
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Industrial Engineering Undergraduate Honors
Theses Industrial Engineering

5-2020

Curriculum Optimization via Activity-on-Node Network Modeling Curriculum Optimization via Activity-on-Node Network Modeling

Caroline Rhomberg
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/ineguht

 Part of the Engineering Education Commons, Industrial Engineering Commons, Operational Research

Commons, Other Operations Research, Systems Engineering and Industrial Engineering Commons, and

the Systems Engineering Commons

Citation Citation
Rhomberg, C. (2020). Curriculum Optimization via Activity-on-Node Network Modeling. Industrial
Engineering Undergraduate Honors Theses Retrieved from https://scholarworks.uark.edu/ineguht/67

This Thesis is brought to you for free and open access by the Industrial Engineering at ScholarWorks@UARK. It has
been accepted for inclusion in Industrial Engineering Undergraduate Honors Theses by an authorized administrator
of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/ineguht
https://scholarworks.uark.edu/ineguht
https://scholarworks.uark.edu/ineg
https://scholarworks.uark.edu/ineguht?utm_source=scholarworks.uark.edu%2Fineguht%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1191?utm_source=scholarworks.uark.edu%2Fineguht%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.uark.edu%2Fineguht%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.uark.edu%2Fineguht%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.uark.edu%2Fineguht%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=scholarworks.uark.edu%2Fineguht%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=scholarworks.uark.edu%2Fineguht%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/ineguht/67?utm_source=scholarworks.uark.edu%2Fineguht%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Curriculum Optimization via Activity-on-Node Network Modeling

This thesis was submitted in fulfillment of the

requirements for honors distinction for the degree of

Bachelor of Science in Industrial Engineering

By

Caroline Rene Rhomberg

University of Arkansas

May 2020

Thesis Advisor: Dr. Kelly Sullivan

Thesis Reader: Dr. Richard Cassady

ACKNOWLEGEMENTS

First and foremost, I would like to thank Dr. Kelly Sullivan for his wisdom in guiding me

throughout this project. He is extremely knowledgeable about networks and optimization

algorithms. He encouraged me to think outside the box and introduced me to the astonishing

applications of Graph Theory to intangible engineering systems, such as the flow of information.

I am also incredibly thankful for Dr. Sullivan’s mentorship, as he was an excellent source of

advice when applying to graduate schools while simultaneously completing this project. He cares

tremendously about the wellbeing of his students and instills in them the best qualities of

character.

I express my sincerest gratitude to the University of Arkansas Industrial Engineering department

and Honors College for their support in funding this project in the fall and spring semesters,

respectively. Thank you to Dr. Ed Pohl, Dr. Kelly Sullivan, and Dr. Richard Cassady for writing

me recommendation letters for the Honors College Research Grant. Without your time, I would

not have received the funding I did to enable this project.

To Dr. Jesse Delaney and the University of Arkansas Office of Student Success, thank you for

providing me with the necessary data about student demographics and historical pass/fail rates

that enable this model to incorporate real time data, increasing accuracy.

To the faculty members serving on my Thesis defense committee, thank you for your time and

support in seeing this project to completion.

Last but not least, than you to my friends and family, who believed in me to accomplish this

project and accommodated me moving back home in the latter part of the spring semester due to

the Coronavirus Pandemic. There is a reason why I am the fifth oldest of six people in our

family—so that I would have you all to look up to and keep me persevering towards my own

goals.

TABLE OF CONTENTS

PROJECT SUMMARY ___ 1

BACKGROUND AND SIGNIFICANCE ___ 2

KEY RESEARCH FINDINGS __3

DATA COLLECTION AND PREPARATION _______________________________________7

METHODOLOGY___ 9

IMPLEMENTATION__16

RESULTS___22

MODEL ASSUMPTIONS AND CONCLUDING REMARKS__________________________26

APPENDIX__28

WORKS CITED__ 42

1

PROJECT SUMMARY

Universities attempt to plan curricula and advise students to have the best chance of

passing and completing their degree on time. However, still, some students fail to pass courses,

causing them to have to retake them and delay their graduation, and in extreme cases, withdraw

from their university degree. High graduation rates have great implications for all facets of

society. First, they are important to the individual because having a university degree increases

quality of life and job security. Graduation rates are important to universities because they are

used as a means of ranking and allocation of public funding. Graduation rates are also important

to society as a whole because more people attaining a university education leads to lower crime

rates, higher diversity of labor, and increased global trade.

The purpose of this study was to develop an optimization tool that iteratively decides the

optimal progression through a list of courses, symbolic of a degree program. In an effort to

simulate reality, the optimization tool was built to solve for the optimal progression through a

subset of the Bachelor of Science in Industrial Engineering degree at the University of Arkansas.

The model outputs the list of courses a student should take for a given semester in order to have

the best probability of passing, and the model updates its suggestions as it learns more about the

student, such as which courses the student has already completed and which courses they have

failed and need to retake. To select a given semester’s courses, the optimization model takes the

form of a dynamic program in which the number of decision stages equals the number of courses

to select for that semester. The dynamic program can be envisioned as a shortest path problem on a

network in which nodes represent the states of the dynamic program, arcs represent the actions of the

dynamic program, and paths correspond to a subset of courses that could potentially be selected for a

given semester. The path length is related to the probability of a student passing all courses on the

path and how imperative it is that the student completes those particular courses that semester,

calculated from experimental data. The program then calculates the shortest, or least costly, path

in the network of course decisions using Dijkstra’s Algorithm. Statistics are recorded on the

number of semesters it took the student to graduate.

2

BACKGROUND AND SIGNIFICANCE

At first glance, it may seem that the only stakeholder in university education is the

student. Actually though, it is the simultaneous interdependencies between students, educational

institutions, and the nation as a whole that makes virtually everyone a stakeholder. Thus, it is

important that graduation rates are maximized because of their importance to stakeholders.

For an individual, having a college degree is proven to have both tangible and intangible

returns on the investment. According to a study done at Georgetown University, people who

have at least a bachelor’s degree earn 84% more than people without a bachelor’s degree over

the course of their lifetime, amounting to $32,000 per year and $1.4 million over a lifetime.

[Heckler 2018]. They earn more employer-provided benefits such as health insurance and

retirement plans, leading to better health and longer life expectancy [Heckler 2018]. Although

difficult to quantify, a college education has positive effects on a person’s aptitude and critical

thinking skills [Heckler 2018]. Completing a college degree instills in a person confidence, time

management skills, and work-leisure balance, all skills that increase quality of life. A college

degree is not the only way, but it is the most reliable path toward financial stability and freedom.

Graduation rates are in the interest of educational institutions because of the tie to state

financial support. “State financial support is increasingly being appropriated on the basis of

performance—i.e., student outcomes, primarily measured by student graduation rates” [Hester

and Ishitani 2018]. Many states are now requiring public institutions to disclose student

performance statistics each year and prove that they are using state resources effectively. If they

do not, they are at risk for lower funding, resources, and expenditures. With the transparency of

rankings open to the public via heavily relied-on search engines such as U.S. News and World

Report, a drop in rankings could cause prospective students to turn to other appealing

universities on the basis of newer technology and funding opportunities. Graduation and

retention rates are the primary factors in these rankings.

Our nation as a whole should also be invested in student performance because of its

implications on the economy. In recent years the US has fallen behind other countries in college

degree production [Powell, Gilleland, and Pearson 2012; Webber and Ehrenberg 2010]. This is

likely a reason for countries such as China surpassing the US in industrial productivity. Greater

graduation rates mean a greater diversity of skilled labor in the economy and consumer spending,

boosting economic growth. Greater numbers of people having high-paying jobs that provide

benefits means less people requiring government assistance, generating a bigger pool of money

for public works. Comparing the United States to developing countries, many societal issues

resolve themselves with increased education.

Semester course recommendation is one key area to examine how effective educational

advising is. This study develops an optimization tool that models a degree curriculum as an

activity network and recommends semester course decisions based on course failure rates and

penalty values for not taking courses by certain times.

