nodes 3 and 6 

correspond to taking the first alternative, or taking course 1. The difference of B + 1, such as 

between nodes 6 and 10 correspond to not taking any courses evaluated in that stage; so neither 

course 2 nor 3 are taken. The third case, a difference of B – 1 where there are two courses in the 

alternative, such as between nodes 10 and 12, correspond to taking both courses 4 and 5.  
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Simulating Progression through Course Subset 

 Until this point, the methodology for how to return one semester’s course decisions has 

been explained. However, in order to gather information about student success using the 

suggestions of the model, the optimization model had to iteratively model every semester until 

completion for a student. Thus, it was imperative to develop a method for the model to update its 

feasible alternatives as the student passes and/or fails courses. 

 This was accomplished in three major steps. First, to simulate a student proceeding 

through the course subset, random numbers were generated according to the pass distribution of 

each course in the output course selection. If the number was greater than the pass rate of that 

course, then the student passed that course. In this case, the program changed the ‘Completed’ 

attribute of the course in the Course Log to 1, for true.  

 Next, the courses that were completed had to be removed from the three-dimensional list 

that held the decision alternatives for each stage. This required a lot of intricate logic in the case 

where a student completed and passed only one of a co-requisite pair. In this case, all alternatives 

(3) were removed from the list for that stage, and the course in the co-requisite pair that was not 

taken was added back in the next stage. 

 Finally, three-dimensional list that stored the decision alternatives for each stage had to 

be updated with courses that the student was then able to take, such as courses that had pre-

requisites that the student had just completed. To do this, the program revisited each course in 

the Course Log and added its alternatives to the list in a similar way as the first time. 

 This process of generating the feasible decision alternatives, calculating the shortest path, 

returning the courses to take, and updating the course decision alternatives with the new 

information was repeated until the student successfully completed all courses. In this way, a 

student’s entire progression through the course subset with the recommendations of the model 

was modeled, and statistics were collected regarding how many semesters it took the student to 

“graduate.” 

 

 

 

 

 

 

 

Verification of Model 
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 The model was validated by printing output from each critical step to the console. The 

critical steps to check were: 

 

1. Populating the Course Options list, which stored the list of decision alternatives at every 

stage 

2. Generating the adjacency matrix (contains information pertaining to which nodes point to 

which with which cost) 

3. Generating the network 

4. Calculating the shortest path through the network 

5. Extracting which courses the node path corresponded to 

6. Updating the Course Options list, after simulating and documenting pass/complete or 

fail/incomplete outcomes for courses 

7. Adding course decision alternatives to Course Options that were not feasible the prior 

semester 

8. Comparing “graduating rates” of different penalty assignment methods to select the best 

one 

 

Each following step could not be completed until the preceding step was tried on many 

cases. More information pertaining to how each critical step was implemented in the program is 

in the following section. 
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IMPLEMENTATION 

 

Introduction 

 This section outlines the implementation of the project methodology in the Python 

program. It summarizes key subroutines in the overall algorithm, discusses data structures used 

to implement methodologies, and explains the format of automation techniques. 

 

Starter Code 

 Due to the complexity of the algorithm and the fact that network implementation code is 

readily available on the internet, not all the code used in this project was developed by the 

researcher. The code that was used from the internet included a Python Graph class and 

associated methods, one of which was the key method Dijkstra. Below is a summary of the 

contents of the Graph class, and the full source code can be found in the Appendix: 

 

 __init__(edges): the constructor for the Graph data type, which creates a Graph 

(network) with a total number of edges equal to edges 

 vertices(): a property of a Graph object, which returns the number of total edges in the 

network 

 get_node_pairs(n1, n2, both_ends=False): method, which returns a list of all node pairs 

between two node numbers for a directed network 

 remove_edge(n1, n2, both_ends=False): method, which deletes an edge from a directed 

network 

 add_edge(n1, n2, cost, both_ends=False): method, which adds an edge to a directed 

network 

 neighbours(): Property, which returns sets of edges that each correspond to a group of 

edges 

 dijkstra(source, dest): method, which returns a list of nodes corresponding to the shortest 

path from source to dest in a network 

 

Original Code 

 Below are the constructs and routines that were developed firsthand by the researcher for 

this project: 

 getSink(b, t): method, which returns the number of the sink node of the network with 

given dimensions (B+1)(T+1) x (B+1)(T+1) 

 CourseOptions: a three-dimensional list of feasible course decisions in each stage 

 GenerateNetworkMatrix(courseOptions, b, semNum): method, which returns the 

adjacency matrix to build a network considering all possible course decision outcomes in 
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courseOptions, which selects b courses, with cost values dependent upon the semNum th 

semester that the courses are taken 

 Subroutine to generate the structure containing all feasible course decisions in each stage 

from an input list, courseLog 

 Subroutine to build a Graph object from the adjacency matrix obtained from 

GenerateNetworkMatrix 

 Subroutine to extract list of proposed courses from the returned node progression from 

dijkstra 

 Subroutine to update CourseOptions by eliminating courses that have been 

passed/completed and adding in course decision alternatives that were not already 

feasible 

 Subroutine to simulate students progressing through courses according to the suggestions 

of the model and calculate statistics 

 

Key Python Data Structures 

 In the Python program, the construct courseLog is a structure that stores input data from 

an Excel file. It is of the type Dataframe, of the Pandas package. The Excel file records a list of 

all courses offered and information about each course. A sample of courseLog is shown in Table 

3. 