3

KEY RESEARCH FINDINGS

Introduction

 This section highlights the areas of research that are most pertinent to the development

and technical feasibility of the project. Although distinct areas of research, they are closely

related and can be synthesized to build an inclusive predictive model.

Graph Theory

 In mathematics, a network is a set of objects that are connected together [Farahani et al.,

2013]. The connections between the objects, or nodes, are known as edges [Farahani et al.,

2013]. Networks are also known as graphs, thus constituting the basis of the branch of

mathematics, Graph Theory.

 Networks can be either directed or undirected. In directed graphs the movement from one

node to another is restricted in direction, which can be imagined as an edge pointing from one

node to other nodes. In undirected graphs, or bidirectional, movement from one node to any

other node that it is connected to is valid, and vice versa. Figure 1 shows an example of a

directed network.

Figure 1: Example of directed graph [Planck 2018]

 The marvel of Graph Theory lies in that networks can represent systems of all variety in

the real world. For example, a network could represent a supply chain system where nodes

represent stores and edges represent transportation paths. Another example could represent the

World Wide Web, where nodes represent computers, and edges represent the Internet and the

delivery of information to individual devices [Farahani et al., 2013]. From these contrasting

examples, we see that networks can represent both physical and intangible systems.

 From an implementation standpoint, a convenient way to store the information contained

in a network is an adjacency matrix. For an unweighted network of N nodes, the network can be

stored in an N × N matrix [Farahani et al., 2013]. Each component aij represents an edge from

4

node i to node j [Farahani et al., 2013]. The values in the adjacency matrix consist of ones and

zeros (or null values), where one indicates the existence of a connection between node i and node

j, and zero (or null) means no such connection exists:

𝑎𝑖𝑗 = {
1 if there is an edge from node i to node j

0 or Null otherwise

The cost, or length of the edge from node i to node j is not always one. The cost of a path

can take on any value, and differing costs among node edges signifies that the impact of

advancing from one physical location in a network or stage in a decision making process to

another is not the same. For weighted networks, the adjacency matrix takes the following form:

𝑎𝑖𝑗 = {
{𝑥 | 𝑥 ∈ ℝ} if there is an edge from node i to node j

Null otherwise

It became evident that Graph Theory is relevant to this project, as it pertains to the idea of

progressing through decision stages of selecting courses for a given semester. Nodes can

represent the decision to take a course or not take a course, and the progression through all nodes

in a set define a path or plan for a semester schedule, from a feasible set of courses considered.

Dijkstra’s Shortest Path Algorithm

 In an unweighted network, the costs of advancing from node to node in a network are

irrelevant; therefore the impact of every decision is assumed to be the same. However, in reality,

the cost, or value of alternative decisions is frequently different across alternatives. Some

decisions are better or worse than others. In the case of selecting courses for a semester, the cost

of each decision is not the same for two key reasons. As seen in experimental data, different

courses have different pass and failure rates, thus incurring unequal risks to the student when

taking them. Also, due to courses serving as pre-requisites for other courses, courses also have

different costs as it is more important that certain courses be completed earlier on because they

correspond to more other courses.

 In the scope of this problem, nodes represent states in a decision making process, or a

certain number of courses selected after a certain number of stages. Edges correspond to

decisions about courses. Because of this, a path through the network represents an entire

selection of a number of courses. The starting node, or source, represents the state in which no

courses have been selected, and the last node, or sink, represents the state in which all courses

have been selected. The idea of multiple paths existing from source to sink, all of which are

5

comprised of edge lengths representing the cost of every sub-decision (taking the course or not),

pleads for a method of finding the shortest, or least costly, path through the network.

 The problem of finding the shortest path through a network turns out to be a classic

problem in Graph Theory. There are many different algorithms already established. The key

algorithm incorporated in this project was Dijkstra’s algorithm. The algorithm was developed in

1972 by Dutch computer scientist Edsger Dijkstra [Yan 2020]. Cost in an information-based

network is analogous to distance in a physical network, but the method of finding the shortest

path is the same and is summarized below [Yan 2020].

1. “Distance to current vertex is zero

2. Distance to all other distances to other nodes is set to infinity

3. S, the set of visited vertices is initially empty

4. Q, the queue, initially contains all vertices

5. While Q is not empty do:

a. Select the element of Q with the minimum distance

b. Add u to the list of visited vertices, S

i. For each neighbor v of u do:

1. If the distance to v > distance to u + distance from u to v, then a

new shortest path is found, and distance to v = distance to u + the

distance from u to v”

Return dist [Yan 2020]

 The original algorithm outputs the value of the shortest path and not the path itself [Yan

2020], however using the same principles, we can return the shortest path between two

respective nodes using Dijkstra’s algorithm to quantify the length of each path considered and

selecting the shortest one.

 The concept of finding the shortest path is especially relevant to this project. The purpose

of modeling semester course selection as a network is to select the path that is the least costly to

the student, which allows for the best probability of passing all courses and graduating on time.

Dijkstra’s algorithm is the basis for determining all decisions regarding all courses considered—

either to take the course or to not.

Dynamic Programming

 Dynamic Programming is a technique for solving optimization problems that depend on

results from simpler constituent optimization problems. The optimal solution to the overall

problem depends on the optimal solution to the preceding problems.

6

 An optimal selection of courses can be built up by drawing upon solutions to smaller

course selection optimization problems. The dynamic program first proceeds by figuring out the

shortest path to the sink node from every node in the last node. Then, using those solutions, it

finds the shortest path to the sink node from every node in the second-to-last node. This process

is repeated until the shortest path is found.

Simulation

 To validate any predictive model, simulation is a technique that allows the model to be

tested with many combinations of input. In the case of this study, the goal was to simulate

students progressing through a subset of courses from the Industrial Engineering degree at the

University of Arkansas following the suggestions of the optimization model. Therefore, the

system required a method of solving a complete progression through the subset of courses under

the model suggestions to gather performance metrics across many replications. To solve this,

simulation of an entire progression through the subset of input courses was modeled as a

dynamic program, where each subproblem was an optimization problem of each semester’s

selections. In each optimization problem, the shortest path through the network represented a

decision about each individual course considered for a semester. From this, information was

extracted regarding which courses should be taken in order to have the best probability of

passing all courses and graduate on time.

7

DATA COLLECTION AND PREPARATION

Introduction

 This section discusses internal data that was used in the project, its format, and how it

was used in the construction of the model. This data was collected in the University of Arkansas

Office of Student Success.

At the University of Arkansas, data is consistently collected in the form of student grade

records in the Office of Student Success. The compilation of data includes individual records of

courses each student takes, many different attributes about the student, and the outcome of the

course. For the purpose of this project, a request was made to the University of Arkansas Office

of Student Success to receive student course/grade records for all Industrial Engineering courses

at the University of Arkansas. This dataset included student grade/course records for all

industrial engineering courses for 839 students for the past twenty years. The data was used to

derive the pass rates for two purposes in the optimization model: one, to calculate the cost to the

decision of taking or not taking a course and two, to simulate a random outcome of a student

passing or not passing the course, according to its pass distribution. Table 1 shows a truncated

sample of what was included in the data.

Course_Section_Term Catalog # Course

Term

Course

Grade

DFW Major HS GPA

2333_001_1133 2333 1133 W 1 INEG 3.765

2313_001_1119 2313 1119 A 0 INEG 4.335

2103_001_1139 2103 1139 F 1 INEG 3.915

3513_001_1193 3513 1193 B 0 INEG 4.025

3613_001_1153 3613 1153 C 0 INEG 3.415

Table 1: Sample of individual course-grade records

 In the data received, for each student course/grade record, one of the available attributes

was ‘DFW.’ This binary variable either had the value zero or one, indicating true or false. A

DFW value of one signified that the student had a DFW outcome, which means they either

received a D or an F, or they withdrew from the course. In each of these circumstances, it was

assumed that the student had to retake the course.