 

CourseNum RelType CourseCode PreReq CoReq CoReqFor f Semester1 … Semester7 Completed 

1 f 2001    0.09 1  10 0 

2 c 2103   3 0.21 1  12 0 

6 p 2333 3   0.11 0.05  16 0 

 

Table 3: Sample contents of courseLog, the input information 

 In this example, course 1 is a free course, as its relationship type is ‘f.’ This means it has 

no pre-requisites or co-requisites. It corresponds to the course INEG 2001. The DFW rate for this 

class is 9%. If not taken by semester it incurs a cost of 1, whereas if not taken by semester 7, it 

incurs a penalty of 10. The same logic is used for semesters 2-6, however the table is truncated 

for the sake of space. Likewise, information is stored for course 2, only that this course is a co-

requisite for course 3. Similarly, the same applies to course 6, only that it has a co-requisite of 

course 3. The ‘Completed’ column records whether or not the course has been completed, where 

0 represents false, and 1 represents true. The courseLog construct provides the information for 

generating the list of feasible course decision alternatives and updates information about each 

course as courses are completed. 

In the program, the most important construct to understand is CourseOptions. This is the 

structure that stores all feasible course decision alternatives in each stage of determining a course 

selection for a semester. CourseOptions is of the datatype “list of lists of lists” of integers, which 

is most similar to a three-dimensional array of non-uniform length. The indices of each row of 
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CourseOptions store each decision alternative for a given stage, or a pre-requisite, co-requisite, 

or free course relationship. For example, below is an illustration of what the contents of 

CourseOptions could be: 

 

        courseOptions =  [[[1], [-1]], 

[[2, 3], [2, -3], [-2, -3]], 

[[4, 5], [4, -5], [-4, -5]], 

[[8], [-8]], 

[[10], [-10]], 

[[12], [-12]], 

[[15], [-15]], 

[[16], [-16]], 

[[18], [-18]], 

[[20], [-20]], 

[[23], [-23]]] 

 

 Looking at the contents of CourseOptions, the first row represents a set (list) of all 

decision alternatives for stage one. The first alternative, denoted by the list [1] represents the 

alternative of taking course 1, as the value is positive. The second alternative, denoted by the list 

[-1] represents the alternative of not taking course 1. Stage two represents all alternatives from 

considering a co-requisite relationship of courses 2 and 3. The first alternative [2, 3] represents 

taking courses 2 and 3; the second alternative [2, -3] represents taking course 2 but not taking 

course 3; and the third alternative [-2, -3] represents neither taking course 2 nor course 3. The 

first and foremost goal of the program is to calculate exactly which single alternative should be 

selected from each row of CourseOptions in order to determine the optimal course selection. 

The adjacency matrix is of the type two-dimensional list, or array. As stated before, for 

weighted networks of N nodes, the network can be stored in an N × N matrix [2]. Each 

component aij represents an edge from node i to node j [2]. The values in the adjacency matrix 

consist of either numbers or ‘None’ (null), where the number indicates the cost of the path from 

node i to node j, and ‘None’ means no such connection exists. For example, the adjacency matrix 

for the first two stages of the complete network of all stages is the matrix below. The 

corresponding incomplete network is shown below: 
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In the adjacency matrix, the indices ij where the value is not ‘None’ represent an edge 

from node i to node j with a cost of aij. From the matrix, we see that a36 signifies that node 3 

points to node 6, and this matches the network shown in Figure 8. This means that the decision 

to take course 1 is represented by the path from node 3 to node 6 and incurs a cost of 0.086 (read 

in from courseLog). Likewise, we see that a69 signifies that node 6 points to node 9 with a cost of 

0.211. This matches the figure. This is the scenario of taking course 2 but not course 3.  

 

 
Figure 8: Network represented by preceding adjacency matrix 

 

The network shown in Figure 8 is of the datatype Graph, as defined in the Graph class. A 

graph, or network, is created when the constructor is called. Edges are added when the add_edge 
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function is called to the network object and the start and end node numbers are specified. In the 

program, the network is generated by looping through the adjacency matrix values aij to add 

edges to the network. This is accomplished by the following call to the network object: 

graph.add_edge(i, j, info_matrix[i][j], False) 

The edge points from node i to node j and the cost of the path is equal to the adjacency 

matrix info_matrix[i][j]. The edge is directed. 

A Python List, analogous to a one-dimensional array, is used in the program to store the 

output of the dijkstra function, which returns the optimal node number progression through the 

network. An additional list coursesToTake is also used to store the course selection, extracted 

from the optimal node progression list. 