 In Excel, a pivot table was used to calculate the average of the binary indicator variable

DFW, by course. This information was crucial input information in the generation of the

semester course decision networks. A summary of six courses’ data is shown in Table 2.

8

Course Code DFW Rate

INEG 2103 0.21

INEG 2313 0.17

INEG 3613 0.12

INEG 3623 0.13

INEG 4553 0.04

INEG 4683 0.05

Table 2: DFW rates of six courses

9

METHODOLOGY

Introduction

 This section discusses the overall strategy of the construction of the model, important

characteristics about it, and how it produced output.

Modeling Course Decisions by Relationship

 When evaluating whether or not to take a course, it must be considered according to its

relationships with other courses. In this study there are three types of relationships (or lack

thereof) that a course may have. The first relationship type is pre-requisite. This means that one

course depends on another course which must be completed and passed for the student to take

the other course. The second relationship type is co-requisite. This means that a course must be

taken with or before another course to take that course. The third relationship type is really a lack

thereof and is when a course has neither a pre- or co-requisite relationship with any other

courses. It is a free course meaning that the course is free to be taken on its own anytime within

the degree program. An example illustrating the possible decisions per course relationship is

shown in Figures 2, 3, and 4.

 Figure 2: Free course Figure 3: Pre-requisite Figure 4: Co-requisite

 In Figure 2, course 1 is a free course, therefore the set of course decisions to consider is

simply {1, 1̅}—either to take the course or not to take the course. Figure 3 shows a similar

relationship, but it does not have the same implementation. Course 4 is a pre-requisite for course

8. If the student has not already completed course 4, the set of course decisions is {4, 4̅}. If the

student has completed course 4 in a previous semester, course 8 behaves as a free course, and the

set of decisions to consider is {8, 8̅}. Thirdly, Figure 4 represents the most complex relationship.

As is shown, course 2 is a co-requisite for course 3, meaning it must be taken alongside course 3

if course 3 is taken and if course 2 has not been completed yet. From this relationship there are

10

three possible decisions to make, denoted in the sets {2, 3}, {2, 3̅}, and {2̅, 3̅}. Either we take both

courses, the first but not the other, or neither one of the courses.

Geometry of Network

Recalling prior research discoveries, the capability of representing decisions about

courses as nodes in a network is a powerful concept. Because of the need to select a number of

courses for the semester (arbitrarily set by user) and the types of relationships among courses,

this required that the network have a certain geometry.

The first important dimension is the width, which is equal to the budget B, or the number

courses the optimization tool selects per semester, plus one. This idea is shown in Figure 5.

Figure 5: Conceptualization of the geometry of a network

Moving from one node to another such as along the red edge, definitive decisions to take

a course result in advancing one column to the left, which corresponds to filling one course out

of the budget allowance. Decisions to not take a course are shown as a vertical line pointing

downward. This path does not correspond to filling one course out of the budget, so the path

does not advance a column to the left. Edges that advance two columns to the left represent the

definitive decision to take both courses in a co-requisite pair or relationship. In this case two

positions out of the selection spaces are filled, resulting in advancing two columns to the left.

11

 The other important dimension is the length of the network, also shown in Figure 5. This

is equal to the number of stages (groups of alternatives, from which to select one) considered in

the decision process plus one. Likewise in the preceding example, making the decision to take a

course results in advancing one column to the left and also one row downward. Making the

decision not to take a course also results in advancing one row downward. In either case, a

decision was reached about the relationship considered. Over the course of any path from source

to sink, the path advances over all levels, demonstrating the idea that all feasible course

relationships are considered, and one and only one decision is reached.

Generating the Network

 For the reason that the optimization model should be able to work for selecting any

number of any courses, it was necessary to automate the construction of the network based on

input course options and desired number of courses.

 The approach taken was to input all course options, their relationships, and information

such as course number, DFW rate, penalty, and whether or not the course had been completed,

into a Course Log excel file. The main program, described in detail in the following section, read

in the course information from the file to populate a three-dimensional array of all feasible

alternative decisions for each relationship to be considered at each stage in the network.

Using all alternatives in the course options list, the program generated the (B+1)(T+1) x

(B+1)(T+1) adjacency matrix, which contained all the necessary information to build the

network. Recalling, the adjacency matrix is a two dimensional matrix where an entry at the

indices ij represents an arrow pointing from node i to node j with cost aij (zero indexing applies).

Pertaining to an arc representing the decision for a single-course stage, the cost is comprised of

the DFW rate f of the course and the penalty p for not taking it by the semester in question. Cost

values for the lengths of edges in a pre-requisite or free course stage are calculated according to

the following:

aij = cost = {
𝑓𝑝 → course is taken

𝑝 → course is not taken

The penalty values are not given in the data but are arbitrarily set by the user. In setting

the penalty values for courses in a particular semester we effectively establish a class of course

selection policies that are parameterized by these values. By exploring different parameter

settings, we hope to identify course-selection policies that are efficient with respect to graduation

metrics.

12

Likewise, the different edge lengths for arcs in a co-requisite stage (in which, say, course

1 is a co/requisite of course 2) are

aij = cost = {

𝑓1𝑝1 + 𝑓2𝑝2 → 𝑏𝑜𝑡ℎ 𝑐𝑜 − 𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒𝑠 𝑡𝑎𝑘𝑒𝑛
𝑓1𝑝1 + 𝑝2 → 𝑓𝑖𝑟𝑠𝑡 𝑐𝑜 − 𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒 𝑡𝑎𝑘𝑒𝑛
𝑝1 + 𝑝2 → 𝑛𝑒𝑖𝑡ℎ𝑒𝑟 𝑐𝑜 − 𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒 𝑡𝑎𝑘𝑒𝑛

From the preceding two equations we see that the arc length is the expected penalty due

to a stage’s courses either being attempted or unattempted but not completed after the current

semester. The program then iterated through each entry of the adjacency matrix to build the

network with the correct “arrows drawn” and path costs, stored in a Graph object of the Python

class Graph. The network was then ready to run Dijkstra’s algorithm to calculate the shortest

path through the network.

 As a visual example of network generation, a sample network representing the situation

in which three courses are to be selected is shown in Figure 6 below. In this situation, the

selections will come from evaluating the stages of one free course, two co-requisite relationships,

and a pre-requisite relationship.

Figure 6: Sample network with costs

Calculating the Shortest Path

13

 From Figure 6 we can see that there are many ways to reach the sink from the source.

Using the methodology from the preceding section, the program used Djikstra’s algorithm to

calculate the shortest path from the source to the sink.

The output of the algorithm is the optimal progression through the network. It is

important to understand, however, that the path merely contains the numbers of the nodes of the

optimal progression through the network. It does not contain the actual numbers of which

courses to take. This information can be deduced by leveraging the geometry of the network.

Extracting Which Courses to Take

 The fact that the network is constant in width allows for easy conversion from an optimal

progression of nodes to optimal selection of courses to take. This idea is best explained by

revisiting the prior example in Figure 7.

Figure 7: Optimal progression of nodes through network

 Suppose that the shortest path, relating to the total of the costs of each segment, is the

path in red. Also, suppose that in stages 1, 2, 3, and 4, the feasible alternatives were {1} and {1̅}

in stage 1, {2, 3}, {2, 3̅}, and {2̅, 3̅} in stage 2, {4, 5}, {4, 5̅}, and {4̅, 5̅} in stage 3, and {6} and {6̅}

in stage 4. This is an example of evaluating a free course, two co-requisite pair, and a pre-

requisite pair. The shortest path as indicated is the path 3-6-10-12-16.

 Here we notice that the difference between node numbers between successive nodes can

be one of three cases: B – 1, B, or B + 1. The difference of B, such as between nodes 3 and 6

correspond to taking the first alternative, or taking course 1. The difference of B + 1, such as

between nodes 6 and 10 correspond to not taking any courses evaluated in that stage; so neither

course 2 nor 3 are taken. The third case, a difference of B – 1 where there are two courses in the

alternative, such as between nodes 10 and 12, correspond to taking both courses 4 and 5.

14

Simulating Progression through Course Subset

 Until this point, the methodology for how to return one semester’s course decisions has

been explained. However, in order to gather information about student success using the

suggestions of the model, the optimization model had to iteratively model every semester until

completion for a student. Thus, it was imperative to develop a method for the model to update its

feasible alternatives as the student passes and/or fails courses.

 This was accomplished in three major steps. First, to simulate a student proceeding

through the course subset, random numbers were generated according to the pass distribution of

each course in the output course selection. If the number was greater than the pass rate of that

course, then the student passed that course. In this case, the program changed the ‘Completed’

attribute of the course in the Course Log to 1, for true.

 Next, the courses that were completed had to be removed from the three-dimensional list

that held the decision alternatives for each stage. This required a lot of intricate logic in the case

where a student completed and passed only one of a co-requisite pair. In this case, all alternatives

(3) were removed from the list for that stage, and the course in the co-requisite pair that was not

taken was added back in the next stage.

 Finally, three-dimensional list that stored the decision alternatives for each stage had to

be updated with courses that the student was then able to take, such as courses that had pre-

requisites that the student had just completed. To do this, the program revisited each course in

the Course Log and added its alternatives to the list in a similar way as the first time.

 This process of generating the feasible decision alternatives, calculating the shortest path,

returning the courses to take, and updating the course decision alternatives with the new

information was repeated until the student successfully completed all courses. In this way, a

student’s entire progression through the course subset with the recommendations of the model

was modeled, and statistics were collected regarding how many semesters it took the student to

“graduate.”

Verification of Model

15

 The model was validated by printing output from each critical step to the console. The

critical steps to check were:

1. Populating the Course Options list, which stored the list of decision alternatives at every

stage

2. Generating the adjacency matrix (contains information pertaining to which nodes point to

which with which cost)

3. Generating the network

4. Calculating the shortest path through the network

5. Extracting which courses the node path corresponded to

6. Updating the Course Options list, after simulating and documenting pass/complete or

fail/incomplete outcomes for courses

7. Adding course decision alternatives to Course Options that were not feasible the prior

semester

8. Comparing “graduating rates” of different penalty assignment methods to select the best

one

Each following step could not be completed until the preceding step was tried on many

cases. More information pertaining to how each critical step was implemented in the program is

in the following section.

16

IMPLEMENTATION

Introduction

 This section outlines the implementation of the project methodology in the Python

program. It summarizes key subroutines in the overall algorithm, discusses data structures used

to implement methodologies, and explains the format of automation techniques.

Starter Code

 Due to the complexity of the algorithm and the fact that network implementation code is

readily available on the internet, not all the code used in this project was developed by the

researcher. The code that was used from the internet included a Python Graph class and

associated methods, one of which was the key method Dijkstra. Below is a summary of the

contents of the Graph class, and the full source code can be found in the Appendix:

 __init__(edges): the constructor for the Graph data type, which creates a Graph

(network) with a total number of edges equal to edges

 vertices(): a property of a Graph object, which returns the number of total edges in the

network

 get_node_pairs(n1, n2, both_ends=False): method, which returns a list of all node pairs

between two node numbers for a directed network

 remove_edge(n1, n2, both_ends=False): method, which deletes an edge from a directed

network

 add_edge(n1, n2, cost, both_ends=False): method, which adds an edge to a directed

network

 neighbours(): Property, which returns sets of edges that each correspond to a group of

edges

 dijkstra(source, dest): method, which returns a list of nodes corresponding to the shortest

path from source to dest in a network

Original Code

 Below are the constructs and routines that were developed firsthand by the researcher for

this project:

 getSink(b, t): method, which returns the number of the sink node of the network with

given dimensions (B+1)(T+1) x (B+1)(T+1)

 CourseOptions: a three-dimensional list of feasible course decisions in each stage

 GenerateNetworkMatrix(courseOptions, b, semNum): method, which returns the

adjacency matrix to build a network considering all possible course decision outcomes in

17

courseOptions, which selects b courses, with cost values dependent upon the semNum th

semester that the courses are taken

 Subroutine to generate the structure containing all feasible course decisions in each stage

from an input list, courseLog

 Subroutine to build a Graph object from the adjacency matrix obtained from

GenerateNetworkMatrix

 Subroutine to extract list of proposed courses from the returned node progression from

dijkstra

 Subroutine to update CourseOptions by eliminating courses that have been

passed/completed and adding in course decision alternatives that were not already

feasible

 Subroutine to simulate students progressing through courses according to the suggestions

of the model and calculate statistics

Key Python Data Structures

 In the Python program, the construct courseLog is a structure that stores input data from

an Excel file. It is of the type Dataframe, of the Pandas package. The Excel file records a list of

all courses offered and information about each course. A sample of courseLog is shown in Table

3.

CourseNum RelType CourseCode PreReq CoReq CoReqFor f Semester1 … Semester7 Completed

1 f 2001 0.09 1 10 0

2 c 2103 3 0.21 1 12 0

6 p 2333 3 0.11 0.05 16 0

Table 3: Sample contents of courseLog, the input information

 In this example, course 1 is a free course, as its relationship type is ‘f.’ This means it has

no pre-requisites or co-requisites. It corresponds to the course INEG 2001. The DFW rate for this

class is 9%. If not taken by semester it incurs a cost of 1, whereas if not taken by semester 7, it

incurs a penalty of 10. The same logic is used for semesters 2-6, however the table is truncated

for the sake of space. Likewise, information is stored for course 2, only that this course is a co-

requisite for course 3. Similarly, the same applies to course 6, only that it has a co-requisite of

course 3. The ‘Completed’ column records whether or not the course has been completed, where

0 represents false, and 1 represents true. The courseLog construct provides the information for

generating the list of feasible course decision alternatives and updates information about each

course as courses are completed.

In the program, the most important construct to understand is CourseOptions. This is the

structure that stores all feasible course decision alternatives in each stage of determining a course

selection for a semester. CourseOptions is of the datatype “list of lists of lists” of integers, which

is most similar to a three-dimensional array of non-uniform length. The indices of each row of

18

CourseOptions store each decision alternative for a given stage, or a pre-requisite, co-requisite,

or free course relationship. For example, below is an illustration of what the contents of

CourseOptions could be:

 courseOptions = [[[1], [-1]],

[[2, 3], [2, -3], [-2, -3]],

[[4, 5], [4, -5], [-4, -5]],

[[8], [-8]],

[[10], [-10]],

[[12], [-12]],

[[15], [-15]],

[[16], [-16]],

[[18], [-18]],

[[20], [-20]],

[[23], [-23]]]

 Looking at the contents of CourseOptions, the first row represents a set (list) of all

decision alternatives for stage one. The first alternative, denoted by the list [1] represents the

alternative of taking course 1, as the value is positive. The second alternative, denoted by the list

[-1] represents the alternative of not taking course 1. Stage two represents all alternatives from

considering a co-requisite relationship of courses 2 and 3. The first alternative [2, 3] represents

taking courses 2 and 3; the second alternative [2, -3] represents taking course 2 but not taking

course 3; and the third alternative [-2, -3] represents neither taking course 2 nor course 3. The

first and foremost goal of the program is to calculate exactly which single alternative should be

selected from each row of CourseOptions in order to determine the optimal course selection.