 

Algorithm for Optimal Course Selection 

 One pass through the network corresponds to one calculation of B optimal courses to take 

that semester. After understanding the data structures and methodologies in the preceding 

sections, below is the summary of the algorithm to arrive at the output list of optimal courses C. 

 

 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑔𝑒 𝑇 𝑖𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 𝐿 

 𝐴𝑝𝑝𝑒𝑛𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 𝐷 𝑡𝑜 𝑐𝑜𝑢𝑟𝑠𝑒 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 𝑂 

 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑑 ∈ 𝐷: 

  𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑎𝑛𝑑 𝑎𝑑𝑑 𝑛𝑜𝑑𝑒 𝑛 {𝑛1, 𝑛2} 𝑡𝑜 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑁 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

 𝑈𝑠𝑒 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎′𝑠 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑡𝑜 𝑟𝑒𝑡𝑢𝑟𝑛 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑆 

 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠 ∈  𝑆𝑛+1 − 𝑆𝑛 ∶ 

  𝐼𝑓 𝑠 = 𝐵 + 1 → 𝑛𝑒𝑥𝑡 𝑠  

  𝐼𝑓 𝑠 = 𝐵 → 𝑎𝑑𝑑 𝑂𝑇11
 𝑡𝑜 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 𝑡𝑜 𝑡𝑎𝑘𝑒 𝐶 

  𝐼𝑓 𝑠 = 𝐵 − 1 → 𝑎𝑑𝑑 𝑂𝑇11
𝑎𝑛𝑑 𝑂𝑇12

𝑡𝑜 𝐶 

 

 𝑅𝑒𝑡𝑢𝑟𝑛 𝐶 

 

  

The algorithm loops through each line L in CourseLog to discover what stages T 

(relationships) exist among courses and adds the sequence D of all decision alternatives d to 
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CourseOptions O by stage. Next the algorithm constructs the corresponding edges {n1, n2} of the   

network representing all possible decision paths. Dijkstra’s algorithm returns the optimal node 

progression S. The courses to take are deduced from the node progression by determining which 

of three cases the difference between subsequent node numbers is. If the difference equals B or 

B-1 then either add one or both course numbers from stage T of O to the set of courses to take C. 

Return C. 

 

Algorithm for Complete Progression Through Course Subset 

 Progression through the entire course subset according to the suggestions of the model is 

achieved by simulating multiple semesters using the previous algorithm. The previous algorithm 

suggests a set C of courses to take each semester and the set of sequences D of decision 

alternatives d is updated as courses are completed and pre- and co-requisites become feasible. 

The algorithm is summarized below: 

 

 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑇 ∈ 𝐿:  

 𝐴𝑝𝑝𝑒𝑛𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 𝐷 𝑡𝑜 𝑐𝑜𝑢𝑟𝑠𝑒 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 𝑂 

 𝑊ℎ𝑖𝑙𝑒 𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 𝑟𝑒𝑚𝑎𝑖𝑛: 

  𝐶 =  𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝐹𝑜𝑟 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐶𝑜𝑢𝑟𝑠𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 

  𝐹𝑜𝑟 𝑐 ∈ 𝐶: 

   𝑛𝑢𝑚 ~𝑁(0,1) 

   𝐼𝑓 𝑛𝑢𝑚 > 𝑓, 𝑡ℎ𝑒𝑛 

𝐿[𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑] = 𝑡𝑟𝑢𝑒 

   𝐹𝑜𝑟 𝑐 ∈ 𝐶: 

    𝐼𝑓 𝑐 𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑, 𝑡ℎ𝑒𝑛 

     𝑅𝑒𝑚𝑜𝑣𝑒 𝑑 ∈ 𝑂 𝑤ℎ𝑒𝑟𝑒 𝑐 ∈ 𝑑 

 𝑛𝑢𝑚𝑆𝑒𝑚𝑒𝑠𝑡𝑒𝑟𝑠 += 1 

 𝑅𝑒𝑡𝑢𝑟𝑛 𝑛𝑢𝑚𝑆𝑒𝑚𝑒𝑠𝑡𝑒𝑟𝑠  
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RESULTS 

 

Introduction 

 This section is about the output of the model and how it can be used to draw insights. 

 

Output from One Complete Run 

 Below is sample output from running the program to completion. For each semester in 

simulation, the output contains the feasible course options for that student in that semester, the 

node number progression the student should take through the network, and B optimal courses 

that the optimal path corresponds to. In this particular run, B was set to 5 courses. 