The adjacency matrix is of the type two-dimensional list, or array. As stated before, for

weighted networks of N nodes, the network can be stored in an N × N matrix [2]. Each

component aij represents an edge from node i to node j [2]. The values in the adjacency matrix

consist of either numbers or ‘None’ (null), where the number indicates the cost of the path from

node i to node j, and ‘None’ means no such connection exists. For example, the adjacency matrix

for the first two stages of the complete network of all stages is the matrix below. The

corresponding incomplete network is shown below:

19

In the adjacency matrix, the indices ij where the value is not ‘None’ represent an edge

from node i to node j with a cost of aij. From the matrix, we see that a36 signifies that node 3

points to node 6, and this matches the network shown in Figure 8. This means that the decision

to take course 1 is represented by the path from node 3 to node 6 and incurs a cost of 0.086 (read

in from courseLog). Likewise, we see that a69 signifies that node 6 points to node 9 with a cost of

0.211. This matches the figure. This is the scenario of taking course 2 but not course 3.

Figure 8: Network represented by preceding adjacency matrix

The network shown in Figure 8 is of the datatype Graph, as defined in the Graph class. A

graph, or network, is created when the constructor is called. Edges are added when the add_edge

20

function is called to the network object and the start and end node numbers are specified. In the

program, the network is generated by looping through the adjacency matrix values aij to add

edges to the network. This is accomplished by the following call to the network object:

graph.add_edge(i, j, info_matrix[i][j], False)

The edge points from node i to node j and the cost of the path is equal to the adjacency

matrix info_matrix[i][j]. The edge is directed.

A Python List, analogous to a one-dimensional array, is used in the program to store the

output of the dijkstra function, which returns the optimal node number progression through the

network. An additional list coursesToTake is also used to store the course selection, extracted

from the optimal node progression list.

Algorithm for Optimal Course Selection

 One pass through the network corresponds to one calculation of B optimal courses to take

that semester. After understanding the data structures and methodologies in the preceding

sections, below is the summary of the algorithm to arrive at the output list of optimal courses C.

 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑔𝑒 𝑇 𝑖𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 𝐿

 𝐴𝑝𝑝𝑒𝑛𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 𝐷 𝑡𝑜 𝑐𝑜𝑢𝑟𝑠𝑒 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 𝑂

 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑑 ∈ 𝐷:

 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑎𝑛𝑑 𝑎𝑑𝑑 𝑛𝑜𝑑𝑒 𝑛 {𝑛1, 𝑛2} 𝑡𝑜 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑁 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

 𝑈𝑠𝑒 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎′𝑠 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑡𝑜 𝑟𝑒𝑡𝑢𝑟𝑛 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑆

 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠 ∈ 𝑆𝑛+1 − 𝑆𝑛 ∶

 𝐼𝑓 𝑠 = 𝐵 + 1 → 𝑛𝑒𝑥𝑡 𝑠

 𝐼𝑓 𝑠 = 𝐵 → 𝑎𝑑𝑑 𝑂𝑇11
 𝑡𝑜 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 𝑡𝑜 𝑡𝑎𝑘𝑒 𝐶

 𝐼𝑓 𝑠 = 𝐵 − 1 → 𝑎𝑑𝑑 𝑂𝑇11
𝑎𝑛𝑑 𝑂𝑇12

𝑡𝑜 𝐶

 𝑅𝑒𝑡𝑢𝑟𝑛 𝐶

The algorithm loops through each line L in CourseLog to discover what stages T

(relationships) exist among courses and adds the sequence D of all decision alternatives d to

21

CourseOptions O by stage. Next the algorithm constructs the corresponding edges {n1, n2} of the

network representing all possible decision paths. Dijkstra’s algorithm returns the optimal node

progression S. The courses to take are deduced from the node progression by determining which

of three cases the difference between subsequent node numbers is. If the difference equals B or

B-1 then either add one or both course numbers from stage T of O to the set of courses to take C.

Return C.

Algorithm for Complete Progression Through Course Subset

 Progression through the entire course subset according to the suggestions of the model is

achieved by simulating multiple semesters using the previous algorithm. The previous algorithm

suggests a set C of courses to take each semester and the set of sequences D of decision

alternatives d is updated as courses are completed and pre- and co-requisites become feasible.

The algorithm is summarized below:

 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑇 ∈ 𝐿:

 𝐴𝑝𝑝𝑒𝑛𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 𝐷 𝑡𝑜 𝑐𝑜𝑢𝑟𝑠𝑒 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 𝑂

 𝑊ℎ𝑖𝑙𝑒 𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 𝑟𝑒𝑚𝑎𝑖𝑛:

 𝐶 = 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝐹𝑜𝑟 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐶𝑜𝑢𝑟𝑠𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

 𝐹𝑜𝑟 𝑐 ∈ 𝐶:

 𝑛𝑢𝑚 ~𝑁(0,1)

 𝐼𝑓 𝑛𝑢𝑚 > 𝑓, 𝑡ℎ𝑒𝑛

𝐿[𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑] = 𝑡𝑟𝑢𝑒

 𝐹𝑜𝑟 𝑐 ∈ 𝐶:

 𝐼𝑓 𝑐 𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑, 𝑡ℎ𝑒𝑛

 𝑅𝑒𝑚𝑜𝑣𝑒 𝑑 ∈ 𝑂 𝑤ℎ𝑒𝑟𝑒 𝑐 ∈ 𝑑

 𝑛𝑢𝑚𝑆𝑒𝑚𝑒𝑠𝑡𝑒𝑟𝑠 += 1

 𝑅𝑒𝑡𝑢𝑟𝑛 𝑛𝑢𝑚𝑆𝑒𝑚𝑒𝑠𝑡𝑒𝑟𝑠

22

RESULTS

Introduction

 This section is about the output of the model and how it can be used to draw insights.

Output from One Complete Run

 Below is sample output from running the program to completion. For each semester in

simulation, the output contains the feasible course options for that student in that semester, the

node number progression the student should take through the network, and B optimal courses

that the optimal path corresponds to. In this particular run, B was set to 5 courses.

 The 25 courses considered was a list based mostly on experimental data, with four extra

courses that were based on similar courses, but not actual courses of the IE degree program. The

failure rates and pre-req relationships for the real courses were populated by using the

experimental data and the relationships in the current IE degree program, and the average failure

rate was used for the courses that are not real. Information about these classes is detailed in the

Data Collection and Preparation section. Penalty values were chosen largely based on pre-

requisite chains and courses that absolutely had to be taken certain semesters, such as Applied

Probability and Statistics for Engineers I, Simulation, Intro to Optimization, and IE Capstone

Experiences I and II. Courses in pre-requisite chains and these courses were assigned high

penalty values in the respective semesters in order to encourage the model to select these courses

in the semesters they were essentially nonnegotiable. All other courses were assigned penalty

values of 1, as they did not influence other courses and could be taken any time. The penalty

values were assigned in a similar fashion to Table 4:

Course Sem1 Sem2 Sem3 Sem4 Sem5 Sem6 Sem7 Sem8

1 1 1 1 1 1 1 1 1

2 500 400 300 200 100 1 1 1

3 1 500 400 300 200 100 1 1

4 1 1 1 1 1 1 1 1

5 1 1 400 300 200 100 1 1

6 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 2000 1

10 1 1 1 1 1 1 1 3000

Table 4: Penalty values for instance run

23

 The model was not run using any courses in co-requisite relationships for the reason that

this is the only piece of logic that has yet to be implemented. At this time, it is difficult to assess

the ability of the model to predict what a student should take when the courses involve co-

requisites. However, the model fully implements the selection of free courses and pre-requisites,

an instance of which is shown below.