 The 25 courses considered was a list based mostly on experimental data, with four extra 

courses that were based on similar courses, but not actual courses of the IE degree program. The 

failure rates and pre-req relationships for the real courses were populated by using the 

experimental data and the relationships in the current IE degree program, and the average failure 

rate was used for the courses that are not real. Information about these classes is detailed in the 

Data Collection and Preparation section. Penalty values were chosen largely based on pre-

requisite chains and courses that absolutely had to be taken certain semesters, such as Applied 

Probability and Statistics for Engineers I, Simulation, Intro to Optimization, and IE Capstone 

Experiences I and II. Courses in pre-requisite chains and these courses were assigned high 

penalty values in the respective semesters in order to encourage the model to select these courses 

in the semesters they were essentially nonnegotiable. All other courses were assigned penalty 

values of 1, as they did not influence other courses and could be taken any time. The penalty 

values were assigned in a similar fashion to Table 4: 

 

Course Sem1 Sem2 Sem3 Sem4 Sem5 Sem6 Sem7 Sem8 

1 1 1 1 1 1 1 1 1 

2 500 400 300 200 100 1 1 1 

3 1 500 400 300 200 100 1 1 

4 1 1 1 1 1 1 1 1 

5 1 1 400 300 200 100 1 1 

6 1 1 1 1 1 1 1 1 

7 1 1 1 1 1 1 1 1 

8 1 1 1 1 1 1 1 1 

9 1 1 1 1 1 1 2000 1 

10 1 1 1 1 1 1 1 3000 

 

Table 4: Penalty values for instance run 

 



 
 

23 
 

 The model was not run using any courses in co-requisite relationships for the reason that 

this is the only piece of logic that has yet to be implemented. At this time, it is difficult to assess 

the ability of the model to predict what a student should take when the courses involve co-

requisites. However, the model fully implements the selection of free courses and pre-requisites, 

an instance of which is shown below. 

 For illustration, the output from the first three iterations of simulating students pass 

through 25 free and pre-requisite courses is shown below: 

 

courseOptions: 

[[1], [-1]] 

[[2], [-2]] 

[[4], [-4]] 

[[5], [-5]] 

[[6], [-6]] 

[[7], [-7]] 

[[8], [-8]] 

[[11], [-11]] 

[[12], [-12]] 

[[13], [-13]] 

[[14], [-14]] 

[[16], [-16]] 

[[18], [-18]] 

[[19], [-19]] 

[[20], [-20]] 

[[21], [-21]] 

[[22], [-22]] 

[[23], [-23]] 

[[24], [-24]] 

[[25], [-25]] 
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The student should take this path through the network: 

[5, 11, 16, 21, 27, 33, 38, 44, 50, 55, 61, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120] 

 

This path corresponds to these courses: 

[2, 4, 7, 12, 14] 

 

courseOptions: 

[[1], [-1]] 

[[5], [-5]] 

[[6], [-6]] 

[[8], [-8]] 

[[11], [-11]] 

[[13], [-13]] 

[[16], [-16]] 

[[18], [-18]] 

[[19], [-19]] 

[[20], [-20]] 

[[21], [-21]] 

[[22], [-22]] 

[[23], [-23]] 

[[24], [-24]] 

[[25], [-25]] 

[[3], [-3]] 

 

The student should take this path through the network: 

[5, 11, 16, 21, 27, 33, 38, 44, 50, 55, 61, 66, 72, 78, 84, 90, 96] 

 

This path corresponds to these courses: 
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[5, 6, 13, 19, 21]     

 

courseOptions: 

[[1], [-1]] 

[[8], [-8]] 

[[11], [-11]] 

[[16], [-16]] 

[[18], [-18]] 

[[20], [-20]] 

[[22], [-22]] 

[[23], [-23]] 

[[24], [-24]] 

[[25], [-25]] 

[[3], [-3]] 

[[13], [-13]]    student failed course 13 the previous semester, so it is an option. 

[[15], [-15]] 

[[17], [-17]] 

 

The student should take this path through the network: 

[5, 11, 16, 21, 27, 33, 38, 44, 50, 55, 61, 66, 72, 78, 84] 

 

This path corresponds to these courses: 

[8, 11, 20, 24, 3] 

 

courseOptions: 

[[1], [-1]] 

[[16], [-16]] 

[[18], [-18]] 
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[[22], [-22]] 

[[23], [-23]] 

[[25], [-25]] 

[[13], [-13]] 

[[15], [-15]] 

[[17], [-17]] 

[[3], [-3]]    student failed course 3 the previous semester, so it is an option. 

... 

 

Here we see that the student initially does not have credit for any courses, so their initial 

course options are all courses satisfying pre-requisite and/or free course requirements. For the 

first semester, the model recommends taking courses 2, 4, 7, 12, and 14. As the student 

completes these courses, the model updates courseOptions to reflect that courses 2, 4, 7, 12, and 

14 are no longer options to take and have been marked as completed in CourseLog. During 

simulation, the model detects that the student failed courses 13 and 3 in semesters 2 and 3 

respectively, and therefore does not mark them complete. Because of this, courses 13 and 3 show 

up again in the next semesters’ courseOptions. The same process is iterated until all courses are 

passed and completed.  