 For illustration, the output from the first three iterations of simulating students pass

through 25 free and pre-requisite courses is shown below:

courseOptions:

[[1], [-1]]

[[2], [-2]]

[[4], [-4]]

[[5], [-5]]

[[6], [-6]]

[[7], [-7]]

[[8], [-8]]

[[11], [-11]]

[[12], [-12]]

[[13], [-13]]

[[14], [-14]]

[[16], [-16]]

[[18], [-18]]

[[19], [-19]]

[[20], [-20]]

[[21], [-21]]

[[22], [-22]]

[[23], [-23]]

[[24], [-24]]

[[25], [-25]]

24

The student should take this path through the network:

[5, 11, 16, 21, 27, 33, 38, 44, 50, 55, 61, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120]

This path corresponds to these courses:

[2, 4, 7, 12, 14]

courseOptions:

[[1], [-1]]

[[5], [-5]]

[[6], [-6]]

[[8], [-8]]

[[11], [-11]]

[[13], [-13]]

[[16], [-16]]

[[18], [-18]]

[[19], [-19]]

[[20], [-20]]

[[21], [-21]]

[[22], [-22]]

[[23], [-23]]

[[24], [-24]]

[[25], [-25]]

[[3], [-3]]

The student should take this path through the network:

[5, 11, 16, 21, 27, 33, 38, 44, 50, 55, 61, 66, 72, 78, 84, 90, 96]

This path corresponds to these courses:

25

[5, 6, 13, 19, 21]

courseOptions:

[[1], [-1]]

[[8], [-8]]

[[11], [-11]]

[[16], [-16]]

[[18], [-18]]

[[20], [-20]]

[[22], [-22]]

[[23], [-23]]

[[24], [-24]]

[[25], [-25]]

[[3], [-3]]

[[13], [-13]]  student failed course 13 the previous semester, so it is an option.

[[15], [-15]]

[[17], [-17]]

The student should take this path through the network:

[5, 11, 16, 21, 27, 33, 38, 44, 50, 55, 61, 66, 72, 78, 84]

This path corresponds to these courses:

[8, 11, 20, 24, 3]

courseOptions:

[[1], [-1]]

[[16], [-16]]

[[18], [-18]]

26

[[22], [-22]]

[[23], [-23]]

[[25], [-25]]

[[13], [-13]]

[[15], [-15]]

[[17], [-17]]

[[3], [-3]]  student failed course 3 the previous semester, so it is an option.

...

Here we see that the student initially does not have credit for any courses, so their initial

course options are all courses satisfying pre-requisite and/or free course requirements. For the

first semester, the model recommends taking courses 2, 4, 7, 12, and 14. As the student

completes these courses, the model updates courseOptions to reflect that courses 2, 4, 7, 12, and

14 are no longer options to take and have been marked as completed in CourseLog. During

simulation, the model detects that the student failed courses 13 and 3 in semesters 2 and 3

respectively, and therefore does not mark them complete. Because of this, courses 13 and 3 show

up again in the next semesters’ courseOptions. The same process is iterated until all courses are

passed and completed.

After simulating 100 students, the average number of semesters it took students to

proceed through all courses was 5.9 semesters. The results are summarized in Figure 9:

Figure 9: Frequency chart for number of semesters to graduate

27

It is not surprising to see that the mean number of semesters to graduate was 5.9 when the

total number of courses to take was 25. If all courses were passed on the first time, the minimum

number of semesters to graduate would have been 5. Since all courses have a non-zero DFW

rate, it would not be expected for the mean number of semesters to graduate across 100 students

to be 5. From the data we can conclude that using the suggestions of the model, 86% of the

students graduated within an extra semester, and 100% graduated within an extra year.

This suggests that the model can provide good insight as to what a student should take in

order to have the best probability of graduating on time. This number is not far from reality, with

most students graduating within an extra year of the eight-semester plan if they do not graduate

on time. Perhaps another reason why the mean number of semesters to graduate is higher than

expected is because the model does not account for students being able to “make up time” by

taking courses over summer break, winter, or taking extra hours. For the model to be able to

produce results that are reasonable without accounting for students making up for failed courses,

the model is deemed a success and can only be improved.

28

MODEL ASSUMPTIONS AND CONCLUDING REMARKS

Introduction

 This section describes three important limitations of the optimization model and areas for

improvement, using this study as a baseline.

Assumption

 To maintain simplicity of the baseline, this model is based on the assumption that all

courses are offered every semester. However, this is not the case in reality. This should be taken

into consideration when using this model to plan semester courses. The solution to alleviating

this assumption would be to include in the Course Log binary variables for each course,

indicating whether or not they are offered in each semester. This way, logic would prevent these

course decision alternatives from being added to Course Options in semesters they are not

offered.

Assumption

This model also assumes that all courses in the input list must be taken and that no

courses are electives. The model works off this assumption for the reason that data was

unavailable on non-industrial engineering courses, but in reality, the industrial engineering

degree contains non-industrial engineering courses. A simple way for the model to work without

relying on this assumption would be to implement logic forcing the model to select courses that

are on the required list and a certain number from an optional list. This ensures that the number

of course selections for the model to output is less than the number of courses available, showing

that the model can handle both required and elective courses.

Assumption

 This model is limited to only selecting industrial engineering courses, however, in reality

an industrial engineering degree contains non-industrial engineering courses. This was done as

data was unavailable for non-industrial engineering courses. The solution to alleviating this

assumption is to also include courses that are non-industrial engineering. This way it is more

representative of a real industrial engineering degree.

Concluding Remarks

 Although the model is simplified and only represents progression through a subset of

courses, it still abides by the vast majority of logic in a real life scenario. The model

29

accomplishes its goal of optimizing and suggesting the courses a student should take in order to

have the best chance of passing all courses and staying on track. Upon further development, the

model could be improved by incorporating non-industrial engineering courses, enforcing a

minimum number of required and the rest elective courses, and restricting which courses are

available each semester. The results of the complete model could then be fully validated against

the standard eight semester plan. Until then, however, the current developed model accomplishes

the toughest modeling requirements and can be improved to solve the remaining gaps in logic

with minimal effort.

30

APPENDIX

Introduction

 This section contains two sections, one for the code that was not written by the researcher,

and original code that was written by the researcher. The code that was not original included the

Python Graph class and a separate implementation of Dijkstra’s algorithm. The code written by

the researcher included the main program that read information from a user and output the

progression the student should take through the sample course subset.

Starter Code

def make_edge(start, end, cost=1):

 return Edge(start, end, cost)

def getSink(b, t):

 return ((b+1)*(t+1)) - 1 - b

class Graph:

 def __init__(self, edges):

 # let's check that the data is right

 wrong_edges = [i for i in edges if len(i) not in [2, 3]]

 if wrong_edges:

 raise ValueError('Wrong edges data: {}'.format(wrong_edges))

 self.edges = [make_edge(*edge) for edge in edges]

 @property

 def vertices(self):

 return set(

 sum(

 ([edge.start, edge.end] for edge in self.edges), []

)

31

)

 def get_node_pairs(self, n1, n2, both_ends=False):

 if both_ends:

 node_pairs = [[n1, n2], [n2, n1]]

 else:

 node_pairs = [[n1, n2]]

 return node_pairs

 def remove_edge(self, n1, n2, both_ends=False):

 node_pairs = self.get_node_pairs(n1, n2, both_ends)

 edges = self.edges[:]

 for edge in edges:

 if [edge.start, edge.end] in node_pairs:

 self.edges.remove(edge)

 def add_edge(self, n1, n2, cost, both_ends=False):

 node_pairs = self.get_node_pairs(n1, n2, both_ends)

 for edge in self.edges:

 if [edge.start, edge.end] in node_pairs:

 return ValueError('Edge {} {} already exists'.format(n1, n2))

 self.edges.append(Edge(start=n1, end=n2, cost=cost))

 if both_ends:

 self.edges.append(Edge(start=n2, end=n1, cost=cost))

 @property

 def neighbours(self):

 neighbours = {vertex: set() for vertex in self.vertices}

 for edge in self.edges:

 neighbours[edge.start].add((edge.end, edge.cost))