After simulating 100 students, the average number of semesters it took students to 

proceed through all courses was 5.9 semesters. The results are summarized in Figure 9: 

 

 

Figure 9: Frequency chart for number of semesters to graduate 
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It is not surprising to see that the mean number of semesters to graduate was 5.9 when the 

total number of courses to take was 25. If all courses were passed on the first time, the minimum 

number of semesters to graduate would have been 5. Since all courses have a non-zero DFW 

rate, it would not be expected for the mean number of semesters to graduate across 100 students 

to be 5. From the data we can conclude that using the suggestions of the model, 86% of the 

students graduated within an extra semester, and 100% graduated within an extra year.  

This suggests that the model can provide good insight as to what a student should take in 

order to have the best probability of graduating on time. This number is not far from reality, with 

most students graduating within an extra year of the eight-semester plan if they do not graduate 

on time. Perhaps another reason why the mean number of semesters to graduate is higher than 

expected is because the model does not account for students being able to “make up time” by 

taking courses over summer break, winter, or taking extra hours. For the model to be able to 

produce results that are reasonable without accounting for students making up for failed courses, 

the model is deemed a success and can only be improved.   
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MODEL ASSUMPTIONS AND CONCLUDING REMARKS 

 

Introduction 

 This section describes three important limitations of the optimization model and areas for 

improvement, using this study as a baseline. 

 

Assumption  

 To maintain simplicity of the baseline, this model is based on the assumption that all 

courses are offered every semester. However, this is not the case in reality. This should be taken 

into consideration when using this model to plan semester courses. The solution to alleviating 

this assumption would be to include in the Course Log binary variables for each course, 

indicating whether or not they are offered in each semester. This way, logic would prevent these 

course decision alternatives from being added to Course Options in semesters they are not 

offered. 

 

Assumption 

This model also assumes that all courses in the input list must be taken and that no 

courses are electives. The model works off this assumption for the reason that data was 

unavailable on non-industrial engineering courses, but in reality, the industrial engineering 

degree contains non-industrial engineering courses. A simple way for the model to work without 

relying on this assumption would be to implement logic forcing the model to select courses that 

are on the required list and a certain number from an optional list. This ensures that the number 

of course selections for the model to output is less than the number of courses available, showing 

that the model can handle both required and elective courses. 

 

Assumption 

 This model is limited to only selecting industrial engineering courses, however, in reality 

an industrial engineering degree contains non-industrial engineering courses. This was done as 

data was unavailable for non-industrial engineering courses. The solution to alleviating this 

assumption is to also include courses that are non-industrial engineering. This way it is more 

representative of a real industrial engineering degree.  

 

Concluding Remarks 

 Although the model is simplified and only represents progression through a subset of 

courses, it still abides by the vast majority of logic in a real life scenario. The model 
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accomplishes its goal of optimizing and suggesting the courses a student should take in order to 

have the best chance of passing all courses and staying on track. Upon further development, the 

model could be improved by incorporating non-industrial engineering courses, enforcing a 

minimum number of required and the rest elective courses, and restricting which courses are 

available each semester. The results of the complete model could then be fully validated against 

the standard eight semester plan. Until then, however, the current developed model accomplishes 

the toughest modeling requirements and can be improved to solve the remaining gaps in logic 

with minimal effort.  
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APPENDIX 

 

Introduction 

 This section contains two sections, one for the code that was not written by the researcher, 

and original code that was written by the researcher. The code that was not original included the 

Python Graph class and a separate implementation of Dijkstra’s algorithm. The code written by 

the researcher included the main program that read information from a user and output the 

progression the student should take through the sample course subset. 

 

Starter Code 

 

def make_edge(start, end, cost=1): 

    return Edge(start, end, cost) 

 

def getSink(b, t): 

    return ((b+1)*(t+1)) - 1 - b 

 

class Graph: 

    def __init__(self, edges): 

        # let's check that the data is right 

        wrong_edges = [i for i in edges if len(i) not in [2, 3]] 

        if wrong_edges: 

            raise ValueError('Wrong edges data: {}'.format(wrong_edges)) 

 

        self.edges = [make_edge(*edge) for edge in edges] 

 

    @property 

    def vertices(self): 

        return set( 

            sum( 

                ([edge.start, edge.end] for edge in self.edges), [] 

            ) 
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        ) 

 

    def get_node_pairs(self, n1, n2, both_ends=False): 

        if both_ends: 

            node_pairs = [[n1, n2], [n2, n1]] 

        else: 

            node_pairs = [[n1, n2]] 

        return node_pairs 

 

    def remove_edge(self, n1, n2, both_ends=False): 

        node_pairs = self.get_node_pairs(n1, n2, both_ends) 

        edges = self.edges[:] 

        for edge in edges: 

            if [edge.start, edge.end] in node_pairs: 

                self.edges.remove(edge) 

 

    def add_edge(self, n1, n2, cost, both_ends=False): 

        node_pairs = self.get_node_pairs(n1, n2, both_ends) 

        for edge in self.edges: 

            if [edge.start, edge.end] in node_pairs: 

                return ValueError('Edge {} {} already exists'.format(n1, n2)) 

 

        self.edges.append(Edge(start=n1, end=n2, cost=cost)) 

        if both_ends: 

            self.edges.append(Edge(start=n2, end=n1, cost=cost)) 