32

 return neighbours

 def dijkstra(self, source, dest):

 assert source in self.vertices, 'Such source node doesn\'t exist'

 distances = {vertex: inf for vertex in self.vertices}

 previous_vertices = {

 vertex: None for vertex in self.vertices

 }

 distances[source] = 0

 vertices = self.vertices.copy()

 while vertices:

 current_vertex = min(

 vertices, key=lambda vertex: distances[vertex])

 vertices.remove(current_vertex)

 if distances[current_vertex] == inf:

 break

 for neighbour, cost in self.neighbours[current_vertex]:

 alternative_route = distances[current_vertex] + cost

 if alternative_route < distances[neighbour]:

 distances[neighbour] = alternative_route

 previous_vertices[neighbour] = current_vertex

 path, current_vertex = deque(), dest

 while previous_vertices[current_vertex] is not None:

 path.appendleft(current_vertex)

 current_vertex = previous_vertices[current_vertex]

 if path:

 path.appendleft(current_vertex)

 return path

33

Original Code:

 def GenerateNetworkMatrix(self, courseOptions, b, semNum):

 CN = b

 t = len(courseOptions)

 courseLog = pandas.read_excel('CourseLookupSecond.xlsx')

 #penaltyValues = pandas.read_excel('PenaltyValuesArbitrary.xlsx')

 binaryVals = []

 for i in range(0, len(courseOptions)):

 if len(courseOptions[i]) == 3:

 binaryVals.append(1)

 else:

 binaryVals.append(0)

 # Creates a bxb array initialized to Null ("None")

 matrix = [[None for x in range((b+1)*(t+1))] for y in range((b+1)*(t+1))] #changed this 3/11

 for i in range(0, t): #changed b to t

 #populating network with arrows

 while CN <= (b*i + b + i) and CN <= (getSink(b, t) + b): #make sure CN is less than the end node # and

less than the very last node

 if binaryVals[i] == 0: #check what kind of relationship in this stage--> 0 for free/pre-req, 1 for co-req

 if (CN+b > b*i+b+i) and (CN+b+1 > b*i+b+i): #if both arrows go to next line/anywhere else but far

left

 matrix[CN][CN+b] = courseLog.iloc[courseOptions[i][0][0] - 1]['f'] *

courseLog.iloc[courseOptions[i][0][0] - 1]['Semester' + str(semNum)] #lookup value

 matrix[CN][CN+b+1] = courseLog.iloc[courseOptions[i][0][0] - 1]['Semester' + str(semNum)]

 else: #at the far left node on each row

 #if (CN+b > b*i+b+i):

34

 #matrix[CN][CN+b] = courseLog.iloc[courseOptions[i][0][0] - 1]['f']

 if (CN+b+1 > b*i+b+i):

 matrix[CN][CN+b+1] = courseLog.iloc[courseOptions[i][0][0] - 1]['Semester' + str(semNum)]

 CN = CN + 1

 elif binaryVals[i] == 1:

 if (CN+b-1 > b*i+b+i) and (CN+b > b*i+b+i) and (CN+b+1 > b*i+b+i):

 matrix[CN][CN+b-1] =

(courseLog.iloc[courseOptions[i][0][0]]['f']*courseLog.iloc[courseOptions[i][0][0]]['Semester' + str(semNum)]) +

(courseLog.iloc[courseOptions[i][0][1] - 1]['f']*courseLog.iloc[courseOptions[i][0][1] - 1]['Semester' +

str(semNum)])

 matrix[CN][CN+b] = courseLog.iloc[courseOptions[i][0][0] -

1]['f']*courseLog.iloc[courseOptions[i][0][0] - 1]['Semester' + str(semNum)] +

courseLog.iloc[courseOptions[i][0][1] - 1]['Semester' + str(semNum)]

 matrix[CN][CN+b+1] = courseLog.iloc[courseOptions[i][0][0]]['Semester' + str(semNum)] +

courseLog.iloc[courseOptions[i][0][1] - 1]['Semester' + str(semNum)]

 #if (CN+b-1 > b*i+b+i):

 #matrix[CN][CN+b-1] = courseLog.iloc[courseOptions[i][0][0] - 1]['f'] +

courseLog.iloc[courseOptions[i][0][1] - 1]['f']

 elif (CN+b > b*i+b+i) and (CN+b+1 > b*i+b+i):

 matrix[CN][CN+b] = (courseLog.iloc[courseOptions[i][0][0] -

1]['f']*courseLog.iloc[courseOptions[i][0][0] - 1]['Semester' + str(semNum)]) +

courseLog.iloc[courseOptions[i][0][1] - 1]['Semester' + str(semNum)]

 matrix[CN][CN+b+1] = courseLog.iloc[courseOptions[i][0][0]]['Semester' + str(semNum)] +

courseLog.iloc[courseOptions[i][0][1] - 1]['Semester' + str(semNum)]

 elif (CN+b+1 > b*i+b+i):

 matrix[CN][CN+b+1] = courseLog.iloc[courseOptions[i][0][0]]['Semester' + str(semNum)] +

courseLog.iloc[courseOptions[i][0][1] - 1]['Semester' + str(semNum)]

 else:

 pass

 CN = CN + 1

 else:

35

 CN = CN + 1

 #add backwards arrows prohibiting going backwards

 #add arrows on bottom pointing to sink

 for i in range(0, b):

 matrix[getSink(b, t)+b-i][getSink(b, t)+b-i-1] = 1

 return matrix

#---------------------------------MAIN---

 #for reference, the structure of courseOptions

 '''courseOptions = [[[1], [-1]],

 [[2, 3], [2, -3], [-2, -3]],

 [[4, 5], [4, -5], [-4, -5]],

 [[8], [-8]],

 [[10], [-10]],

 [[12], [-12]],

 [[15], [-15]],

 [[16], [-16]],

 [[18], [-18]],

 [[20], [-20]],

 [[23], [-23]]]'''

budget = 5

36

graph = Graph(())

courseLog = pandas.read_excel('CourseLookupSecond.xlsx')

courseOptions = []

numSemesters = 1

 #if we don't have 5 courses left to take, need to build network of different dimension

 #if len(courseLog[courseLog['Completed'] == 0]) < 5:

 #budget = len(courseLog[courseLog['Completed'] == 0])

 #form course options

for i in range(0, len(courseLog.index)):

 #co reqs

 if courseLog.iloc[i]['RelType'] == 'c' and courseLog.iloc[i]['Completed'] == 0:

 courseOptions.append([[int(courseLog.iloc[i]['CourseNum']), int(courseLog.iloc[i]['CoReqFor'])],

[int(courseLog.iloc[i]['CourseNum']), -1 * int(courseLog.iloc[i]['CoReqFor'])], [-1 *

int(courseLog.iloc[i]['CourseNum']), -1 * int(courseLog.iloc[i]['CoReqFor'])]])

 #pre-reqs

 elif courseLog.iloc[i]['RelType'] == 'p' and courseLog.iloc[int(courseLog.iloc[i]['PreReq']) - 1]['Completed'] == 1

and courseLog.iloc[i]['Completed'] == 0:

 courseOptions.append([[int(courseLog.iloc[i]['CourseNum'])], [-1 * int(courseLog.iloc[i]['CourseNum'])]])

 #free courses

 elif courseLog.iloc[i]['RelType'] == 'f' and courseLog.iloc[i]['Completed'] == 0:

 courseOptions.append([[int(courseLog.iloc[i]['CourseNum'])], [-1 * int(courseLog.iloc[i]['CourseNum'])]])

 else:

 pass

37

#loop while there are incomplete courses

while len(courseLog[courseLog['Completed'] == 0]) > 0: ###changed tonight

 #if we don't have 5 courses left to take, need to build network of different dimension

 if len(courseLog[courseLog['Completed'] == 0]) < budget: ###changed tonight

 budget = len(courseLog[courseLog['Completed'] == 0]) ###changed tonight

 print("courseOptions:")

 for i in courseOptions:

 print(i)

 print("")

 options = len(courseOptions)

 #matrix contains all arrow information

 info_matrix = graph.GenerateNetworkMatrix(courseOptions, budget, numSemesters)

 #generate actual network

 for i in range(0, len(info_matrix)):

 for j in range(0, len(info_matrix)):

 if info_matrix[i][j] != None:

 graph.add_edge(i, j, info_matrix[i][j], False)

 #return shortest node path

 nodePath = graph.dijkstra(budget, getSink(budget, options)) #this is a deque

 print("The student should take this path through the network:")

 print(list(nodePath))

 print("")

 #extract course numbers of what to take from node list

 coursesToTake = list()

 stage = 0

38

 for i in range(0, len(nodePath) - 1):

 if nodePath[i+1] - nodePath[i] == budget + 1:

 stage = stage + 1

 elif nodePath[i+1] - nodePath[i] == budget:

 coursesToTake.append(courseOptions[stage][0][0])

 stage = stage + 1

 elif nodePath[i+1] - nodePath[i] == budget - 1:

 if len(courseOptions[stage][0]) > 0:

 coursesToTake.append(courseOptions[stage][0][0])

 if len(courseOptions[stage][0]) > 1:

 coursesToTake.append(courseOptions[stage][0][1])

 stage = stage + 1

 else:

 pass

 print("This path corresponds to these courses:")

 print(coursesToTake)

 #update courseOptions

 #first, update courseLog to reflect courses taken

 for i in range(0, len(coursesToTake)):

 #generate random number to see if they passed

 num = random()

 #only mark completed if passed class

 if num > float(courseLog.iloc[coursesToTake[i] - 1]['f']):

 print(num)

 courseLog.set_value(int(coursesToTake[i] - 1), 'Completed', 1)

 numSemesters = numSemesters + 1

39

 print("")

 print("")

 #reconfigure courseOptions to reflect courses that were taken

 #delete courses that have been taken

 for i in range(0, len(coursesToTake)):

 #check if adjacent courses are a co-req pair

 #check if at the end of the list

 if len(coursesToTake) - i != 1:

 if courseLog.iloc[int(coursesToTake[i]) - 1]['CoReqFor'] == int(coursesToTake[i+1]):

 for obj in courseOptions:

 if obj[0][0] == coursesToTake[i] and obj[0][1] == coursesToTake[i+1]:

 courseOptions.remove(obj)

 else:

 for obj in courseOptions:

 if obj[0][0] == coursesToTake[i]:

 courseOptions.remove(obj)

 else:

 for obj in courseOptions:

 if obj[0][0] == coursesToTake[i]:

 courseOptions.remove(obj)

 print("")

 #add in new courses that student is now able to take --> check for co-reqs and pre-reqs

 for i in range(0, len(courseLog.index)):

 count = 0

 #test if the course is currently in courseOptions by counting # of occurrences. If it's not and pre-req has been

completed, add.

40

 for list_obj in courseOptions:

 for obj in list_obj:

 if int(courseLog.iloc[i]['CourseNum']) in obj:

 count = count + 1

 if count == 0:

 #3 possibilities for co-req relationships: passed both, passed #1 not #2, passed #2 not #1

 if courseLog.iloc[i]['RelType'] == 'c':

 if courseLog.iloc[i]['Completed'] == 1 and courseLog.iloc[int(courseLog.iloc[i]['CoReqFor']) -

1]['Completed'] == 1:

 pass

 elif courseLog.iloc[i]['Completed'] == 0 and courseLog.iloc[int(courseLog.iloc[i]['CoReqFor']) -

1]['Completed'] == 1:

 courseOptions.append([[int(courseLog.iloc[i]['CourseNum'])], [-1 *

int(courseLog.iloc[i]['CourseNum'])]])

 elif courseLog.iloc[i]['Completed'] == 1 and courseLog.iloc[int(courseLog.iloc[i]['CoReqFor']) -

1]['Completed'] == 0:

 courseOptions.append([[int(courseLog.iloc[i]['CoReqFor'])], [-1 * int(courseLog.iloc[i]['CoReqFor'])]])

 elif courseLog.iloc[i]['Completed'] == 0 and courseLog.iloc[int(courseLog.iloc[i]['CoReqFor']) -

1]['Completed'] == 0:

 courseOptions.append([[int(courseLog.iloc[i]['CourseNum']), int(courseLog.iloc[i]['CoReqFor'])],

[int(courseLog.iloc[i]['CourseNum']), -1 * int(courseLog.iloc[i]['CoReqFor'])], [-1 *

int(courseLog.iloc[i]['CourseNum']), -1 * int(courseLog.iloc[i]['CoReqFor'])]])

 else:

 pass

 #pre-reqs

 elif courseLog.iloc[i]['Completed'] == 0 and courseLog.iloc[i]['RelType'] == 'p' and

courseLog.iloc[int(courseLog.iloc[i]['PreReq']) - 1]['Completed'] == 1:

 courseOptions.append([[int(courseLog.iloc[i]['CourseNum'])], [-1 *

int(courseLog.iloc[i]['CourseNum'])]])

 #free courses

 elif courseLog.iloc[i]['RelType'] == 'f' and courseLog.iloc[i]['Completed'] == 0:

 courseOptions.append([[int(courseLog.iloc[i]['CourseNum'])], [-1 *

int(courseLog.iloc[i]['CourseNum'])]])

41

 else:

 pass

print("Number of semesters to graduate: ", numSemesters - 1)

42

WORKS CITED

[1] ABİDİN, D., & ÇAKIR, H. Ş. (2014). Analysis of a rule-based curriculum plan optimization

system with spearman rank correlation. Turkish Journal of Electrical Engineering & Computer

Sciences, 22, 176-190. doi:10.3906/elk-1204-14

[2] ARORA, N., SINGH, N., Freelancer Trainer, Gurugram, Haryana, India, & Associate

Professor, Department of Applied Sciences, World College of Technology and Management,

Gurugram, Haryana, India. (2017).

[3] Boldyreva, Maria. “Dijkstra’s Algorithm in Python: Algorithms for Beginners.” DEV

Community. DEV Community, July 11, 2018.

[4] Factors affecting the academic performance of college students. I-Manager's Journal of

Educational Technology, 14(1), 47. doi:10.26634/jet.14.1.13586

[5] Belfield, C. R. (2007) The Price We Pay: Economic and Social Consequences of Inadequate

Education. Brookings Institution Press.

[6] Farahani, Reza Zanjirani, and Elnaz Miandoabchi. Graph Theory for Operations Research

and Management Applications in Industrial Engineering. Business Science Reference, 2013.

[7] Heckler, M. A. (2018). The importance of a college education.

[8] Hester, B. T., & Ishitani, T. T. (2018). Institutional expenditures and state economic factors

influencing 2012–2014 public university graduation rates. Planning for Higher Education, 46(4),

41-47.

[9] Li, D., & Lu, M. (2017). Automated generation of work breakdown structure and project

network model for earthworks project planning: A flow network-based optimization approach.

Journal of Construction Engineering and Management, 143(1), 4016086.

doi:10.1061/(ASCE)CO.1943-7862.0001214 8. Powell, B. A., D. S. Gilleland, and L. C.

Pearson. 2012. Expenditures, Efficiency, and Effectiveness in U.S. Undergraduate Higher

Education: A National Benchmark Model. Journal of Higher Education 83 (1): 102-127.

[10] Nykamp, Duane Q. Network definition – Math Insight: Math Insight.

[11] Pascarella, E. T., and P. T. Terenzini. 1991. How College Affects Students: Findings and

Insights from Twenty Years of Research. San Francisco: Jossey-Bass.

[12] Planck, Max (Photograph). (2018). Example of a directed network.NetworkAnalyzer Online

Help. https://med.bioinf.mpi-inf.mpg.de/netanalyzer/help/2.5/.

[13] The Increasing Importance of College Education. (2015, Dec 10). Mint Retrieved from

http://0-search.proquest.com.library.uark.edu/docview/1747193173?accountid=8361

43

[14] Willcox, K. E., & Huang, L. (2017). Network models for mapping educational data. Design

Science, 3 doi:10.1017/dsj.2017.18

[15] Yan, M. (2020). Dijkstra’s Algorithm. Math.mit.edu.

	Curriculum Optimization via Activity-on-Node Network Modeling
	Citation