 

    @property 

    def neighbours(self): 

        neighbours = {vertex: set() for vertex in self.vertices} 

        for edge in self.edges: 

            neighbours[edge.start].add((edge.end, edge.cost)) 

 



 
 

32 
 

        return neighbours 

     

 

    def dijkstra(self, source, dest): 

        assert source in self.vertices, 'Such source node doesn\'t exist' 

        distances = {vertex: inf for vertex in self.vertices} 

        previous_vertices = { 

            vertex: None for vertex in self.vertices 

        } 

        distances[source] = 0 

        vertices = self.vertices.copy() 

 

        while vertices: 

            current_vertex = min( 

                vertices, key=lambda vertex: distances[vertex]) 

            vertices.remove(current_vertex) 

            if distances[current_vertex] == inf: 

                break 

            for neighbour, cost in self.neighbours[current_vertex]: 

                alternative_route = distances[current_vertex] + cost 

                if alternative_route < distances[neighbour]: 

                    distances[neighbour] = alternative_route 

                    previous_vertices[neighbour] = current_vertex 

 

        path, current_vertex = deque(), dest 

        while previous_vertices[current_vertex] is not None: 

            path.appendleft(current_vertex) 

            current_vertex = previous_vertices[current_vertex] 

        if path: 

            path.appendleft(current_vertex) 

             

        return path 
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Original Code: 

 def GenerateNetworkMatrix(self, courseOptions, b, semNum): 

        CN = b 

        t = len(courseOptions) 

         

        courseLog = pandas.read_excel('CourseLookupSecond.xlsx') 

        #penaltyValues = pandas.read_excel('PenaltyValuesArbitrary.xlsx') 

         

        binaryVals = [] 

        for i in range(0, len(courseOptions)): 

            if len(courseOptions[i]) == 3: 

                binaryVals.append(1) 

            else: 

                binaryVals.append(0) 

         

        # Creates a bxb array initialized to Null ("None") 

        matrix = [[None for x in range((b+1)*(t+1))] for y in range((b+1)*(t+1))]          #changed this 3/11 

 

        for i in range(0, t):                                                  #changed b to t 

            #populating network with arrows 

            while CN <= (b*i + b + i) and CN <= (getSink(b, t) + b):     #make sure CN is less than the end node # and 

less than the very last node 

                if binaryVals[i] == 0:     #check what kind of relationship in this stage--> 0 for free/pre-req, 1 for co-req 

                    if (CN+b > b*i+b+i) and (CN+b+1 > b*i+b+i):     #if both arrows go to next line/anywhere else but far 

left 

                        matrix[CN][CN+b] = courseLog.iloc[courseOptions[i][0][0] - 1]['f'] * 

courseLog.iloc[courseOptions[i][0][0] - 1]['Semester' + str(semNum)]     #lookup value 

                        matrix[CN][CN+b+1] = courseLog.iloc[courseOptions[i][0][0] - 1]['Semester' + str(semNum)] 

                    else:     #at the far left node on each row 

                        #if (CN+b > b*i+b+i): 
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                            #matrix[CN][CN+b] = courseLog.iloc[courseOptions[i][0][0] - 1]['f'] 

                        if (CN+b+1 > b*i+b+i): 

                            matrix[CN][CN+b+1] = courseLog.iloc[courseOptions[i][0][0] - 1]['Semester' + str(semNum)] 

                         

                    CN = CN + 1 

                elif binaryVals[i] == 1: 

                    if (CN+b-1 > b*i+b+i) and (CN+b > b*i+b+i) and (CN+b+1 > b*i+b+i): 

                        matrix[CN][CN+b-1] = 

(courseLog.iloc[courseOptions[i][0][0]]['f']*courseLog.iloc[courseOptions[i][0][0]]['Semester' + str(semNum)]) + 

(courseLog.iloc[courseOptions[i][0][1] - 1]['f']*courseLog.iloc[courseOptions[i][0][1] - 1]['Semester' + 

str(semNum)]) 

                        matrix[CN][CN+b] = courseLog.iloc[courseOptions[i][0][0] - 

1]['f']*courseLog.iloc[courseOptions[i][0][0] - 1]['Semester' + str(semNum)] + 

courseLog.iloc[courseOptions[i][0][1] - 1]['Semester' + str(semNum)] 

                        matrix[CN][CN+b+1] = courseLog.iloc[courseOptions[i][0][0]]['Semester' + str(semNum)] + 

courseLog.iloc[courseOptions[i][0][1] - 1]['Semester' + str(semNum)] 

                    #if (CN+b-1 > b*i+b+i): 

                        #matrix[CN][CN+b-1] = courseLog.iloc[courseOptions[i][0][0] - 1]['f'] + 

courseLog.iloc[courseOptions[i][0][1] - 1]['f']  

                    elif (CN+b > b*i+b+i) and (CN+b+1 > b*i+b+i): 

                        matrix[CN][CN+b] = (courseLog.iloc[courseOptions[i][0][0] - 

1]['f']*courseLog.iloc[courseOptions[i][0][0] - 1]['Semester' + str(semNum)]) + 

courseLog.iloc[courseOptions[i][0][1] - 1]['Semester' + str(semNum)] 

                        matrix[CN][CN+b+1] = courseLog.iloc[courseOptions[i][0][0]]['Semester' + str(semNum)] + 

courseLog.iloc[courseOptions[i][0][1] - 1]['Semester' + str(semNum)] 

                         

                    elif (CN+b+1 > b*i+b+i): 

                        matrix[CN][CN+b+1] = courseLog.iloc[courseOptions[i][0][0]]['Semester' + str(semNum)] + 

courseLog.iloc[courseOptions[i][0][1] - 1]['Semester' + str(semNum)] 

                    else: 

                        pass 

                     

                     

                    CN = CN + 1 

                     

                else: 
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                    CN = CN + 1 

                     

        #add backwards arrows prohibiting going backwards 

 

                     

        #add arrows on bottom pointing to sink 

        for i in range(0, b): 

            matrix[getSink(b, t)+b-i][getSink(b, t)+b-i-1] = 1 

         

        return matrix 

     

     

     

     

#---------------------------------MAIN------------------------------------------------------------------- 

 

    #for reference, the structure of courseOptions 

    '''courseOptions = [[[1], [-1]], 

                    [[2, 3], [2, -3], [-2, -3]], 

                    [[4, 5], [4, -5], [-4, -5]], 

                    [[8], [-8]], 

                    [[10], [-10]], 

                    [[12], [-12]], 

                    [[15], [-15]], 

                    [[16], [-16]], 

                    [[18], [-18]], 

                    [[20], [-20]], 

                    [[23], [-23]]]''' 

                     

                     

     

budget = 5 
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graph = Graph(()) 

courseLog = pandas.read_excel('CourseLookupSecond.xlsx') 

courseOptions = [] 

numSemesters = 1 

     

 

     

    #if we don't have 5 courses left to take, need to build network of different dimension 

    #if len(courseLog[courseLog['Completed'] == 0]) < 5: 

        #budget = len(courseLog[courseLog['Completed'] == 0]) 

     

     

    #form course options    

for i in range(0, len(courseLog.index)): 

    #co reqs 

    if courseLog.iloc[i]['RelType'] == 'c' and courseLog.iloc[i]['Completed'] == 0: 

        courseOptions.append([[int(courseLog.iloc[i]['CourseNum']), int(courseLog.iloc[i]['CoReqFor'])], 

[int(courseLog.iloc[i]['CourseNum']), -1 * int(courseLog.iloc[i]['CoReqFor'])], [-1 * 

int(courseLog.iloc[i]['CourseNum']), -1 * int(courseLog.iloc[i]['CoReqFor'])]]) 

 

    #pre-reqs 

    elif courseLog.iloc[i]['RelType'] == 'p' and courseLog.iloc[int(courseLog.iloc[i]['PreReq']) - 1]['Completed'] == 1 

and courseLog.iloc[i]['Completed'] == 0: 

        courseOptions.append([[int(courseLog.iloc[i]['CourseNum'])], [-1 * int(courseLog.iloc[i]['CourseNum'])]]) 

     

    #free courses 

    elif courseLog.iloc[i]['RelType'] == 'f' and courseLog.iloc[i]['Completed'] == 0: 

        courseOptions.append([[int(courseLog.iloc[i]['CourseNum'])], [-1 * int(courseLog.iloc[i]['CourseNum'])]]) 

    else: 

        pass 
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#loop while there are incomplete courses 

while len(courseLog[courseLog['Completed'] == 0]) > 0: ###changed tonight 

     

    #if we don't have 5 courses left to take, need to build network of different dimension 

    if len(courseLog[courseLog['Completed'] == 0]) < budget: ###changed tonight 

        budget = len(courseLog[courseLog['Completed'] == 0]) ###changed tonight 

     

    print("courseOptions:") 

    for i in courseOptions: 

        print(i) 

    print("") 

     

    options = len(courseOptions) 

     

    #matrix contains all arrow information 

    info_matrix = graph.GenerateNetworkMatrix(courseOptions, budget, numSemesters) 

     

    #generate actual network 

    for i in range(0, len(info_matrix)): 

        for j in range(0, len(info_matrix)): 

            if info_matrix[i][j] != None: 

                graph.add_edge(i, j, info_matrix[i][j], False) 

     

    #return shortest node path 

    nodePath = graph.dijkstra(budget, getSink(budget, options))     #this is a deque 

    print("The student should take this path through the network:") 

    print(list(nodePath)) 

    print("") 

     

    #extract course numbers of what to take from node list 

    coursesToTake = list() 

    stage = 0 
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    for i in range(0, len(nodePath) - 1): 

        if nodePath[i+1] - nodePath[i] == budget + 1: 

            stage = stage + 1 

        elif nodePath[i+1] - nodePath[i] == budget: 

            coursesToTake.append(courseOptions[stage][0][0]) 

            stage = stage + 1 

        elif nodePath[i+1] - nodePath[i] == budget - 1: 

            if len(courseOptions[stage][0]) > 0: 

                coursesToTake.append(courseOptions[stage][0][0]) 

             

            if len(courseOptions[stage][0]) > 1: 

                coursesToTake.append(courseOptions[stage][0][1]) 

            stage = stage + 1 

        else: 

            pass 

     

    print("This path corresponds to these courses:") 

    print(coursesToTake) 

     

    #update courseOptions 

     

    #first, update courseLog to reflect courses taken 

    for i in range(0, len(coursesToTake)): 

        #generate random number to see if they passed 

        num = random() 

         

        #only mark completed if passed class 

        if num > float(courseLog.iloc[coursesToTake[i] - 1]['f']): 

            print(num) 

            courseLog.set_value(int(coursesToTake[i] - 1), 'Completed', 1) 

    numSemesters = numSemesters + 1 
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    print("") 

    print("") 

    #reconfigure courseOptions to reflect courses that were taken 

             

    #delete courses that have been taken 

    for i in range(0, len(coursesToTake)): 

        #check if adjacent courses are a co-req pair 

        #check if at the end of the list 

        if len(coursesToTake) - i != 1: 

            if courseLog.iloc[int(coursesToTake[i]) - 1]['CoReqFor'] == int(coursesToTake[i+1]): 

                for obj in courseOptions: 

                    if obj[0][0] == coursesToTake[i] and obj[0][1] == coursesToTake[i+1]: 

                        courseOptions.remove(obj) 

            else: 

                for obj in courseOptions: 

                    if obj[0][0] == coursesToTake[i]: 

                        courseOptions.remove(obj) 

        else: 

            for obj in courseOptions: 

                if obj[0][0] == coursesToTake[i]: 

                    courseOptions.remove(obj) 

                         

 

    print("") 

                         

     

    #add in new courses that student is now able to take --> check for co-reqs and pre-reqs 

    for i in range(0, len(courseLog.index)): 

         

        count = 0 

        #test if the course is currently in courseOptions by counting # of occurrences. If it's not and pre-req has been 

completed, add. 
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        for list_obj in courseOptions: 

            for obj in list_obj: 

                if int(courseLog.iloc[i]['CourseNum']) in obj: 

                    count = count + 1 

                     

        if count == 0: 

         

            #3 possibilities for co-req relationships: passed both, passed #1 not #2, passed #2 not #1 

            if courseLog.iloc[i]['RelType'] == 'c': 

                if courseLog.iloc[i]['Completed'] == 1 and courseLog.iloc[int(courseLog.iloc[i]['CoReqFor']) - 

1]['Completed'] == 1: 

                    pass 

                elif courseLog.iloc[i]['Completed'] == 0 and courseLog.iloc[int(courseLog.iloc[i]['CoReqFor']) - 

1]['Completed'] == 1: 

                    courseOptions.append([[int(courseLog.iloc[i]['CourseNum'])], [-1 * 

int(courseLog.iloc[i]['CourseNum'])]]) 

                elif courseLog.iloc[i]['Completed'] == 1 and courseLog.iloc[int(courseLog.iloc[i]['CoReqFor']) - 

1]['Completed'] == 0: 

                    courseOptions.append([[int(courseLog.iloc[i]['CoReqFor'])], [-1 * int(courseLog.iloc[i]['CoReqFor'])]]) 

                elif courseLog.iloc[i]['Completed'] == 0 and courseLog.iloc[int(courseLog.iloc[i]['CoReqFor']) - 

1]['Completed'] == 0: 

                    courseOptions.append([[int(courseLog.iloc[i]['CourseNum']), int(courseLog.iloc[i]['CoReqFor'])], 

[int(courseLog.iloc[i]['CourseNum']), -1 * int(courseLog.iloc[i]['CoReqFor'])], [-1 * 

int(courseLog.iloc[i]['CourseNum']), -1 * int(courseLog.iloc[i]['CoReqFor'])]]) 

                else: 

                    pass 

            #pre-reqs 

            elif courseLog.iloc[i]['Completed'] == 0 and courseLog.iloc[i]['RelType'] == 'p' and 

courseLog.iloc[int(courseLog.iloc[i]['PreReq']) - 1]['Completed'] == 1: 

                courseOptions.append([[int(courseLog.iloc[i]['CourseNum'])], [-1 * 

int(courseLog.iloc[i]['CourseNum'])]]) 

         

            #free courses 

            elif courseLog.iloc[i]['RelType'] == 'f' and courseLog.iloc[i]['Completed'] == 0: 

                courseOptions.append([[int(courseLog.iloc[i]['CourseNum'])], [-1 * 

int(courseLog.iloc[i]['CourseNum'])]]) 
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            else: 

                pass 

             

     

     

print("Number of semesters to graduate:  ", numSemesters - 1) 
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